Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двухскоростной электродвигатель – конструкция и сфера использования

Двухскоростной электродвигатель – конструкция и сфера использования

Пожалуй, нет такой отрасли промышленности, где не используется оборудование с электродвигателями. Очень часто процесс работы ряда станков и механизмов требует ступенчатого регулирования скорости, поэтому одним из наиболее популярных вариантов комплектации является двухскоростной электродвигатель.

Двухскоростные электродвигатели – особенности конструкции

Несмотря на появление на рынке электротехники более современных двигателей с частотными преобразователями, двухскоростные агрегаты широко используются даже на самом современном оборудовании. Это объясняется рядом причин:

  • Простота и надежность конструкции.
  • Возможность развивать разную мощность на разных скоростях благодаря наличию двух пар обмоток на одном роторе, что позволяет получить две скорости вращения и две пары полюсов.

Двигатели с частотным преобразователем могут выдавать только постоянную мощность, соответственно, это несколько снижает сферу их использования.

Двухскоростные двигатели – сфера применения

Двухскоростные электродвигатели давно и успешно используются во многих отраслях сельского хозяйства и промышленности, в частности, при комплектации следующих видов оборудования:

  • лебедок и крановых установок;
  • лифтов и других подъемных механизмов;
  • станков для химической промышленности и металлургии;
  • вентиляторов;
  • циркуляционных механизмов;
  • буровых установок.

Кроме того, подобные силовые агрегаты устанавливаются на бытовом оборудовании, станках, профессиональной технике (в столовых, прачечных и пр.), применяются в судостроении (для приведения в движение гребных винтов).

Таким образом, двухскоростные электродвигатели отличаются:

  • невысоким уровнем шума;
  • минимальной вибрацией;
  • высокой производительностью;
  • высоким пусковым моментом.

В зависимости от модели, эти двигатели предназначены для использования в разных климатических условиях, в частности, в:

  • умеренном климате;
  • умеренно холодном климате;
  • морском и речном климате (т.е. в условиях повышенной влажности).

Разнообразие сфер применения данных агрегатов в полной мере обусловлено вышеизложенными характеристиками.

Схемы подключения

Данные двигатели производятся на базе односкоростных, следовательно, габариты и параметры и принципы подсоединения практически одинаковы.

  • Обмотка статора. Возможны два варианта: одна или две независимые обмотки. В первом случае путем переключения полюсов можно получить изменение скорости в пропорции 1:2, во втором случае – 1:4. Двигатели второго типа часто используются в подъемных механизмах: например, кабина лифта двигается на определенной скорости между этажами, а по мере приближения к конечной точке скорость понижается.
  • Иногда может варьироваться форма пазов ротора и длина сердечников.

Существуют различные схемы подключения двухскоростных электродвигателей. Самый распространенный тип – мотор, работающий с 2-4 полюсами, который имеет одну обмотку с подключением Даландера. Если необходима меньшая скорость запуска, то подключение производится между фазами двигателя треугольником. При запуске на большей скорости двигатель работает с двумя полюсами, а подключение осуществляется в виде двойной трехлучевой звезды. При автоматическом запуске для моторов данного типа применяются три контактора.

Кроме того, выделяются следующие типы подключений:

  • Обмотка Даландера плюс независимая обмотка.
  • Две обмотки Даландера.
  • Две независимые обмотки, взаимодействующие с разным числом полюсов. Подключение производится «звездой».

Запуск трехфазных двухскоростных двигателей. Подключение Даландера

Запуск трехфазных двухскоростных двигателей. Подключение Даландера

19.1 Двухскоростные асинхронные двигатели различных скоростей

Асинхронные трехфазные двигатели могут быть сконструированы более, чем на одну скорость, либо реализованные с различными обмотками, отличающимися числом полюсов, либо только с одной обмоткой, но построенной таким образом, что может подключаться внешне с различным числом полюсов. По этой причине некоторые виды трехфазных асинхронных двигателей с различными скоростями называют также двигатели с переключаемыми полюсами.

На рисунке 19.1 схематически представлены разнообразные типы обмоток и также их подключение, которые в настоящее время наиболее часто употребляются в конструкции двигателей различных скоростей, причем второй является наиболее часто используемым из всех.

Рисунок 19.1 – Системы соединения трехфазных асинхронных двигателей с различными скоростями

Этот тип двигателей имеет короткозамкнутый ротор и в основном применяется в работе станков и вентиляторов, и, что касается видов конструкции, представленных на рисунке 19.1, их главными характеристиками являются следующие:

  1. Двигатели с двумя независимыми обмотками. У этих двигателей две скорости и они сконструированы таким образом, что каждая обмотка взаимодействует внутренне с различным количеством полюсов и в зависимости от того, какая обмотка подключена к сети, двигатель будет вращаться с различным числом оборотов. В этом типе двигателей обычно обе обмотки включаются соединением в звезду и наиболее частые сочетания полюсов это: 6/2, 6/4, 8/2, 8/6, 12/2 и 12/4.
  2. Двигатели с одной обмоткой с подключением Даландера. Эти двухскоростные двигатели сконструированы с обычной трехфазной обмоткой, но соединенной внутри таким образом, что в зависимости то того, какие внешние потребители подключены в сеть, в двигателе будут происходить переключения с одного на другое количество полюсов, но их соотношение всегда будет 2 к 1; таким образом, у двигателя будут две роторные скорости, одна в два раза превышающая другую. Как показано на рисунке 19.1, подключение обмоток осуществляется треугольником или звездой для меньшей скорости и двойной звездой для большей, наиболее частые сочетания полюсов это: 4/2, 8/4 и 12/6.
  3. Двигатели с обмоткой Даландера и другой независимой обмоткой. При помощи этого типа двигателя достигаются три различные скорости, две с обмоткой подключения Даландера и третья с независимой обмоткой, конструкция которой различное количество полюсов, отличное от двух полярностей, полученных с первой. Наиболее часто используемые подключения представлены на рисунке 19.1, и наиболее часто встречающиеся сочетания полюсов: 6/4/2, 8/4/2, 8/6/4, 12/4/2, 12/6/4, 12/8/4, 16/12/8 и 16/8/4.
  4. Двигатели с двумя обмотками Даланлера. При помощи двигателей этого типа добиваются четырех скоростей, две с каждой обмотки, которые будут предназначены для полярностей отличных друг от друга, при наиболее часто использующихся сочетаниях: 12/8/6/4 и 12/6/4/2.

19.2 Двухскоростные двигатели с подключением Даландера или с переключением полюсов

Наиболее применяемый вид асинхронных трехфазных двигателей с различными скоростями (можно сказать, что почти единственный применяемый в настоящее время) это двигатель с олной обмоткой с подключением Даландера и именно поэтому этот двигатель будет детально описан. На рисунке 19.2 показана обмотка трехскоростного асинхронного двигателя с подключением Даландера, где представлены, как внутренние подключения, так и присоединения с клеммной колодкой к сети, в двух рабочих позициях. Этот двигатель предназначен для работы с четырьмя полюсами, когда соединен в треугольник и два полюса, когда соединяется в двойную звезду в соответствии с представленной на рисунке фазы обмотки U1 – V1.

Читать еще:  Шевроле круз дергается при запуске двигателя

Рисунок 19.2 – Внутренние связи, в треугольник и двойную звезду, обмотки двигателя Даландера, с 4 и 2 полюсами

Как показано на рисунке 19.2 при запуске на меньшей скорости достаточно применить напряжение сети шторок клеммных соединений, при осуществлении треугольного подключения между тремя фазами внутри двигателя. И наоборот, для большой скорости должны быть выполнены две операции: сначала необходимо короткозамкнуть U1, V1 и W1, а затем применить напряжение сети U2, V2 и W2 в клеммном соединении. Вывод, полученный на основе вышеизложенного: для автоматического запуска двигателя с подключением Даландера необходимы три контактора.

Также на рисунке 19.2 можно увидеть, что когда двигатель подключается на маленькую скорость, образовывается двойное количество полюсов из-за того, что все статоры одной фазы соединены последовательно, в то время, как для большей скорости статоры каждой фазы соединяются по половине параллельно, таким образом получая половину количества полюсов по сравнению с предыдущим описанием.

Перейдем к описанию схем контроля и защиты наиболее часто применяемых для работы двигателей с подключением Даландера, и представленным на рисунках 19.3 и 19.4. Первый это простой запуск на любой из двух скоростей и второй это тот же тип запуска, но с двумя необходимыми цепямидля того, чтобы в каждой из своих двух скоростей двигатель мог бы запускаться в обоих направлениях без различия (одинаково).

19.3. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения

Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть:

  • Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.
  • Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.
  • Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.
  • Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.
  • Предохранитель F5, для защиты цепей контроля.
  • Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.

Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой:

  • а) запуск и остановка на маленькой скорости (PV).
  • Запуск путем нажатия на S1.
  • Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
  • Автопитание через (К1, 13–14).
  • Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
  • Остановка путем нажатия на S0.
  • б) запуск и остановка на большой скорости (GV).
  • Запуск путем нажатия на S2.
  • Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.
  • Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
  • Автопитание через (К2, 13–14).
  • Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
  • Остановка путем нажатия на S0.

Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.

Рисунок 19.3 – Цепи мощности и контроля для запуска двигателя с переключаемыми полюсами

19.4 Запуск двухскоростного двигателя с переключаемыми полюсами (рисунок 19.4)

Электрические характеристики элементов контроля и защиты будут такими же, как в предыдущем примере в том случае, когда принимается в расчет наличие двух номинальных мощностей двигателя в зависимости от его скорости работы.

Цепи на рисунке 19.4 являются наиболее используемыми, хотя не единственными для запуска двигателя с переключаемыми полюсами в обоих направлениях движения и на любой из двух своих скоростей.

Между двумя контакторами каждого инвертора К1 – К2 и К3 – К4 размещаются двойные защитные шторки, одна с защитными контактами собственных контакторов (К1, К2, К3 и К4; 21–22) и другая с контактами собственных кнопок движения (S1, S2, S3 и S4; 21–22). Последние могли бы быть защищены защитными механическими шторками между каждой парой контакторов: К1 – К2 и К3 – К4, избегая в этом случае прерывателей движения тройного контакта S3 и S4. Кроме того имеются защитные шторки между контакторами применяемыми для маленькой скорости К1 и К2, а остальные К3, К4 и К5 применяемые для большой скорости, выполненные посредством вспомогательных контактов собственных контакторов (К1, К2, К3 и К4; 31–32) и (К5; 21–22).

Перейдем к краткому описанию работы цепи при каждой из четырех возможностей движения, но пренебрегая действием контактов защитных шторок, исходя из того, что предыдущее их описание является достаточным для понимания действия их работы.

  • а) Запуск и остановка на маленькой скорости при движении вправо.
  • Запуск путем нажатия на S1.
  • Замыкание контактора цепи К1 и запуск двигателя на маленькой скорости движения вправо, при треугольном соединении.
  • Автопитание через (К1; 13–14).
  • Остановка путем нажатия на S0.
  • б) Запуск и остановка на маленькой скорости при движении влево.
  • Запуск путем нажатия на S2.
  • Замыкание контактора цепи К2 и запуск двигателя на маленькой скорости движения влево, при треугольном соединении.
  • Автопитание через (К2; 13–14).
  • Остановка путем нажатия на S0.
  • в) Запуск и остановка на большой скорости при движении вправо.
  • Запуск путем нажатия на (S3; 13–14 и 23–24).
  • Замыкание контактора звезды К5, который формирует звезду двигателя при коротком замыкании U1, V1 и W1.
  • Замыкание контактора цепи К3 через (К5; 23–24), таким образом, что двигатель начинает работу на большой скорости при движении вправо, соединение двойная звезда.
  • Автопитание через (К5; 13–14) и (К3; 13-14).
  • Остановка путем нажатия на S0.
  • г) Запуск и остановка на большой скорости при движении влево.
  • Запуск путем нажатия на (S4;13–14 и 23–24).
  • Замыкание контактора звезды К5, который формирует звезду двигателя при коротком замыкании U1, V1 и W1.
  • Замыкание контактора цепи К4 через (К5; 23–24), таким образом, что двигатель начинает работу на большой скорости при движении влево, соединение двойная звезда.
  • Автопитание через (К5; 13–14) и (К3; 13–14).
  • Остановка путем нажатия на S0.
Читать еще:  Что такое рабочее тело реактивного двигателя

В случае, если при перегрузке двигателя, выйдет из строя термическое реле F3 или F4, эффект будет таким же, как при нажатии на S0, каким бы ни был открывшийся контакт, цепь контроля прервется.

Рисунок 19.4 – Цепи мощности и контроля для запуска двигателя с переключаемыми полюсами (подключение Даландера), с переключением вращения

2 х скоростные асинхронные двигатели схема включения

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

При многодвигательном электроприводе иногда требуется, чтобы несколько электродвигателей, удаленных друг от друга на значительное расстояние, вращались с одинаковой скоростью. Такие случаи имеют место в электроприводах экскалаторов, про­катных станов, механизмов передвижения перегрузочных мос­тов, некоторых типов грейферных лебедок и др. Вращение элект­родвигателей, имеющих различную нагрузку, с одинаковой скоростью называется согласованным. Согласованное вра­щение может быть осуществлено путем механического соедине­ния их валов. Однако при значительном удалении машин друг от друга, а также при неудобном их расположении механическое соединение зачастую оказывается затруднительным, так как при этом необходимо применять валы слишком большой длины и диаметра, большое количество подшипников и других механиче­ских приспособлений, что увеличивает вес, габариты, стоимость привода и затрудняет его эксплуатацию.

Для обеспечения согласованного вращения электродвигате­лей при неодинаковых нагрузках разработан ряд электрических схем, позволяющих получить синхронное вращение электродви­гателей без использования механических приспособлений. Такие схемы называются системами синхронного вращения. В них используются асинхронные машины, обеспечивающие наиболее надежную работу привода. Различают системы синхронного вращения со вспомогательными синхронизирующими машинами и без вспомогательных машин. В состав любой системы синхрон­ного вращения входят главные электродвигатели, обеспечиваю­щие привод механизмов. В системах первой группы с валами главных электродвигателей соединяются вспомогательные асин­хронные или синхронные машины, с помощью которых и осу­ществляется согласованное вращение главных электродвигате­лей.

В системах без вспомогательных машин согласованное вращение осуществляется непосредственно за счет главных электродвигателей, соединенных определенным образом между собой.

Нужно иметь в виду, что в системах со вспомогательными ма­шинами возможно применение главных электродвигателей любого типа. Однако системы синхронного вращения с главными электродвигателями постоянного тока применяются сравнитель­но редко и здесь не рассматриваются. То же самое относится и к системам синхронного вращения со вспомогательными синхрон­ными машинами, которые не обеспечивают согласованного вра­щения главных электродвигателей в период пуска и торможения и поэтому применяются очень редко.

Для примера рассмотрим систему синхронного вращения, со­стоящую (рис. 56, а) из двух главных электродвигателей Д 1 и Д 2 и двух вспомогательных асинхронных машин А 1 и A 2 . Машина А 1 насажена на вал главного электродвигателя Д 1 а машина А 2 —на вал электродвигателя Д 2 . Главные электродвигатели могут быть удалены друг от друга на значительное расстояние, однако при любых нагрузках они должны вращаться с одинако­выми скоростями. В качестве главных электродвигателей в схеме используются асинхронные короткозамкнутые электродвигатели. Роль же вспомогательных машин выполняют небольшие асин­хронные электродвигатели с контактными кольцами; роторы вспомогательных машин, как показано на схеме, соединены встречно. Статорные обмотки всех четырех машин питаются от общей сети трехфазного тока.

Если главные электродвигатели Д 1 и Д 2 однотипны и имеют одинаковую нагрузку, то вращаются они с одинаковыми скорос­тями. Вспомогательные машины А 1 и А 2 тоже имеют при этом одинаковую скорость и никаких вращающих моментов не созда­ют. Это объясняется тем, что обмотки роторов вспомогательных машин включены навстречу друг другу. Вследствие этого э. д. е., наводимые в каждой фазе ротора одной вспомогательной маши­ны, уравновешиваются э. д. е., наводимыми в фазах ротора дру­гой машины. Поэтому в обмотках роторов вспомогательных ма­шин токи отсутствуют и никаких вращающих моментов машины не создают, т. е. главные электродвигатели, имея одинаковые механические характеристики, будут вращаться синхронно и без участия вспомогательных машин.

В случае увеличения нагрузки, например, на электродвига­тель Д 1 скорость последнего начнет снижаться и между ротора­ми вспомогательных машин А 1 и А 2 возникнет угол рассогласо­вания. В результате э. д. с. их роторных обмоток уравновеши­ваться не будут и в них появятся уравнительные токи, что приведет к созданию дополнительных вращающих моментов, приложенных к валам I и II.

Нетрудно доказать, что в рассматриваемом случае вспомо­гательная машина А 1 будет потреблять электроэнергию из сети, а машина А 2 , наоборот, отдавать определенную часть электро­энергии в сеть. Это значит, что синхронизирующая машина А х создает вращающий момент, совпадающий с направлением вра­щения вала I, а машина А 2 создает момент, направленный навстречу вращению вала II. В результате нагрузки между главными электродвигателями Д 1 и Д 2 уравновесятся и скорость вращения их практически не изменится.

В рассмотренной схеме роторы синхронизирующих машин А 1 и А 2 вращаются в ту же сторону, что и магнитные поля их статоров, т. е. «по полю». Скольжения в этих случаях сравни­тельно невелики, поэтому нет оснований ожидать, что вспомога­тельные машины будут создавать большие синхронизирующие моменты. Действительно, величина э. д. с. роторной обмотки асинхронной машины зависит от скольжения. Чем меньше сколь­жение, тем меньше величины э. д. е., наводимой в обмотке рото­ра, и тем меньше уравнительные токи, протекающие между ро­торными обмотками вспомогательных машин при нарушении равновесия. По этой причине синхронизирующие моменты, соз­даваемые вспомогательными машинами А 1 и А 2 , сравнительно невелики и при большей разности нагрузок между двигателями Д 1 и Д 2 вспомогательные машины, включенные по схеме, изображенной на рис. 56, а, могут не обеспечить синхронного вра­щения валов I и II. Этим и объясняется сравнительно редкое использование на практике рассмотренной схемы. Значительно чаще применяется система синхронного вращения асинхронных электродвигателей со вспомогательными машинами, вращающи­мися «против поля» (рис. 56,б), получившая название «элект­рического вала». Эта схема работает практически так же, как и предыдущая. Разница состоит только в том, что здесь роторы вспомогательных машин А 1 и А 2 под действием главных элект­родвигателей Д 1 и Д 2 вращаются в сторону, противоположную направлению вращения магнитного поля статора. Поэтому при рассогласовании системы, когда нагрузки на двигатели Д 1 и Д 2 будут неодинаковы, вращающие моменты, создаваемые синхро­низирующими машинами, будут значительно выше, чем в пер­вом случае, а это обусловливает большую надежность схемы и согласованность вращения главных электродвигателей Д 1 и Д 2 практически при любых нагрузках.

Читать еще:  Двигатель deutz 2011 l03 не заводится

Схема «электрического вала» обеспечивает синхронное вра­щение главных электродвигателей не только при значительной разнице моментов статического сопротивления в установив­шихся электродвигательном и тормозных режимах работы, но и при переходных процессах (во время пусков и реверсов). Од­нако ее главным недостатком является большое количество электрических машин, что усложняет привод и увеличивает его стоимость.

При небольшой разнице в нагрузках согласованное вращение асинхронных электродвигателей может быть достигнуто без ис­пользования вспомогательных синхронизирующих машин. Для этого главные электродвигатели Д 1 и Д 2 необходимо включать по схеме, показанной на рис. 57. Как и в предыдущих схемах, статорные обмотки элект­родвигателей питаются от общей сети трехфазно­го тока, а роторы вклю­чены навстречу друг другу и присоединены к реостату (для увеличения скольжения при различ­ных нагрузках электродвигателей). Если электродвигате­ли Д 1 и Д 2 нагружены одинаково и вращаются строго синхронно, э. д. с., наводимые в роторных обмотках, равны по ве­личине и направлены на­встречу друг другу.

Если из-за неравенства нагрузки один из роторов отстанет от другого, в проводах, соединяющих роторы, появится уравнитель­ный ток, который создаст для более нагруженной машины допол­нительный двигательный, а для менее нагруженной машины до­полнительный тормозной момент. Последнее приведет к тому, что нагрузки на электродвигатели станут равными и они будут вращаться синхронно.

Система синхронного вращения без вспомогательных машин отличается простотой, обеспечивает синхронное вращение глав­ных электродвигателей в установившемся двигательном режиме и тормозном режиме противовключения. Однако величина син­хронизирующего момента, как указывалось, зависит от величи­ны э. д. с. ротора, а последняя, в свою очередь, от скольжения, при котором работает машина. Поэтому при малых величинах скольжения синхронизирующий момент, создаваемый электро­двигателями, будет мал, и электродвигатели, будучи выведены из состояния синхронной работы, вернуться в нее не смогут, так как даже при сравнительно небольшой разнице в моментах статического сопротивления (10—15%) скольжение должно быть не менее 20—25%. Поэтому чтобы электродвигатели вра­щались синхронно, необходимо искусственно увеличивать их скольжение введением дополнительных сопротивлений в ротор­ные цепи, что приводит к увеличению потерь мощности.

Рассматриваемая система имеет и недостатки. При отключе­нии электродвигателей от сети их синхронное вращение наруша­ется. Это приводит к тому, что при последующем пуске могут возникнуть недопустимо большие пусковые токи и моменты из-за возможного значительного угла рассогласования роторов. Для предотвращения этого схему приходится усложнять и она практически теряет все свои преимущества. Поэтому эта схема применяется сравнительно редко, хотя стоимость установки мень­ше предыдущей.

4.4.Электромеханические характеристики многоскоростных асинхронных двигателей

Поскольку скорость вращения электромагнитного поля статора, как это следует из (4.3), зависит от числа пар полюсов двигателя рП, то имеются специальные модификации асинхронных короткозамкнутых двигателей, позволяющие изменять число пар полюсов машины и тем самым получать две или более (3 и 4) рабочие скорости двигателя. Конструктивно изменение числа пар полюсов может быть достигнуто двумя способами. При первом в пазы статора укладываются две или три независимые обмотки с различными значениями рП. При этом значительно увеличиваются габариты двигателей, но возможно получение любого соотношения числа пар полюсов.

При другом способе используется для получения различного числа пар полюсов одна и та же обмотка, а изменениерП достигается переключением секций этой обмотки. Наибольшее распространение получили две схемы обмоток: звезда (Y) – двойная звезда (Y-Y) и треугольник (∆) – двойная звезда.

Рассмотрим схему звезда – двойная звезда (см.рис.4.20). В этой схеме каждая из фазных обмоток состоит из двух секций, которые могут включаться параллельно или последовательно. При параллельном соединении напряжение подводится к средним точкам обмоток, а начала обмоток замыкаются между собой. Образуются две параллельно включенные системы обмоток, соединенные в двойную звезду (Y-Y). Такое соединение соответствует меньшему числу пар полюсов рП. Этой схеме соединения отвечает механическая характеристика с индексом Y-Y на рис.4.20б.

Рис.4.20. Схема (а) и механические характеристики (б) двухскоростного асинхронного двигателя со схемой соединения обмоток

При последовательном соединении секций обмоток число пар полюсов увеличивается вдвое, поэтому номинальная скорость двигателя в этом случае будет вдвое меньше. Так, например, если схеме соединения Y-Y соответствует число пар полюсов рП=2, то номинальная скорость вращения будет 1470об/мин (n=1500об/мин). Переключив обмотки для соединения в звезду (Y), получим рП=4 и номинальную скорость вращения 735об/мин (n=750об/мин).

Поскольку длительно допустимый ток в обмотках должен остаться неизменным, то номинальная мощность на валу двигателя будет:

при схеме Y-Y ,

при схемеY ,

Т.е. мощность двигателя при высокой скорости будет примерно в 2 раза выше, чем при низкой скорости. Однако длитель-но допустимый номиналь-ный момент сохраняется постоянным, т.к. .

Рассмотрим схему тре-угольник — двойная звезда (рис.4.21). В этой схеме соединение «двойная звез-да» соответствует высокой скорости.

Рис.4.21. Схема (а) и механические характеристики двухскоростного двигателя

ри последовательном включении полуобмоток и соединении их в треуголь-ник число пар полюсов увеличивается вдвое, сле-довательно, вдвое снижает-ся скорость двигателя.

Мощность двигателя при этом будет:

,

здесь U1 – фазное напряжение питания.

Длительно допустимый момент при соединении обмоток в Δ будет в раз больше, чем при соединении в двойную звезду. Таким образом, при обеих схемах соединения двигатель примерно сохраняет свою мощность.

Двух и многоскоростные двигатели применяются в тех случаях, когда по условиям технологии необходимо иметь две или более фиксированные скорости вращения приводного электродвигателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector