Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вопрос 17

Вопрос 17. Устройство, Принцип действия и основные характеристики асинхронного двигателя. Механическая характеристика

Асинхронный двигатель – это машина переменного тока. Слово «асинхронный» означает неодновременный. При этом имеется в виду, что у асинхронных двигателей частота вращения магнитного поля отличается от частоты вращения ротора. Основными частями машины являются статор и ротор, отделенные друг от друга равномерным воздушным зазором.

Рис.1. Устройство асинхронных двигателей

Статор – неподвижная часть машины (рис. 1, а). Его сердечник с целью уменьшения потерь на вихревые токи набирают из штампованных листов электротехнической стали толщиной 0,35 – 0,5 мм, изолированных друг от друга слоем лака. В пазы магнитопровода статора укладывается обмотка. В трехфазных двигателях обмотка трехфазная. Фазы обмотки могут соединяться в звезду или в треугольник в зависимости от величины напряжения сети.

Ротор – вращающаяся часть двигателя. Магнитопровод ротора представляет собой цилиндр, набранный из штампованных листов электротехнической стали (рис. 1, б, в). В пазах ротора укладывают обмотку, в зависимости от типа обмотки роторы асинхронных двигателей делятся на короткозамкнутые и фазные (с контактными кольцами). Короткозамкнутая обмотка представляет собой неизолированные медные или алюминиевые стержни (рис. 1, г), соединенные с торцов кольцами из этого же материала («беличья клетка»).

У фазного ротора (см. рис. 1, в) в пазах магнитопровода уложена трехфазная обмотка, фазы которой соединены звездой. Свободные концы фаз обмотки присоединены к трем медным контактным кольцам, насаженным на вал двигателя. Контактные кольца изолированы друг от друга и от вала. К кольцам прижаты угольные или медно-графитные щетки. Через контактные кольца и щетки в обмотку ротора можно включить трехфазный пуско-регулировочный реостат.

Преобразование электрической энергии в механическую в асинхронном двигателе осуществляется посредством вращающегося магнитного поля. Вращающееся магнитное поле это постоянный поток, вращающийся в пространстве с постоянной угловой скоростью.

Необходимыми условиями возбуждения вращающегося магнитного поля являются:

— пространственный сдвиг осей катушек статора,

— временной сдвиг токов в катушках статора.

Оси фаз обмотки смещены в пространстве на угол 120º. Второе условие обеспечивается подачей на катушки статора трехфазной системы напряжений.

При включении двигателя в трехфазную сеть в обмотке статора устанавливается система токов одинаковой частоты и амплитуды, периодические изменения которых относительно друг друга совершаются с запаздыванием на 1/3 периода.

Токи фаз обмотки создают магнитное поле, вращающееся относительно статора с частотой n1, об/мин, которая называется синхронной частотой вращения двигателя:

, (1)

где f1 – частота тока сети, Гц;

р – число пар полюсов магнитного поля.

При стандартной частоте тока сети Гц частота вращения поля по формуле (1) и в зависимости от числа пар полюсов имеет следующие значения:

р
n1, об/мин

Вращаясь, поле пересекает проводники обмотки ротора, наводя в них ЭДС. При замкнутой обмотке ротора ЭДС вызывает токи, при взаимодействии которых с вращающимся магнитным полем возникает вращающий электромагнитный момент. Частота вращения ротора в двигательном режиме асинхронной машины всегда меньше частоты вращения поля, т.е. ротор «отстает» от вращающегося поля. Только при этом условии в проводниках ротора наводится ЭДС, протекает ток и создается вращающий момент. Явление отставания ротора от магнитного поля называется скольжением. Степень отставания ротора от магнитного поля характеризуется величиной относительного скольжения

, (2)

где n2 – частота вращения ротора, об/мин.

Для асинхронных двигателей скольжение может изменяться в пределах от 1 (пуск) до величины, близкой 0 (холостой ход).

Для двигателей с короткозамнутым ротором используют прямой пуск и пуск при пониженном напряжении.

1. Прямой пуск – обмотка статора включается непосредственно в сеть на полное напряжение. Прямой пуск допустим только для асинхронных двигателей с короткозамкнутым ротором малой и средней мощности (до 15-20 кВт). Однако при значительной мощности питающей сети этот способ можно распространить на двигатели большей мощности (примерно до 50 кВт).

2. Пуск при пониженном напряжении. Пусковой ток двигателя пропорционален напряжению на фазах обмотки статора U1, поэтому уменьшение напряжения U1 сопровождается соответствующим уменьшением пускового тока. Однако такой способ приводит к уменьшению начального пускового момента, который пропорционален квадрату напряжения на фазах обмотки статора. Ввиду значительного снижения пускового момента указанный способ пуска применим только при малых нагрузках на валу.

Имеется несколько способов понижения напряжения U1 в момент пуска:

а) при легком пуске асинхронных двигателей средней мощности, которые нормально работают при соединении фаз обмотки статора треугольником, применяют снижение напряжения на зажимах этих фаз переключением их в звезду;

б) при любом типе соединения фаз обмотки статора понизить напряжение можно с помощью реактора (трехфазной индуктивной катушки), включенного последовательно в обмотку статора. Менее экономично снижать напряжение на статоре последовательным включением реостатов, так как они при этом сильно нагреваются и возникают дополнительные потери электрической энергии;

в) для двигателей большой мощности снижать напряжение целесообразно при помощи понижающего трехфазного автотрансформатора. Этот способ лучше предыдущего, но значительно дороже. После того, как ротор двигателя разгонится, и ток спадает, на обмотку статора подается полное напряжение сети.

Читать еще:  Шаговый двигатель холостого хода ситроен ксара

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора. Пусковой реостат снижает величину начального пускового тока и одновременно увеличивает начальный пусковой момент, который может достигнуть величины, близкой к максимальному моменту. По мере разгона двигателя пусковой реостат выводят.

Регулирование- принудительное изменение частоты вращения при постоянной нагрузке на валу. Недостатком асинхронных двигателей является плохая регулировочная способность. Но все же некоторые возможности регулирования имеются.

Из формулы скольжения (2) можно получить выражение частоты вращения ротора асинхронного двигателя

. (3)

Из равенства (3) следует, что изменять частоту вращения можно следующими способами: изменением частоты тока статора f1, числа пар полюсов р и скольжения s. Частоту вращения ротора можно регулировать и изменением напряжения питания U1. Рассмотрим эти способы.

Регулирование изменением частоты тока статора f1. Частотное регулирование асинхронных двигателей является наиболее перспективным в связи с наличием простых и надежных трехфазных тиристорных преобразователей частоты, которые включают между промышленной сетью и асинхронным двигателем. При регулировании частоты f1 скорость двигателя можно плавно изменять так, что ее максимальное значение будет в десятки или сотни раз превышать минимальные. p>

Регулирование изменением числа пар полюсов р. Переключение числа пар полюсов асинхронных двигателей обеспечивает ступенчатое регулирование частоты вращения ротора и отличается экономичностью. Оно применяется в машинах со специальным исполнением обмотки статора, допускающим переключение ее катушек на различное число пар полюсов, а также, когда в пазах магнитопровода статора размещено несколько поочередно включаемых обмоток, выполненных на разное число пар полюсов, например, р = 1 и р = 2. Двигатели с изменением числа пар полюсов называются многоскоростными, промышленностью выпускаются двигатели на две, три и четыре скорости.

Регулирование изменением подводимого напряженияU1. Понижение напряжения вызывает снижение скорости ротора. Уменьшать напряжение U1 можно включением в цепь статора реостатов, автотрансформаторов или регулируемых дросселей. Данный метод применяется только у двигателей малой мощности, так как при уменьшении напряжения уменьшается максимальный момент двигателя, который пропорционален квадрату напряжения. Снижение максимального момента уменьшает запас по устойчивости работы двигателя. Кроме того, диапазон регулирования частоты вращения сравнительно небольшой.

Перечисленные выше способы регулирования применяются для асинхронных двигателей с короткозамкнутым ротором.

У двигателей с фазным ротором частота вращения регулируется изменением скольжения. Для этого в обмотку ротора включают регулировочный реостат. При увеличении сопротивления регулировочного реостата скольжение увеличивается, а частота вращения уменьшается (рис. 2).

Этот способ обеспечивает плавное изменение частоты вращения.

Изменение направления вращения ротора называется реверсированием. Для реверса необходимо поменять местами два провода на зажимах статорной обмотки двигателя.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Механическая характеристика асинхронного двигателя

Механической чертой мотора именуется зависимость частоты вращения ротора от момента на валу n = f (M2) . Потому что при нагрузке момент холостого хода мал, то M2 ≈ M и механическая черта представляется зависимостью n = f (M) . Если учитывать связь s = (n1 — n) / n1 , то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая черта асинхронного мотора

Естественная механическая черта асинхронного мотора соответствует основной (паспортной) схеме его включения и номинальным характеристикам питающего напряжения. Искусственные свойства получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании мотора не номинальным напряжением свойства также отличаются от естественной механической свойства.

Механические свойства являются очень комфортным и полезным инвентарем при анализе статических и динамических режимов электропривода.

Пример расчета механической свойства асинхронного мотора

Трехфазный асинхронный движок с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц. Характеристики мотора: P н= 14 кВт, n н= 960 об/мин, cos φн = 0,85, ηн = 0,88, кратность наибольшего момента k м= 1,8.

Найти: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критичный момент, критичное скольжение и выстроить механическую характеристику мотора.

Решение. Номинальная мощность, потребляемая из сети

Асинхронный двигатель принцип действия механическая характеристика

К режимам работы асинхронного двигателя относятся (см. рисунок 1):

— двигательный режим;
— генераторный режим;
– режим противовключения;
– режим динамического торможения;
— режим холостого хода.

Рисунок 1 – Механическая характеристика асинхронного двигателя

Основным режимом работы асинхронного двигателя является двигательный режим, рассмотрим работу асинхронной электрической машины на примере рисунка ниже:

В этой статье мы не станем рассматривать, как происходит возбуждение обмоток и начало движения, почитать про то, как создается магнитное моле в асинхронном 3-х фазном двигателе Вы можете тут.

Читать еще:  Honda b20b загорелся чек двигатель заводится

Начало движения происходит из точки 1 с определённым пусковым моментом Мп, который зависит от параметров самого асинхронного двигателя, обычно отношение к номинальному будет равно:

Далее происходит постепенный разгон до точки 2, которая имеет критический (максимальный) момент двигателя Мкр, после чего двигатель будет переходить в точку 3, которая является точкой номинальной работы электрической машины, в ней момент и скорость вращения вала равны номинальному моменту Мн и скорости n2 соответственно. Так же необходимо подметить, что действительный номинальный момент может не соответствовать тому, который указан на шилдике двигателя, это различие будет мало, оно зависит от характера и величины нагрузки на валу, износа внутренних деталей двигателя и т.д.

В номинальном режиме работы скорость вращения вала меньше скорости вращения магнитного поля, создаваемого статорной обмоткой, поэтому справедливо неравенство:

где n1 – скорость вращения магнитного поля статора;
n2 – скорость вращения вала.

Относительная разность этих скоростей является таким понятием как – скольжение асинхронного двигателя, которое рассчитывается по формуле:

Скольжение во время работы в двигательном режиме будет меньше единицы, и чем оно ближе к номинальной точке работы, тем становится меньше, и для этого справедливо неравенство:

Режим холостого хода

Холостой ход асинхронного двигателя имеет место в том случае, если на валу отсутствует нагрузка в виде рабочего органа или редуктора. При сборке нового двигателя всегда проводится испытания холостого хода, для того что бы определить потери в подшипниках, вентиляторе и магнитопроводе, а так же узнать значения намагничивающего тока. Во время холостого хода скольжение составляет: S=0,01÷0,08.

Следует заметить, что так же существует режим идеального холостого хода, при котором n2=n1, что практически реализовать невозможно, даже если учесть, что нет силы трения в подшипниках. На самом деле, суть заключается в том, что асинхронному двигателю необходимо, чтобы ротор отставал от магнитного вращающегося поля статора. При отставании поле статора индуцирует магнитное поле в ротор, что заставляет его вращаться за полем статора.

Для того чтобы перейти в данный режим, нужно двигатель разогнать с помощью некоторого внешнего воздействия, к примеру, другим двигателем, до скорости, которая превышала бы скорость вращения магнитного поля статора. В результате изменилось бы направление тока и ЭДС в роторной обмотке и асинхронный двигатель перешел бы в генераторный режим. При этом условии также изменит направление и электромагнитный момент, который в данном режиме работы будет тормозным.Следует заметить, что в генераторном режиме скольжение S

Для работы асинхронного двигателя в генераторном режиме необходим источник реактивной мощности, который создает магнитное поле. При отсутствии поле создают с помощью постоянных магнитов, или же за счет остаточной индукции машины и параллельно подключенных к фазам обмотки статора конденсаторам при активной нагрузке. В генераторном режиме двигатель потребляет большое количество реактивного тока, из-за чего необходимо наличие в сети генераторов реактивной мощности: синхронных компенсаторов, синхронных машин. Данный режим используется довольно часто, к примеру, в эскалаторах и пассажирских лифтах (в зависимости веса в кабине и противовеса), которые едут вниз.

Механические характеристики асинхронного двигателя

Главная > Реферат >Промышленность, производство

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Петрозаводский государственный университет

Кафедра «Высоковольтной электроэнергетики и электротехники»

Механические характеристики асинхронного двигателя (АД).

Устройство а синхронной машины.

студента __2___ курса

(группа АВЭЭ — /06/3,5 )

специальность: 140201– «Высоковольтные электроэнергетика и электротехника»

Ваховского Владимира Александровича

проф., докт. техн. наук А.И. Ракаев

Механические характеристики асинхронного двигателя (АД).

2. Асинхронные машины.

3. Уравнение механической характеристики асинхронного двигателя.

4. Линеаризация механической характеристики асинхронного двигателя.

5. Механические характеристики асинхронных двигателей при симметричных режимах

6. Тормозные режимы асинхронных двигателей

7. Технические реализации. Применения

8. Устройство а синхронной машины.

9. Принцип действия Асинхронные машины.

10 . Список литературы

Механические характеристики асинхронного двигателя (АД).

Электроприводы переменного тока широко применяются в промышленности, транспорте, строительной индустрии и других отраслях народного хозяйства. Их преимущественное распространение обусловлено: высокой надежностью машины пере­менного тока из-за отсутствия коллектора, простотой управления нерегулируемыми приводами, поскольку большинство из них непосредственно включается в сеть, низкой стоимостью электрических машин и простыми требованиями к их обслуживанию и правилами эксплуатации.

В зависимости от типа используемого двигателя различают не только приводы переменного и постоянного тока, но и асинхронные, синхронные, шаговые и другие разновидности приводов. Однако не следует думать, что приводы переменного тока везде и всюду могут применяться вместо приводов постоянного тока. Для каждого вида привода имеются сложившиеся области перспективного использования. Причем трудно однозначно и определенно перечислить наперед все факторы, которые определяют выбор рода тока для привода. Наряду с традиционными приводами, построенными на базе асинхронных и синхронных машин, в последние десятилетия применяют приводы переменного тока с универсальными и шаговыми двигателями, двигателями двойного питания и с электромагнитной редукцией скорости.

2. Асинхронные машины.

Принцип действия асинхронной машины в самом общем виде состоит в следующем: один из элементов машины — статор используется для создания движущегося с определенной скоростью магнитного поля, а в замкнутых проводящих пассивных контурах другого элемента-ротора наводятся ЭДС, вызывающие протекание токов и образование сил (моментов) при их взаимодействии с магнитным полем. Все эти явления имеют место при несинхронном-асинхронном движении ротора относительно поля, что и дало машинам такого типа название — асинхронные.

Статор обычно выполнен в виде нескольких расположенных в пазах катушек, а ротор в виде «беличьей клетки» (короткозамкнутый ротор) или в виде нескольких катушек (фазный ротор), которые соединены между собой, выведены на кольца, расположенные на валу, и с помощью скользящих по ним щеток могут быть замкнуты на внешние резисторы или другие цепи.

Несмотря на простоту физических явлений и материализующих их конструктивов, полное математическое описание процессов в асинхронной машине весьма сложно:

во-первых, все напряжения, токи, потокосцепления -переменные, т.е. характеризуются частотой, амплитудой, фазой или соответствующими векторными величинами;

во-вторых, взаимодействуют движущиеся контуры, взаимное расположение которых изменяется в пространстве;

в-третьих, магнитный поток нелинейно связан с намагничивающим током (проявляется насыщение магнитной цепи), активные сопротивления роторной цепи зависят от частоты (эффект вытеснения тока), сопротивления всех цепей зависят от температуры и т.п.

Рассмотрим самую простую модель асинхронной машины, пригодную для объяснения основных явлений в асинхронном электроприводе.

Механические характеристики двигателя полностью определяют качество работы электромеханической системы в установившемся режиме и ее производительность. Они также влияют и на динамические режимы электропривода, характеризуя избыточный динамический момент, определяющий ускорение или замедление двигателя

3. Уравнение механической характеристики асинхронного двигателя

В современной практике проектирования используются программы, учитывающие при расчете механических характеристик намагничивание магнитной системы машины Но при этом теряется наглядность в их исследовании. Поэтому все дальнейшие зависимости будут найдены при выполнении этого основного допущения.

Подведенная к двигателю из сети электрическая мощность расходуется на покрытие потерь в контуре намагничивания p μ , в меди статора p M 1 , и остаток ее преобразуется в электромагнитную мощность. Таким образом,

где ω 0 = 2π f 1 / p — число пар полюсов статора машины.

После незначительных преобразований, найдем

Следовательно, зависимость M = f ( s ) является сложной функцией от скольжения. Исследуем ее на экстремум, взяв производную

Приравняв числитель выражения (4-15) нулю, найдем значение критического скольжения s K , при котором зависимость М = f ( s ) имеет максимум:

Физически уменьшение М при s s K и s > s K объясняется следующим. При s s K уменьшение скольжения сопряжено с уменьшением тока и момента двигателя, а при s > s K , хотя и происходит увеличение тока двигателя, но его активная составляющая, обусловливающая электромагнитный момент, не растет, а уменьшается, что также приводит к уменьшению момента, развиваемого двигателем.

Положительный знак s K соответствует двигательному, а отрицательный — генераторному режиму работы машины.

Следует иметь в виду, что, как у машины постоянного тока, относительная величина r 1 уменьшается при увеличении мощности машин и уже для двигателей мощностью 100 кВт составляет 10-15% величины x 1 + x 2 ‘. Поэтому формулу (4-16) можно использовать в упрощенной форме, пренебрегая r 1

где x К.З — индуктивное приведенное сопротивление короткого замыкания.

Этого нельзя делать для машин средней и особенно малой мощности, у которых сопротивление r 1 соизмеримо с x К.З .

Используя формулы (4-14) и (4-16), можно получить иную запись механической характеристики асинхронного двигателя, если найти значения его критических моментов в двигательном М К.Д и генераторном М К.Г режимах работы:

Отношение критических моментов

Здесь принято часто используемое обозначение:

Формула (4-19) показывает, что значение критического момента машины в генераторном режиме может быть существенно больше, чем в двигательном режиме (см. рис. 4-8).

Для практического использования удобнее иное, чем в формуле (4-14), выражение механической характеристики асинхронного двигателя. Найдем его, используя формулы (4-14), (4-17) и (4-20):

Если пренебречь влиянием активного сопротивления статора, то ε = 0, и формула (4-21) приобретает такой вид (при М К.Д = М К.Г = М К ):

Впервые выражение (4-22) получил М. Kloss [18], поэтому его называют формулой Клосса.

Формулы (4-21) или (4-22) удобнее для расчетов, чем (4-14), поскольку они не требуют знания параметров двигателя. В этом случае все расчеты производятся по данным каталога. Ввиду того, что значение s K в каталогах не указано, его приходится определять на основе других сведений, например, величины перегрузочной способности машины М К / М НОМ = λ М . Тогда из формулы (4-21) получим:

откуда, решая квадратное уравнение, найдем

где γ = λ М + (1 — λ М )ε.

В выражении (4-24) следует брать перед корнем знак плюс, поскольку другое значение s K противоречит физическому смыслу.

Приближенное решение уравнения (4-24) можно получить при коэффициенте ε = 0, но лучше определить его значение. Наиболее достоверные результаты будут получены, если, располагая параметрами машины, величину ε определять из формулы (4-20), a s K — из выражения (4-16). Для асинхронных двигателей с фазным ротором выражения (4-14) и (4-21) дают более достоверные результаты, так как в этих машинах менее заметны влияния насыщения стали и вытеснения тока в обмотках ротора (скинэффект).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector