Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматический регулятор оборотов двигателя постоянного тока

Автоматический регулятор оборотов двигателя постоянного тока

АО «Лаборатория Электроники» производит широкий спектр блоков управления коллекторными двигателями постоянного тока с возможностю использования различных сигналов обратной связи по скорости вращения и положению.

Серия AWD10 – универсальное решение для двигателей малой мощности. AWD10 позволяет использовать для стабилизации скорости противоЭДС, тахогенератор или импульсный датчик. Обеспечивает ограничение момента на валу по 16 градациям. Обратная связь по положению возможна только с помощью потенциометрического датчика. Блок AWD10 управляется аналоговыми и дискретными сигналами или по интерфейсу RS485.

Серия AWD17 – облегченное решение для двигателей малой мощности. Регулирование скорости осуществляется только по противоЭДС, управление только аналоговыми сигналами.

Серия AWD50 — универсальное решение для двигателей средней и большой мощности. Регулирование скорости осуществляется по противоЭДС, тахогенератору или импульсному датчику. Обеспечивается плавное управление моментом или ограничением момента на валу двигателя от нуля до максимального значения. Управление положением возможно по потенциометрическому датчику или квадратурному энкодеру. Управление блоком AWD50 возможно по интерфейсу RS485 (протокол Modbus RTU) или с помощью аналоговых и дискретных сигналов.

AWD50 — Блок управления двигателем постоянного тока

Блок управления двигателем серводвигателем постоянного тока AWD50 предназначен для с управления скоростью, моментом и угловым положением вала коллекторного двигателя с напряжением питания от 12 до 110 В и током до 50 А.

ЭР387 — блок управления тяговым электродвигателем

Блок управления тяговым электродвигателем предназначен для дистанционного управления перемещениями передаточной тележки по рельсу. Блок управления реализует плавное ускорение и торможение двигателя.

AWD10 — Блок управления двигателем постоянного тока с интерфейсом RS485​

Блок управления двигателем постоянного тока AWD10 предназначен для управления скоростью и направлением вращения двигателя постоянного тока с напряжением питания от 12 до 90 В и током до 10 А методом широтно импульсной модуляции (ШИМ).

AWD17 — блок управления двигателем постоянного тока

Блок управления коллекторным двигателем постоянного тока ДПТ AWD17 предназначен для реверсивного стабилизированного управления скоростью вращения коллекторного двигателя с напряжением питания от 7.5 до 36В с током до 10А.

​​​​ELSC100 — Преобразователь аналоговых сигналов 2-х канальный

Преобразователь сигналов ELSC100 предназначен для совместимости блоков управления AWD10 с управляющими сигналами от -10 до +10В, а так же подключения двигателй с тахогенератором.

EL101B — Блок защиты источника питания

Блок защиты EL101B предназначен для защиты импульсных источников питания от индуктивных выбросов напряжения при торможении двигателя.

ЭР210 — блок управления коллекторным двигателем постоянного тока в корпусе

Блок управления ЭР210 предназначен для стабилизации скорости вращения реверсивных коллекторных двигателей постоянного тока с напряжением 24 В.

АВД31 — Блок управления шаговым двигателем

Блок управления шаговым двигателем АВД31 предназначен для управления скоростью и направлением вращения шагового двигателя при помощи STEP/DIR-драйвера.

Коллекторные двигатели постоянного тока получили широкое распространение за счет своей дешевизны и высокого КПД. Чаще всего такие двигатели используются в старт/стоп режиме и не требуют для своего подключения никакой пускорегулирующей аппаратуры, кроме обыкновенного выключателя. Однако, часто требуется регулировка скорость вращения, момент на валу или положение механизма, приводимого в движение двигателем. В таких случаях применяют микропроцессорные блоки управления коллекторными двигателями постоянного тока. Простейшим регулятором оборотов двигателя является источник питания с изменяемым выходным напряжением или ШИМ регулятор (именно его продают на Aliexpress). Это простые и недорогие решения, но такой регулятор не имеет обратной связи — обороты двигателя с таким регулятором зависят от нагрузки на валу. Для решения этой проблемы в регуляторы вводят обратную связь по скорости вращения. Простейшим вариантом получения информации о скорости вращения двигателя является установка на его валу тахогенератора или импульсного датчика. Такие решения позволяют решить проблему стабилизации скорости вращения двигателя, но усложняет конструкцию изделия и увеличивает его стоимость. Современные микропроцессорные технологии позволяют использовать в качестве тахогенератора сам электродвигатель (почти все электрические машины обратимы), измеряя ЭДС, генерируемую двигателем в момент кратковременного отключения от него питающего напряжения. Такое решение представляется оптимальным по соотношению цена/качество.

Вторым важным параметром регулирования коллекторных двигателей является момент на валу двигателя. В большинстве случаев ограничение момента требуется для исключения повреждения самого двигателя или механизма. Часто необходим режим стабилизации именно выходного момента двигателя, например, для управления электроприводом скутера или для регулировки силы натяжения у станка для перетяжки теннисных ракеток. В качестве сигнала выходного момента чаще всего используется мгновенное значение тока якоря двигателя.

Читать еще:  Что такое техническое обслуживание система управления двигателем

И третий параметр управления –положение или координата механизма, приводимого в действие двигателем постоянного тока. Управление скоростью, моментом и положением позволяет создавать полноценные сервоприводы на основе коллекторных двигателей. Сигнал обратной связи по положению может быть получен от аналогового потенциометрического датчика или энкодера на валу двигателя. Для задания требуемого положения может использоваться аналоговый сигнал, цифровой интерфейс или входы step/dir как в блоках управления шаговыми двигателями.

KOMITART — развлекательно-познавательный портал

Разделы сайта

  • » На Главную
  • » Радиолюбителю
  • » APEX AUDIO
  • » Блоки питания
  • » Гитарные примочки
  • » Своими руками
  • » Автомобилисту
  • » Service-Manual
  • » PREAMPLIFIERS
  • » Бесплатные программы
  • » Компьютер
  • » Книги
  • » Женские штучки
  • Готовим вкусно и быстро
  • » Игры на сайте
  • » Юмор
  • » Разное — интересное

DirectAdvert NEWS

GNEZDO NEWS

Друзья сайта

Статистика

Подборка регуляторов оборотов моторчика 12V.

Подборка регуляторов оборотов моторчика 12V.

DC Motor Speed Control KOMITART Project

Приветствую, друзья. Давно уже лежат 3 проекта регуляторов оборотов для 12-вольтовых моторчиков, и вот решил собрать их воедино, и оформить одной статьей. Все схемы построены с применением таймера NE555, но все же есть небольшие отличия. Давайте по порядку.

ПЕРВЫЙ ВАРИАНТ.

В первом варианте микросхема питается от 5-вольтового стабилизатора 7805, в качестве регулирующего элемента применен полевой транзистор 2SK2382, принципиальная схема приведена ниже:

Плату первого варианта регулятора рисовал по исходной картинке со своими изменениями, убрал перемычку под микросхемой, все элементы на плате установлены в положении лёжа, исходная картинка будет в архиве, ну а лейка платы выглядит так:

Плата односторонняя, размер 28 x 80 mm.

Список элементов для повторения первого варианта регулятора оборотов:

— Микросхема NE555 — 1 шт.
— Стабилизатор LM7805 — 1 шт.
— Транзистор 2SK2382 — 1 шт.
— Диодный мост KBU4B — 1 шт.
— Диод 1N4004 или 1N4007 — 1 шт.
— Диод 1N5404 — 1 шт.
— Диод 1N4148 — 2 шт.
— Светодиод 5 mm — 1 шт.
— Резистор 1k/0,25W — 1 шт.
— Резистор 220R/0,25W — 1 шт.
— Резистор 100R/0,25W — 1 шт.
— Переменный резистор 50k — 1 шт.
— Конденсатор 2200uF/25V электролитический — 1 шт.
— Конденсатор 220uF/25V электролитический — 1 шт.
— Конденсатор 220nF — 1 шт.
— Конденсатор 100nF — 2 шт.
— Конденсатор 10nF — 1 шт.

Второй вариант стандартная схема каких в сети много, в качестве регулирующего элемента стоит обычный биполярный транзистор BD139, на схеме так же показано как подключить переключатель направления вращения:

Размер платы второго варианта регулятора скорости вращения моторчика составил 24 x 50 mm, внешний вид лейки такой:

Список элементов схемы второго варианта регулятора:

— Таймер NE555 — 1 шт.
— Диоды 1N4001 или 1N4148 — 2 шт.
— Диод 1N4007 — 1 шт.
— Транзистор BD139 — 1 шт.
— Резистор 1k/0,25W — 1 шт.
— Резистор 33R/0,25W — 1 шт.
— Конденсатор 100nF (104) — 1 шт.
— Конденсатор 10nF (103) — 1 шт.
— Клеммная колодка под монтаж на плату 2 Pin 2,54 mm — 3 шт.

ТРЕТИЙ ВАРИАНТ.

Третий вариант регулятора оборотов моторчика представлен далее, автор проекта Раджкумар Шарма из Индии. Проект называется «РЕГУЛЯТОР СКОРОСТИ ВРАЩЕНИЯ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА НА БАЗЕ NE555». Перевод оригинального текста следующий:

Проект контроллера скорости двигателя постоянного тока будет управлять скоростью вращения подключенного к нему двигателя постоянного тока. Этот проект построен с использованием популярной микросхемы таймера 555.
Вход питания 12V постоянного тока.
Нагрузка двигателя от 1 до 2 Ампер.
Встроенная настройка для изменения рабочего цикла от 10% до 95% при 120 Гц.
Идеально подходит для мини-дрели и робототехники.
Выходной привод на основе транзисторов с радиатором.
Диодная защита от перенапряжения двигателя.
Светодиодный индикатор включения питания.
Разъем винтовой клеммы для удобного подключения источника питания к входу и выходу двигателя.
Четыре монтажных отверстия по 3,2 мм каждое.
Размеры печатной платы 48 мм x 56 мм.
Разъем Cn1 : Вход питания 12V постоянного тока.
Для входа питания 12 В постоянного тока, R1 — 1K .
Разъем CN2 : Двигатель постоянного тока с максимальной нагрузкой 1. 2 Ампера.
D1 : Индикатор питания.
PR1 : Регулятор скорости.

Читать еще:  Ваз 2110 включение фар при запуске двигателя автомобиля

Печатная плата 3 варианта регулятора в формате LAY6 выглядит так:

Размер платы 48 x 56 mm.

Список элементов схемы третьего варианта регулятора:

— CN1, CON2 — 2-КОНТАКТНЫЙ РАЗЪЕМ c ВИНТОВЫМ ЗАЖИМОМ — 2 шт.
— C1 100uF/25V — 1 шт.
— C2,C3,C4 — 0,1uF (104) — 3 шт.
— КРАСНЫЙ СВЕТОДИОД D1 — 1 шт.
— D2,D3 1N4148 — 2 шт.
— D4 1N5822 (можно поставить 1N4007) — 1 шт.
— Переменный резистор PR1 100K — 1 шт.
— Q1 TIP122 — 1 шт.
— R1, R2 — 1k — 2 шт.
— R3 47R — 1 шт.
— U1 NE555 — 1 шт.
— Панелька 8 Pin DIP IC — 1 шт.
— РАДИАТОР HS05025 — 1 шт.

Удачного повторения. Размер архива — 1,4 Mb.

Уважаемый Пользователь! О том, как получить нужный материал, прочитайте информацию по кнопке ниже:

ШИМ-регулятор оборотов вентилятора печки (отопителя)

Схемотехника ШИМ- регулятора оборотов двигателя постоянного тока.

  • микропроцессора (генерация ШИМ-сигнала, измерение тока и температуры, индикация режимов);
  • силового транзистора (коммутация тока, исполнительный элемент ШИМ-регулятора оборотов электровентилятора);
  • фильтра (устранение электромагнитных помех).

Частоту вращения коллекторного двигателя можно регулировать, изменяя подаваемое на него напряжение. При постоянном значении напряжения источника питания – аккумуляторной батареи, напряжение на двигателе можно менять, изменяя сопротивление в цепи двигателя, к примеру, с помощью реостата или транзистора. Однако такой способ при управлении мощными приводами приводит к выделению большой тепловой мощности на сопротивлении (транзисторе) и снижению КПД системы.
Повысить КПД можно, подавая на двигатель полное напряжение, но на ограниченное время. Если это делать с большой частотой, то, управляя длительностью включения, можно фактически менять среднее напряжение, подаваемое на двигатель.

Изменение длительности импульсов при неизменном периоде их следования (постоянной частоте) и называется широтно-импульсной модуляцией (ШИМ, в англоязычных текстах: PWM-Pulse Width Modulation).

При регулировании скорости вращения двигателя с помощью широтно-импульсной модуляции на двигатель подается полное напряжение питание, но регулируется время, в течение которого оно подается. Условно говоря, ШИМ-регулятор оборотов вентилятора замыкает силовой ключ каждую секунду на десятую долю секунды, если нам нужно 10% мощности двигателя, если нам нужно 25% мощности, то ШИМ-регулятор оборотов замыкает силовой ключ на четверть секунды, если 50% мощности — то полсекунды и т. д. Когда же нам нужно раскрутить двигатель на полную мощность, ШИМ-регулятор оборотов замыкает силовой ключ на полную секунду, то есть фактически силовой ключ не размыкается совсем.
Конечно же, реально микропроцессор управляет силовым ключом с частотой много выше, чем один раз в секунду, но принцип остается тем же. При достаточно высокой частоте происходит сглаживание пульсаций тока при индуктивной нагрузке, и фактически на двигатель подается некоторое эффективное напряжение. Скажем, при напряжении питания 12В и длительности импульса 50% от периода, получается точно такой же результат, как и при подаче на двигатель напряжения 6В.
При эксплуатации автомобиля в городском цикле с повышенной температурой окружающего воздуха, когда вероятность перегрева двигателя максимальна (особенно в «пробках»), режим плавного изменения скорости вращения вентилятора в пределах 30-60% с помощью ШИМ-регулятора оборотов достаточен для ограничения температуры двигателя автомобиля. Применение блока управления ЭВСО в системе охлаждения автомобиля устраняет необходимость включения вентилятора на мощность выше 60% (тем более на полную мощность), тем самым обеспечивая практически полное отсутствие шума в салоне автомобиля в отличие от раздражающего рева работающего на «всю катушку» электровентилятора в обычной системе охлаждения двигателя автомобиля.

Регуляторы оборотов коллекторного двигателя своими руками.

Универсальные коллекторные двигатели с последовательным возбуждением (щеточные) применяются в различных электроинструментах. Это пылесосы, миксеры, дрели, болгарки и другие устройства. Во время эксплуатации этих инструментов часто возникает потребность их работы с меньшими оборотами электродвигателя.
Предлагается две конструкции регуляторов оборотов коллекторного двигателя.

В первом регуляторе оборотов двигателя плавное регулирование числа оборотов вала коллекторного двигателя с автоматической стабилизацией их при выбранном режиме работы можно осуществлять при помощи простого тиристорного регулятора.

Сперва рассмотрим работу регулятора оборотов без конденсатора С1 .
Основой регулятора является тринистор ( VT1 ), регулируемый фазовым управлением. Коллекторный двигатель включен последовательно тринистору, поэтому питание его осуществляется однополупериодным напряжением.
При вращении двигателя на его клеммах из-за остаточной намагниченности возникает противо-электродвижующая сила (э.д.с.) uд , которая пропорциональна скорости вращения вала. Принцип действия регулятора оборотов коллекторного двигателя основан на сравнении uд с опорным напряжением Uоп , подаваемым на управляющий электрод тринистора с движка потенциометра R2 . В регуляторе вращения осуществляется выделение разностного сигнала uу=Uоп-uд , который используется для фазового управления тринистором, что и обеспечивает возможность регулировки подводимой мощности к электродвигателю.
Благодаря диоду VD1 через резисторы R1 и R2 протекает только положительный полупериод и Uоп достигнет максимального значения тогда, когда амплитудное напряжение сети будет наибольшим.
Если остаточная противо-э.д.с. uд двигателя больше, чем величина Uоп (т.е. если скорость вращения превышает некоторое установленное значение), тогда диод VD2 будет закрыт, т.к. потенциал на аноде диода будет меньше чем на катоде ( Uоп-uд ) и сигнал на управляющий электрод тринистора не подается. Тринистор закрыт, питание на двигатель не поступает и скорость вращения уменьшается до тех пор, пока противо-э.д.с. uд не станет меньше Uоп и диод VD2 будет включен в прямом направлении. На управление тринистора поступит отпирающее напряжение и на коллекторный двигатель будет подано питание.
Нужно отметить, что на тринисторе наибольший угол отпирания составляет φ=90 , при котором подводится наименьшая мощность. Если на вал электродвигателя нагрузка увеличивается, тогда скорость вращения двигателя уменьшается и, соответственно, противо-э.д.с. так-же уменьшается. Тринистор отпирается с меньшей задержкой ( φ ) увеличивая подводящую мощность к двигателю.

Читать еще:  Электронная система управления работой двигателя впрыск и зажигание

При малой нагрузке двигателя и при малой его скорости (по схеме движок потенциометра R2 находится в крайне нижнем положении), двигатель за четверть периода ( φ=90 ), в течении которого к нему подводится мощность, может сильно увеличить свою скорость. Понадобится время, чтобы скорость вала снизилась до установленного значения и тиристор открылся. Поэтому нет стабильности заданного режима и появляется «качание» скорости двигателя.
Для стабилизации режима нужно уменьшить интервал времени, в течении которого мощность подается на двигатель, т.е. сделать угол отпирания φ>90 .
Это можно сделать с добавлением в схему конденсатора С1 для создания фазосдвигающей RC цепочки, которая увеличивает угол задержки. В данной схеме эта цепочка состоит из резисторов R1, R2 и конденсатора С1 , напряжение на котором будет сдвинуто на угол, определяемой постоянной времени цепи (R1+R2)C1 и позволяющая изменять ток двигателя от максимального значения почти до нуля.
При замыкании выключателя SA1 можно отключить регулятор оборотов от двигателя.

В регуляторе оборотов коллекторного двигателя применены следующие элементы:
R1=7 кОм мощностью 4Вт (собран из двух параллельно соединенных резисторов 12кОм и 18кОм, тип МЛТ мощностью по 2Вт);
R2=2,2 кОм, потенциометр тип СП, 1Вт; Вторая схема регулятора оборотов коллекторного двигателя собранный на однопереходном транзисторе (ОПТ) VT1 , может применяться как для регулировки скорости вращения вала двигателей и как регулятор мощности нагревательных приборов.

Особенность этого регулятора — стабилизация напряжения на нагрузке при изменении напряжения питающей сети.
В этой схеме ОПТ применяется в качестве источника управляющих импульсов для фазоимпульсного регулирования. Подробно узнать как работает генератор на ОПТ можно посмотрев ссылку про однопереходной транзистор.

Устройство управления питанием от стабилизатора напряжения ( VD5, VD6 ) обеспечивает стабильность точки открытия тиристора при изменении напряжения в сети. Для того, чтобы стабилизировать напряжение нагрузки, включены рeзисторы R3 и R4 . Резисторы R4 и R5 образует делитель, определяющий междубазовое напряжение на однопереходном транзисторе, а R3 осуществляет подключение напряжения сети.
Например : при повышении напряжения в сети повышается и междубазовое напряжение на транзисторе VT1 . Cледовательно, повышается и пороговое напряжение для его открытия. Это приводит к задержке открытия тиристора и уменьшает напряжение подаваемое в нагрузку, т.е. осуществляется стабилизация напряжения в нагрузке.
Поскольку параметры транзистора могут быть значительно отличаться от номинальных значений , сопротивление R3 необходимо подобрать так, чтобы получить стабилизированное выходное напряжение.

Резистор 22 кОм /4Вт можно составить из двух последовательно включенных резисторов по 11кОм/2вт.
Диоды и тиристор можно использовать любые на напряжение не менее 300 вольт и током 10 ампер.
Можно заменить: тиристор — на КУ202Н, диоды — на Д246А, Д247, а стабилитроны — на Д814Г.
Регулятор может работать на нагрузку от 50 до 1200 ВТ, но нужно иметь в виду , что при мощности более 400Вт необходимо принимать меры по охлаждению тринистора и диодов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector