Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дизельный двигатель: устройство и особенности работы

Дизельный двигатель: устройство и особенности работы

С каждым годом всё больше водителей делают выбор в пользу дизельных автомобилей. Они имеют меньший расход топлива, дешевле в эксплуатации и обладают длительным сроком службы. Но у тех, кто впервые встречает данный тип двигателя, может возникнуть ряд вопросов. Итак, как работает дизельный двигатель, какие у него особенности и есть ли недостатки?!

Устройство и работа дизельного двигателя

Дизельный мотор – это поршневой двигатель внутреннего сгорания. Принцип его работы основан на том, что топливо самовоспламеняется за счёт того, что подаётся сжатый воздух. Его конструкция практически не отличается бензинового силового агрегата. Исключением является лишь то, что в дизеле нет системы зажигания: топливная смесь зажигается не от искры, а благодаря высокому давлению. Оно сжимает воздух, за счет чего тот сильно разогревается и поджигает топливную смесь.

На протяжении многих десятилетий дизельные двигатели устанавливают на спецтехнику и грузовики, а также и на легковые автомобили. Если раньше такой мотор имел ряд недостатков, то сегодня существуют специальные присадки и приспособления, которые «подогревают» топливную смесь, благодаря чему машина без проблем заводится даже в -30.

На данный момент существует несколько типов дизельного топлива. Это может быть рапсовое масло, чистая или переработанная нефть, фрикционные вещества и т.д.

Принцип работы дизельного двигателя

Принцип работы дизельного мотора основан на компрессионном воспламенении топлива. Оно попадает в камеру сгорания, где начинает смешиваться с горячим воздухом. Работа самого двигателя зависит от количества воздуха и других особенностей.

Подача ТВС происходит раздельно: сначала подаётся воздух, который во время сжатия нагревается до 700-900 градусов. После этого подаётся топливо под высоким давлением до 30 (МПа). Всё это смешивается и воспламеняется, благодаря чему запускается мотор.

Во время воспламенения топливно-воздушной массы может возникать повышенный шум и сильные вибрации. Но они не создают особого дискомфорта.

Порядок работы дизельного двигателя

Дизельный ДВС может иметь 2 или 4 рабочих такта:

  • впуск или всасывание. На данном этапе воздух поступает в цилиндр через открытый впускной клапан;
  • сжатие. Под действием поршня воздух, который поступает в цилиндр, сжимается в несколько раз, а его температура возрастает до 800-00 градусов;
  • рабочий ход. Газы, образующиеся во время горения, перемещают плунжер вниз;
  • выпуск или рабочий такт. Коленвал вращается на 540-720 градусов от исходного положения, цилиндр перемещается вниз, а выхлопные газы опускаются.

Многие современные автомобили и грузовики оснащаются четырёхтактным мотором.

Тип дизельных ДВС

Существует три основных типа дизельного двигателя:

  • с разделённой камерой сгорания. В нём подача топлива осуществляется в дополнительную камеру. Воздух поступает в вихревую камеру, сжимается, что позволяет улучшить процесс возгорания топлива;
  • с неразделённой камерой сгорания. Данный двигатель отличается своей экономичностью, но в то же время он обладает высоким уровнем шума, что может вызывать определённый дискомфорт у водителя и пассажиров;
  • предкамерный мотор. Подобный ДВС оснащается вставной форкамерой. Она соединяется с цилиндром при помощи тонких клапанов. Именно от формы и размера каналов зависит скорость движения газов во время сгорания ТВМ. Данный тип двигателя отличается тем, что он имеет низкий уровень шума и токсичности, что позволяет увеличить срок его службы.

Наибольшей популярностью пользуется последний вариант. Во время езды он не создаёт лишнего шума, благодаря чему вас ничего не отвлекает.

Система работы дизельного двигателя

Главным узлом любого мотора является его топливная система. Её основная задача – это своевременная подача топлива. При этом оно должно иметь определённое давление и температуру. Если эти два правила не соблюдаются, то автомобиль просто не заведётся.

Основными элементами дизельного двигателя являются следующие элементы:

  • топливный насос;
  • фильтр;
  • форсунки.

Давайте более детально остановимся на каждом из этих элементов.

Топливный насос

Он отвечает за подачу топлива к форсункам. Современные двигатели оснащаются топливными насосами двух типов: рядные и распределительные.

Топливный фильтр

Фильтр – это один из самых главных элементов любого мотора. Он очищает топливную смесь от мусора, различных частиц и лишнего воздуха, который может попасть в систему. Фильтр подбирается в соответствии с моделью авто.

Форсунки

Форсунки также играют важную роль для топливной системы. Они отвечают за своевременную подачу топлива, поэтому от их надёжности зависит работоспособность и срок службы самого мотора.

В дизельных ДВС применяются форсунки 2-х типов:

  • с распределителем;
  • со шрифтовым распределителем.

Распределитель форсунок определяет интенсивность и форму факела отвечает за своевременность и интенсивность возгорания.

Преимущества и недостатки дизельного двигателя

Отдельно хотелось бы рассмотреть плюсы дизельного двигателя. К ним можно отнести следующие моменты:

  • низкий расход топлива. Дизельные моторы примерно на 30-40% меньше расходуют топлива, чем бензиновые ДВС;
  • длительный срок службы. Дизельные агрегаты самые надёжные моторы в мире. Многие из них с лёгкостью преодолевают отметку в 700-800 тысяч километров;
  • прекрасный разгон и отличная тяга. Дизельные моторы отличаются большим крутящим моментом, что позволяет автомобилю уверенно разгоняться на любой скорости;
  • низкий уровень токсичности. Существует миф, что дизель обладает высокой токсичностью. Но это было раньше, поскольку современные системы переработки топлива снижают количество вредных веществ до минимума;
  • высокий КПД. Дизельное топливо сгорает с большой отдачей.

Но, несмотря на очевидные преимущества дизельных двигателей, у него существуют и небольшие недостатки. К ним относится долгий прогрев в холодную погоду. Поскольку дизельный агрегат отличается минимальным расходом топлива и высоким КПД, ему нужно больше времени на прогрев.

Ремонт дизельного двигателя в автосервисе Авто-Максима ЮАО Москвы

В целом, дизельные моторы имеют больше преимуществ, чем недостатков. В первую очередь это низкий расход топлива и длительный срок службы. Но, даже несмотря на свою надёжность, даже «дизеля» могут выходить из строя. Чаще всего это происходит по причине плохих дорог или неправильной эксплуатации.

Если у вас вдруг случилась поломка, и вам нужно произвести ремонт дизельного двигателя, вы можете смело обращаться в автосервис «Авто Максима» в ЮАО Москвы. Наши специалисты выполнят все необходимые работы в оперативные сроки, а вы получите исправный автомобиль и гарантию на все виды работ.

Принцип работы ДВС: Виды двигателей, Устройство двигателя, Рабочий цикл ДВС

Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.

Виды моторов

Существует три вида двигателей, встречаемых в транспортных средствах:

  • поршневой
  • роторно-поршневой
  • газотурбинный

Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.

Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.

Читать еще:  Большой расход масла двигателя причины приора

Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.

Устройство мотора

Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:

  1. Цилиндры, образующие отдельный блок
  2. Головку блока с ГРМ
  3. Кривошипно-шатунный механизм

Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.

Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.

Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:

  • зажигания, основная роль которой заключается в воспламенении топлива,
  • содержащего также воздух;
  • впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
  • топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
  • система смазки, снижающая износ трущихся деталей конструкции во время их работы;
  • выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.

Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.

Рабочий цикл ДВС

Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.

Первый такт: впуск

Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.

Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.

После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.

Второй такт: сжатие

Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.

Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.

Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.

Третий такт: рабочий ход

Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.

Четвертый такт: выпуск

Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.

Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:

  • избавляет от ненужных вибраций;
  • уравновешивает силы, которые действуют на работу коленвала;
  • организует ровную работу мотора.

Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Преимущества и недостатки

Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.

Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.

Газотурбинный двигатель: Устройство и принцип работы

  • Отличительные черты
  • Газотурбинный двигатель принцип работы
  • Устройство газотурбинного двигателя
  • «Минус» и «плюс» мотора
  • Виды газотурбинных двигателей

Сегодня среднестатистический обыватель знаком с устройством и принципом работы мотора внутреннего сгорания, а вот газотурбинный двигатель, приводит пользователя в тупик. Тем не менее принцип действия турбинного агрегата намного проще поршневого мотора. Из-за особенностей эксплуатации, первый нашёл применение в авиации, второй установлен на 90% штатных автомобилей.

Читать еще:  Электрическая схема управления двигателя киа церато

По классификации, силовая установка относится к тепловым устройствам, поскольку трансформирует выделившийся напор от горения в работу механики. В противовес агрегату с поршнями, проходящее преобразование течёт в непрерывной газовой струе, а это влияет на конструкцию и эксплуатацию. Попытки установить газотурбинный мотор на машины предпринимаются постоянно, однако массового развития идея не получила.

Отличительные черты

Как уже говорилось раньше, предпринимались попытки использовать газотурбинный двигатель для автомобиля, однако дальше испытаний дело не пошло. Единственная отрасль, в которой агрегат нашёл применение — авиация.

Если сравнивать газотурбинный мотор с иными силовыми установками, то у первого изделия значение вырабатываемой мощи по отношению к массе больше. Так же плюс в используемом топливе, доведённый до мелкодисперсного состояния, ассортимент воображает, главный вид — керосин и дизель. Но возможно применение: бензина, газа, спирта, мазута, угольной пыли и т.п.

Агрегат с поршнями и газотурбинная установка, это моторы, работающие на основе тепла, преобразующие энергию, выделившуюся при горении в работу механики. Разница между устройствами заключается в течение процесса. В обоих моторах происходит забор и воздушное сдавливание, после чего подаётся порция горючего, затем субстанция горит, увеличивается и сбрасывается атмосферную среду.

В поршневых установках описанные действия происходят в одной точке — камере сгорания, при этом соблюдается очерёдность действий. Для газотурбинного двигателя характерно протекание действий в нескольких частях механизма одновременно.

Что бы понять, как работает газотурбинный двигатель, разделяют этапы протекания процессов, которые в сумме составляют преобразование топлива в работу:

  • Подведение горючего и образование смеси.

За счёт прохождения атмосферного воздуха через компрессорное колесо, смесь сжимается в объёме, увеличивая напор, до сорока раз. После происходит перетекание воздуха в горящий объём, куда подаётся и топливо. Перемешиваясь с воздушной массой и сгорая, смесь энергетически преобразуется.

  • Энергетическое рабочее преобразование.

Выделившуюся силу переформатируют в работу механики. Для этого используют специальные лопатки, которые вращаются в газовой струе, выходящей с напором.

  • Распределение силы.

Распределяя полученную работу, задействуют её кусок в сдавливании очередной воздушной порции, оставшаяся мощь отводится для привода механизма.

Таким образом, видно, что действие газотурбинного устройства сопровождается оборачиванием и это единственное перемещение в установке. Тогда как для других видов силовых агрегатов действию сопутствует перемещение вытеснителя. Учитывая, что габариты и масса газотурбинного агрегата меньше поршневого собрата, а полезный коэффициент и мощь выше, превосходство первого очевидно. Однако увеличенный аппетит и сложность эксплуатации нивелируют преимущества. С целью экономии горючего, установки применяют устройство обмена теплом.

Схема включения в процесс турбины:

Газотурбинный двигатель принцип работы

Смысл двигателестроения, достижение повышенного значения полезного коэффициента. В нашем случае, требуемые результаты, напрямую связаны с горением смеси и при этом обширном выделении тепла. Это не так просто, как кажется, основополагающее препятствие — материал изделия, которому сложно выдержать температуру и напор. По этой причине, проведено много расчётов, направленных на снятие тепла с турбины и применение в ином русле. Усилия не пропали даром, повторное использование энергии стало возможным и нагревало сжатые воздушные массы перед горением, а не терялось зря. Без таких устройств «теплообменников» достичь значений полезного действия было бы не возможно.

Для достижения повышенных показателей мощи, турбинные лопатки раскручивают до как можно больших показателей. Скорость вращения обусловлена напором выходящих газов. Чем меньше размер установки, тем выше частота оборотов, поскольку только так достигается стабильность работы.

Газотурбинный двигатель Т 80:

Устройство газотурбинного двигателя

Если сравнивать газотурбинный двигатель с мотором, который применяют на автомобиле, устройство первого проще. Агрегат включает камеру, где происходит сгорание; присутствуют свечи, поджигающие заряд; форсунка, участвующая в смесеобразовании. На одном валу помещены турбинные колёса и нагнетатель. Присутствуют: редуктор понижения, устройство обмена теплом, трубки, коллектор впуска, сопло и концентратор.

Вращаясь на компрессорном валу, лопатки втягивают воздушную массу, используя коллектор впуска. Достигнув скорости вращения 0,5 км/с, нагнетатель затягивает воздух в концентратор. В конечной точке скоростной режим падает, однако сдавливание массы повышается. Далее воздушная масса перетекает в устройство температурного обмена для набора температуры и перехода в область горения. В пространство параллельно с воздушной массой постоянно поступает горючее, за это отвечают распылители. Перемешиваясь, масса и горючее образуют рабочую консистенцию, которая после приготовления воспламеняется свечой. Горение поднимает напор объёма, газы, вырываясь сквозь концентратор, сталкиваются с турбинными лопатками, двигая колесо. Импульс, создаваемый окружностью, передаётся посредством редуктора на движущий элемент, а газовый остаток перетекает в устройство обмена теплом, подогревая там сдавленные воздушные массы и выбрасываясь в среду окружения.

Газотурбинный мотор «ДР59Л»:

Минус установки, цена материала, способного выдержать температуру. Кроме того, чтобы исключить поломку, поступающий в агрегат воздух требует повышенной степени очистки. Несмотря на это, доработка и усовершенствование агрегата проводятся постоянно. Расширяется сфера применения, сегодня построена автомобильная, авиационная установка, и даже газотурбинный двигатель для кораблей.

«Минус» и «плюс» мотора

Газотурбинный агрегат способен вырабатывать большой момент, а значит повышенные показатели мощности. Для охлаждения сопутствующих элементов нет каких-либо устройств, поскольку соприкасающихся поверхностей мало. В то же время, подшипников используется не много, а качество деталей свидетельствует о надёжности и безотказности агрегата.

Отрицательный аспект, это дороговизна используемых материалов при изготовлении деталей и, как следствие, немалые вложения в починку механизма. Несмотря на недостатки, конструкция постоянно дорабатывается и совершенствуется.

Газотурбинный двигатель используют в авиации, на автомобилях установку применяют как эксперимент. Это произошло по причине постоянной потребности в охлаждении газов, поступающих на лопатки турбины. Это снижает полезное действие агрегата, увеличивая потребление горючего.

Главные преимущества мотора:

  • Пониженная степень загрязнения выхлопных газов;
  • Починка простая и лёгкая (не содержит расходных материалов);
  • Отсутствие вибрации;
  • Пониженный шум при эксплуатации агрегата;
  • Повышенные характеристики импульса;
  • Включение и отклик на педаль акселератора без задержек;
  • Повышено соотношение мощности и веса.

Танковая установка «ГТД-1500»:

Виды газотурбинных двигателей

Конструктивно газотурбинные силовые установки делят на четыре типа

  • Турбореактивные установки.

Двигатель этого типа используют в авиационной промышленности, когда важен показатель скорости передвижения (например, военные самолёты). Работа происходит за счет выхода газов из сопла самолёта на повышенной скорости. Газы толкают транспорт и таким образом двигают изделие вперёд.

  • Турбовинтовая установка.

Конструктивным отличием с предшественником считается дополнительная турбинная секция. Устройство вращает винт, забирая энергию у газов, прошедших компрессорную турбину. Визуально, механизм представлен рядом лопаток, размещают деталь в передней или задней части. Для отвода выхлопа применяют отводящие патрубки. Аппарат предназначен для установки на летательных аппаратах, используемых на малых высотах и скоростях, может оснащаться биротативным воздушным винтом.

Турбовентиляторный двигатель «Д-27»:

  • Турбовентиляторная установка.

Конструктивно, турбина похожа на предыдущую установку, различие во второй турбинной секции. Элемент отнимает энергию газов частично, как следствие, используются отводные выхлопные патрубки. Особенность агрегата, вентилятор активируется турбиной пониженного напора. По этой причине, второе название двигателя – «двухконтурный». Здесь внутренний контур образован воздушным потоком, идущим через агрегат, внешний контур создаёт направление, чтобы повысить эффект толчка вперёд. Последние выпуски летательных аппаратов применяют турбовентиляторные двигатели, поскольку механизмы надёжны и экономичны на больших высотах.

  • Турбовальная установка.
Читать еще:  Бензиновый двигатель работает как дизельный опель

Конструктивно, установка похожа на предыдущий агрегат. Разница в том, что вал механизма приводит в действие многочисленные возможные элементы. Мотор получил распространение на вертолётах, танках, кораблях. Например, М90ФР, корабельный газотурбинный двигатель, устанавливаемый на фрегатах Российского флота. К таковым относятся: «Адмирал Горшков», «Дерзкий» и др.

Газотурбинный »:

  • Вспомогательный двигатель

Случается, что газотурбинная силовая установка применяется, как вспомогательное оборудование, например, автономный источник питания на борту. Простые агрегаты сжимают воздушные массы, отбираемые у турбинного компрессора, который запускает главные двигатели. Сложные установки вырабатывают электрическую энергию для нужд бортовой сети.

Водородные двигатели

  • Откуда появились водородные ДВС
  • Устройство и особенности работы
  • Разновидности водородных моторов
  • Моторы на основе водородных элементов
  • Водородные ДВС
  • Плюсы и минусы водородных двигателей

У обычного ДВС есть масса недостатков, поэтому специалисты уже давно ведут поиски достойной альтернативы ему. Появление электродвигателей в свое время было гигантским шагом вперед, но техника постоянно развивается, и в 1997 году появились еще и водородные двигатели. С их помощью удастся решить проблемы, связанные с ценами на топливо и экологической безопасностью.

Откуда появились водородные ДВС

В 70-х в мире разразился энергетический кризис, что подвигло ученых заняться поиском альтернативы бензину. Одним из первых на водороде стал ездить внедорожник Тойота, но в конце 90-х он так и не пошел в серию. Исследования в этой области продолжались. Кроме Тойота успехов добились Хендай и Хонда.

Но энергетический кризис закончился, а вместе с ним пропал и интерес к моторам, работающим на альтернативном топливе. Сейчас проблема снова стала актуальной, экологи опять заставляют обратить на нее внимание. Проводить практические эксперименты с водородом подталкивает повышение цен на топливо. Активнее всего к созданию двигателей на водороде подходят BMW, Honda и Ford. В 2016 году был выпущен первый поезд, двигатель которого работает на H2.

Устройство и особенности работы

Проблема бензиновых двигателей заключается в том, что топливо горит долго и занимает пространство КС несколько ранее, чем поршень принимает нижнее положение. Принцип работы водородного двигателя таков: быстрая реакция H2 сдвигает время впрыска ближе ко времени возвращения поршня к крайнему нижнему положению. При этом давление в структуре подачи топлива повышается незначительно.

Водородный мотор может образовать внутреннюю систему питания, когда смесь образуется без участия воздуха. Проще говоря, после очередного такта сжатия в КС образуется пар, затем он следует через радиатор, где, конденсируясь, опять становится водой. Но устройство может быть реализовано только на автомобиле с электролизером, который выделяет водород из воды, чтобы тот снова смог взаимодействовать с кислородом. Сейчас добиться этого почти невозможно, ведь для стабилизации работы моторов применяется техническое масло, а, испаряясь, оно становится составной частью выхлопа. Поэтому бесперебойный запуск мотора невозможен без воздуха.

Разновидности водородных моторов

При рассмотрении особенностей работы моторов на H2 обязательно учитывают, что агрегаты бывают 2-х видов:

  • моторы с водородными элементами;
  • водородные ДВС.

Моторы на основе водородных элементов

Устройство работает на базе свинцового аккумулятора, вот только КПД топливного элемента тут значительно выше и порой превышает 45%. Система питания такова: в корпусе топливного элемента находится мембрана, проводящая лишь протоны. Ею разделяются анодные и катодные камеры. Анодная камера заполняется водородом, а в катодная — кислородом. Все элементы покрыты катализаторами из платины.

Под воздействием катализатора протоны соединяются с электродами, проходя через мембрану к катоду. Возникает реакция, способствующая появлению воды. Анодные электроны переходят в электроцепь, подключенную к мотору. В результате получается электроток, питающий силовой агрегат.

Водородное топливо сейчас применяется на машинах марки Нива. Энергоустановки для них были созданы уральскими инженерами. Заряда вполне хватает на 200 км. Также подобные двигатели стоят и на Лада 111 — там используется агрегат Антел-2, мощности которого хватает уже на 350 км. Так как в установках используются драгоценные металлы, стоят они достаточно дорого. Это сказывается и на конечной цене автомобилей.

Водородные ДВС

Эти силовые агрегаты сильно напоминают распространенные сейчас двигатели, работающие на газе, поэтому совершить переход с пропана на водород достаточно легко. Потребуется провести небольшие перенастройки двигателя. КПД таких «движков» немного ниже, если сравнивать с ДВС на водородных элементах. Но этот недостаток компенсируется тем, что для выработки нужного количества энергии потребуется меньше водорода.

Использование водорода в обычном ДВС невозможно по ряду причин:

  1. Степень сжатия слишком высока. H2 вступит в реакцию с моторным маслом.
  2. Выпускной коллектор раскаляется. Даже незначительная утечка может привести к воспламенению.

Именно поэтому для разработки конструкций на основе H2 используют только роторные моторы. Здесь риск возгорания сводится к минимуму из-за расстояния между коллекторами.

Замечательный пример — BMW 750hL. Жидкий водород находится в баке, и его вполне хватает на 300 км. Технология такова, что когда водород заканчивается, автоматика переключает автомобиль на бензин.

Плюсы и минусы водородных двигателей

К преимуществам можно отнести следующее:

  1. Экологическая чистота. Если водородные «движки» будут использоваться повсеместно, экология сможет вздохнуть свободнее. Парниковый эффект точно будет заметно уменьшен. Сотрудники компании Тойота доказали, что выхлопы автомобилей с водородными моторами безопасны для здоровья.
  2. Доступность. Фактор дефицита точно будет отсутствовать, так как водород можно получить даже из сточной воды.
  3. Возможность применения в разных типах моторов. Водородное топливо может использоваться как в ДВС, так и в моторах, вырабатывающих электрический ток.

К достоинствам водородных силовых агрегатов также относят:

  • Небольшой уровень шума.
  • Увеличенную мощность.
  • Значительный запас хода.
  • Небольшой расход топлива.
  • Простоту обслуживания.

А теперь о недостатках водородных двигателей:

  1. Сложность получения водорода в чистом виде. Для его извлечения необходимо затратить много энергии. Сейчас такое производство нерентабельно.
  2. Дефицит АЗС. Если сравнивать с АЗС, в которых продается обычное топливо, оснащение станций для заправки машин водородным топливом будет стоить очень дорого. Из-за этого на строительство водородных АЗС никто не решается.
  3. Необходимость модернизации ДВС. Чтобы применять Н2 как основное топливо, придется внести некоторые изменения в конструкцию ДВС. Без изменений мощность мотора может упасть на 25%. Кроме того, механизм не будет служить долго.

Автомобили на водороде сегодня называют «машинами будущего», которые не станут наносить вред окружающей среде. И пусть пока такие авто дороговаты и встречаются редко, со временем их цена обязательно упадет, а популярность вырастет.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector