Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема и сборка контроллера для ЧПУ станка

Схема и сборка контроллера для ЧПУ станка

У умельцев, которые пытаются сами собрать программируемый станок, часто возникает проблема: как выбрать для него контроллер управления шаговыми двигателями. Понятно, что их интересует схема этого устройства.

Среди большого разнообразия контроллеров, пользователи ищут для самостоятельной сборки те схемы, которые будут приемлемы и наиболее эффективны. Применяются и одноканальные устройства и многоканальные: 3-х и 4-х осевой контроллеры.

Варианты устройств

Многоканальные контроллеры ШД (шаговых двигателей) при типоразмерах 42 или 57 мм используется в случае небольшого рабочего поля станка – до 1 м. Когда собирают станок большего рабочего поля – свыше 1м, нужен типоразмер 86 мм. Управлять ним можно, пользуясь одноканальным драйвером (ток управления, превышающий 4,2 А).

Управлять станком с числовым программным управлением, в частности, фрезерным настольным можно контроллером, созданным на базе специализированных микросхем –драйверов, предназначенных к применению для ШД до 3А. Контроллер ЧПУ станка управляется спецпрограммой. Ее устанавливают на ПК, имеющий частоту процессора свыше 1GHz, а объем памяти 1 Гб). При меньшем объеме, систему оптимизируют.

ОБРАТИТЕ ВНИМАНИЕ! Если сравнивать с ноутбуком, то в случае подключения стационарного компьютера – лучшие результаты, да и обходится он дешевле.

Подключая контроллер к компьютеру, используют USB или разъем параллельного порта LPT. Если этих портов нет, то пользуются платами-расширителями или контроллерами-преобразователями.

Экскурс в историю

Вехи техпрогресса схематически можно обозначить так:

  • У первого контроллера на микросхеме был условно назван «синей платой». У этого варианта есть недостатки и схема требовала доработки. Главное достоинство – есть разъем, к нему и подключали пульт управления.
  • Вслед за синим, появился контроллер, называемый «красной платой». В нём уже использовались быстрые (высокочастотные) оптроны, реле шпинделя на 10А, развязка по питанию (гальваническая) и разъем, куда бы подключались драйверы четвертой оси.
  • Применялось также еще одно подобное устройство с красной маркировкой, но более упрощенное. При его помощи можно было управлять небольшим станком настольного типа – из числа 3-осевых.

  • Следующим в линейке техпрогресса стал контроллер с гальванической развязкой по питанию, быстрыми оптронами и особыми конденсаторами, имеющий алюминиевый корпус, который обеспечивал защиту от пыли. Вместо реле управления, которое включало бы шпиндель, в конструкции было два выхода и возможность, чтобы подключить реле или ШИМ (широтно-импульсная модуляция) управление скоростью вращения.
  • Сейчас же для изготовления самодельного фрезерно-гравировального станка, имеющего ШД, есть варианты – 4-х осевой контроллер, драйвер ШД от Allegro, одноканальный драйвер для станка, имеющего большое рабочее поле.

ВАЖНО! Не стоит перегружать ШД, применяя крупную фрезу агрегата и большую скорость.

Контроллер из подручных материалов

Большинство умельцев предпочитают управление через LPT порт для большинства программ управления любительского уровня. Вместо применения комплекта спецмикросхем для этой цели, кое-кто строит контроллер из подручных материалов – полевых транзисторов из сгоревших материнских плат (при напряжении свыше 30 вольт и током больше 2 ампер).

А поскольку создавался станок для нарезания пенопласта, в качестве ограничителя тока изобретатель использовал автомобильные лампы накаливания, а ШД снимали со старых принтеров или сканеров. Такой контроллер устанавливали без изменений в схеме.

Чтобы сделать простейший станок ЧПУ своими руками, разбирая сканер, помимо ШД, извлекается и микросхема ULN2003, и два стальные прутки, они пойдут на тестовый портал. К тому же понадобятся:

  • Коробка из картона (из нее смонтируют корпус устройства). Возможен вариант с текстолитом или фанерным листом, но картон резать легче; куски древесины;
  • инструменты – в виде кусачек, ножниц, отверток; клеевой пистолет и паяльные принадлежности;
  • вариант платы, которая подходит на самодельный ЧПУ станок;
  • разъем для LPT порта;
  • гнездо в форме цилиндра для обустройства блока питания;
  • элементы соединения – стержни с резьбой, гайки, шайбы и шурупы;
  • программа для TurboCNC.

Сборка самодельного устройства

Приступив к работе над самодельным контроллером для чпу, первый шаг – аккуратно припаять микросхему на макетную плату с двумя шинами электропитания. Дальше последует соединение вывода ULN2003 и коннектора LPT. Далее оставшиеся выводы подключаем по схеме. Нулевой вывод (25-ый параллельного порта) соединяется с отрицательным на шине питания платы.

Затем ШД соединяют с устройством управления, а гнездо для электропитания – с соответствующей шиной. Для надёжности соединений проводов выполняют их фиксацию термоклеем.

Не составит труда подключение Turbo CNC. Программа эффективна с MS-DOS, совместима и с Windows, но в этом случае возможны некоторые ошибки и сбои.

Настроив программу на работу с контроллером, можно изготовить тестовую ось. Последовательность действий по подключению станков такова:

  • В отверстия, просверленные на одном уровне в трех деревянных брусках, вставляют прутки из стали и закрепляют шурупами небольшого размера.
  • ШД соединяют со вторым бруском, надевая его на свободные концы прутов и прикручивают, применяя шурупы.
  • Через третье отверстие продевается ходовой винт и ставится гайка. Винт, вставленный в отверстие второго бруска, завинчивают до упора, чтобы он, пройдя через эти отверстия, вышел на вал двигателя.
  • Далее предстоит соединение стержня с валом двигателя отрезком шланга из резины и проволочным зажимом.
  • Для крепления ходовой гайки нужны дополнительные винты.
  • Сделанная подставка также крепится к второму бруску при помощи шурупов. Горизонтальный уровень регулируется дополнительными винтами и гайками.
  • Обычно вместе с контроллерами подключаются и двигатели и тестируются на предмет правильного соединения. Далее следует проверка масштабирования ЧПУ, прогонка тестовой программы.
  • Остается сделать корпус устройства и это будет завершающим этапом работы тех, кто созидает самодельные станки.

Программируя работу 3-осевого станка, в настройках по первым двум осям – без перемен. А вот при программировании первых 4-х фаз третьей – вводятся изменения.

Внимание! Используя упрощенную схему контроллера ATMega32 (Приложение 1), в отдельных случаях можно столкнуться с некорректной обработкой оси Z – режим полушага. А вот в полной версии его платы (Приложение 2), токи осей регулируются внешним аппаратным ШИМом.

Читать еще:  Что перед установкой контрактного двигателя

Заключение

В контроллерах, собранных ЧПУ станков – широкий спектр использования: в плоттерах, небольших фрезерах, работающих с древесиной и пластиковыми деталями, граверах по стали, миниатюрных сверлильных станках.

Устройства с осевым функционалом используют также в графопостроителях, на них можно рисовать и изготовлять печатные платы. Так что усилия, затраченные на сборку мастерами-умельцами, в будущем контроллере обязательно окупятся.

Как сделать универсальный блок питания своими руками: схемы лучших самодельных зарядных устройств и проверка их характеристик (100 фото + видео)

Какая вещь считается наиболее незаменимой у радиолюбителей и не только? Несомненно, это блок питания. К сожалению, готовые блоки питания не всегда бывают доступными в финансовом плане, поэтому для домашнего пользования они делают их самостоятельно.

Краткое содержимое статьи:

Как сделать блок питания?

У начинающего радиолюбителя когда-нибудь возникнет вопрос: как сделать простой блок питания самостоятельно в домашних условиях.

Перво-наперво необходимо определить, какой именно блок питания нужен и для каких точно целей. Блоки питания могут использоваться в разных сферах многими домашними мастерами.

Для того, чтобы сделать самостоятельно блок питания, необходимо разобраться с тем, как он устроен и как работает. Это поможет в дальнейшем осуществлять небольшой ремонт устройства при необходимости.

Определяем, какой именно блок нужен – регулируемый либо нет. Заранее, перед выполнением работ, необходимо найти все инструкции и схемы блоков питания, которые помогут сделать нужный вам прибор.

Регулируемый – это прибор, у которого можно изменить выходное напряжение (допускается изменение в пределах от 3 до 12 вольт). Например, если мы хотим получить 7 или 10 вольт – нам нужно будет всего лишь повернуть ручку регулятора.

Нерегулируемый прибор – имеет фиксированное выходное напряжение, которое нельзя изменить. К примеру, блок питания «Электроника» Д2-27 нельзя регулировать, и он выдает на выходе всегда 12 вольт.

К нерегулируемым блокам питания относят зарядные устройства для мобильных телефонов, разнообразные адаптеры для роутера либо модема.

Самые интересные для радиолюбителей являются регулируемые блоки питания. Они позволяют запитать достаточно много устройств (самодельных либо промышленных), которым понадобится разное напряжение питания.

Фото самодельного блока питания можно найти в журналах для радиолюбителей либо в интернете.

Собираем устройство самостоятельно

Для того, чтобы в домашних условиях собрать регулируемый блок питания своими руками, нужно предварительно выбрать одну из простых схем для производства подобного устройства.

Помните о том, что новичкам лучше работать с легкими чертежами. Это позволит быстро и без ошибок собрать конструкцию. Все необходимые материалы и детали можно приобрести в специальных магазинах.

Виды устройств

Блоки питания можно разделить на стабилизированные и бесперебойные (могут работать без электричества).

Согласно классификации бывают:

Импульсные (имеют инверторную систему с преобразованием переменного тока в постоянное напряжение). Данный прибор преобразует на входе переменное напряжение в высокочастотное.

Для того, чтобы трансформировать токи с высокой частотой, понадобятся небольшие электромагнитные катушки. Все это легко разместить в маленьком компактном корпусе.

Трансформаторные (имеют специальный выпрямитель, понижающий трансформатор). Благодаря данному прибору можно уменьшить пульсацию и колебания во время работы.

Сборка устройства

Подготовьте заранее все необходимые детали: микросхемы, трансформаторы, диодный мост, дроссель, блок защиты, конденсаторный фильтр, стабилизатор напряжения.

Обычно обмотка трансформаторов выдерживает напряжение до 250 Вт. Если делать вторичную обмотку – проводит напряжение до 50 Вт. Обмотку можно приобрести в специальном магазине либо снять со старого электроприбора.

Для того, чтобы сделать огромное количество электрических дорожек понадобится микросхема с маркировкой PDIP-8.

Чтобы получит диодный мост, понадобится четыре диода 0,2х0,5 мм. Блок защиты можно сделать из предохранителей (понадобится два) марки FU2.

Как только сработают данные изделия, будет вырабатываться ток 0,16А. Чтобы сделать своими руками дроссели, возьмите магнитный феррит.

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

Дата: 03.07.2018 // 0 Комментариев

Продолжая серию статей о самодельных лабораторных блоках питания, нельзя пройти мимо компьютерных блоков в основе которых лежит ШИМ контроллер серии UC38хх. В большинстве современных фирменных блоков ПК используется именно эта микросхема, что в перспективе позволяет своими руками создавать надежные и мощные источники питания. Сегодня у нас переделка компьютерного блока питания в лабораторный на ШИМ UC3843, подопытным блоком станет INWIN POWER MAN IP-S350Q2-0.

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

Основные элементы блока питания INWIN POWER MAN IP-S350Q2-0:

  • ШИМ — UC3843;
  • Держурка — DM311;
  • Супервизор — WT7525 N140.

Ниже представлена принципиальная схема блока питания INWIN POWER MAN IP-S350Q2-0, с которой нам предстоит работать.

Переделка такого компьютерного блока питания в лабораторный будет происходить в несколько этапов:

  1. Отключение супервизора WT7525 N140.
  2. Небольшие изменения в дежурке для питания вентилятора.
  3. Удаление лишних компонентов.
  4. Изготовление нового модуля управления блоком.
  5. Установка новых компонентов на плату и подключение модуля.
  6. Тесты.

Отключение супервизора WT7525 N140

Супервизор WT7525 N140 производит мониторинг напряжения на шинах блока, отслеживает перегрузку, отвечает за пуск и аварийную остановку. Для его отключения необходимо произвести два простых действия.

  1. Удаляем супервизор с платы и ставим перемычку от второго к третьему посадочному выводу микросхемы.
  2. Удаляем конденсатор дежурки С32. Если этого не сделать, будут наблюдаться проблемы со стартом блока. Если все прошло успешно — блок будет запускаться автоматически при включении в сеть. Стоит также отметить, если С32 неисправен, блок будет стартовать с ним, но, его присутствие дает помехи, добиться нормальной работы блока невозможно.

Модификация дежурки для питания вентилятора 12 В

Выходное напряжение в блоке будет меняться в широком диапазоне, а питание 12 В штатного вентилятора должно быть неизменным. В INWIN POWER MAN IP-S350Q2-0, да и в большинстве блоков на ШИМ UC38хх присутствует лишь одна ветка дежурки 5 В. Существует несколько вариантов решения данной проблемы:

  1. Внесение изменений в схему дежурки.
  2. Установка дополнительного ac-dc преобразователя 220-12 В.
  3. Установка дополнительного dc-dc повышающего преобразователя 5-12 В.
Читать еще:  Где находится датчик температуры двигателя митсубиси лансер 9

Последние два варианта не нуждаются в описании из-за своей простоты включения. Мы же рассмотрим более интересный вариант.

Добавляя диод 1N4007 мы создаем отрицательную ветку дежурки, амплитуда импульсов проходящих через новый диод составит около 12 В, но при подключении вентилятора проседает до 10 В. При 10 В вентилятор способен работать, но поток воздуха немного слабоват, при желании можно оставить и так.

Чтобы добиться оптимальной работы вентилятора, необходимо немного поднять напряжение дежурки. Для этого удаляем R46 и изменяем (уменьшаем) R73 с 2 кОм до 1,5 кОм. Таким образом, напряжение на выходе дежурки будет 6 В (выше 8 В поднять не получится), а напряжения для питания вентилятора будет находится в пределах 12-13 В.

Удаление лишних компонентов

Для дальнейшей переделки нам необходимо избавиться от ненужных шин, обвязки супервизора и др. компонентов, которые не будут задействованы в блоке.

После удаления деталей, нужно изменить:

  1. Нагрузочный резистор R8. Ставим новый на 390 Ом мощностью 5 Вт. Он легко встанет на место выходного электролита по шине 12 В.
  2. Выходной конденсатор С7, устанавливаем емкостью 2200 мкФ х 35 В.
  3. Перематываем дроссель групповой стабилизации, оставляем лишь одну обмотку. Для расчета параметров дросселя можно использовать программу DrosselRing (детально ознакомиться с ней можно тут). Эта программка насчитала нам 20 витков провода с сечением 1 мм на родном дросселе.

Как раз на данном этапе в самый раз задуматься о стойках для размещения платы нового модуля управления блоком.

Модуль управления блоком на ШИМ UC3843

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843 невозможна без изготовления небольшой платы, которая будет контролировать работу UC3843.

За основу взята микросхема LM358, в своем корпусе она имеет два независимых операционных усилителя. Один будет отвечать за стабилизацию напряжения, второй за стабилизацию тока. В качестве датчика тока используется шунт R0 из константана, сопротивлением 0,01 Ом. Обратная связь с ШИМ выполнена через штатную оптопару PC817, которая переместилась на модуль. Источником опорного напряжения служит TL431.

На новой плате присутствуют два светодиода, которые будут сигнализировать о режиме работы блока. Свечение led1 будет свидетельствовать о том, что блок работает в режиме стабилизации напряжения, led2 загорится при переходе в режим ограничения тока. Сам модуль управления не содержит дефицитных компонентов и не требует дополнительной наладки после изготовления. Расчеты обвязки LM358 произведены для выходных параметров 0-25 В и 0-10А.

Вот так выглядит плата модуля для нашего самодельного лабораторного блока питания.

Печатку для ее изготовления в формате lay можно будет скачать в конце статьи.

Также желательно оставить небольшой запас текстолита для крепления модуля к стойкам. На схеме и плате для удобства расставлены буквенные обозначения точек подключения.

Подключение модуля к блоку

Используя нижеприведенную схему, подключаем все точки модуля управления к основной плате блока.

Назначения точек подключения:

  • А и В — выходы оптопары для управления ШИМ;
  • C — питание модуля 6 В;
  • D — плюс выхода блока;
  • E — общий минус;
  • F — минус выхода блока.

Настройка блока и тесты

После подключения платы можно проводить первое пробное включение в сеть. Достаточно проверить работоспособность регулировки напряжения и тока. Нагружать блок на этом этапе по полной не стоит, достаточно убедиться в стабильности его работы.

В работе блока могут присутствовать небольшие писки, похожие на тонкий свист. Для их устранения необходимо внести небольшие корректировки в обвязку ШИМ:

  1. Увеличение емкости конденсатора С26 с 2,2 нФ до 220 нФ.
  2. Корректировка резистора R15. R15 желательно подбирать экспериментальным путем на максимальном токе. С уменьшением R15 писк будет постепенно стихать, но, в один момент UC3843 сама начнет ограничивать ток, проходящий через ключ Q8. Экспериментально значение R15 удалось получить в районе 2,2 кОм, при этом UC3843 еще не ограничивает ток, а писка практически не слышно.

Все манипуляции с обвязкой ШИМ необходимо проводить максимально осторожно. Некоторые элементы находятся под опасным для жизни напряжением. У нас не получилось с первого раза побороть все посторонние звуки в блоке, некоторые эксперименты закончились частичным, а потом и полным выходом из строя блока, пришлось найти второй такой-же и продолжить переделку.

И так, финишные тесты после всех корректировок. В процессе сборки произошла небольшая заминка с цветом светодиодов, красный сигнализирует о работе в режиме стабилизации напряжения, а зеленый — режим ограничения тока. В дальнейшем исправим, сделаем все как у людей:

  1. Напряжение: 0 — 25 В.
  2. Ток: 0 — 10 А.

После всех манипуляций переделка компьютерного блока питания в лабораторный на ШИМ UC3843 окончена! Последним этапом станет оформления корпуса и установка резисторов точной настройки тока и напряжения (подключаем последовательно с основным регулятором, номинал 10% т.е. 1 кОм). Также, корпус блока желательно отключить от общего минуса, чтобы избежать случайного КЗ в обход датчика тока (для этого достаточно убрать перемычку).

Приносим благодарность Виталию Ликину за изготовление прототипов наших идей и предоставленные фотоматериалы. Мы еще добавим финишный вариант оформления блока и его краш-тесты. Как и обещали, ссылка платы модуля управления в формате lay.

Лабораторный блок питания своими руками

Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Читать еще:  Что такое техническое устройство с водяным двигателем 8 букв

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Изготовление печатной платы и сборка

Схема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.

Платы выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.

Настройка блока питания

Правильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.

Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.

Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.

Индикация

Для индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.

Рекомендации по улучшению надежности

Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.

В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.

Защита блока питания

Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.

Советы по оформлению корпуса

Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.

Собранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector