Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Понятие КПД электродвигателя

Понятие КПД электродвигателя

Что такое КПД электродвигателя и его простейшая формула

Эффективность работы любого электропривода, в первую очередь, определяется коэффициентом полезного действия электродвигателя (КПД). Говоря простым языком, электрическая машина, потребляя электрическую энергию, преобразует её в механическую для работы различных устройств, станков, инструментов и проч. Соотношение величин полезной механической мощности на валу двигателя (Р 2 ) к мощности, потребляемой из сети (Р 1 ), и есть КПД (η). КПД является номинальной величиной и указывается в процентах: η = (Р 2 / Р 1 ) х 100%.

Совершенно очевидно: чем большая механическая мощность развивается на валу электродвигателя, тем больше полезной работы выполняется и выше КПД электрической машины .

Важность такого показателя как КПД обусловлена прежде всего тем, что около 70% вырабатываемой во всём мире электроэнергии потребляется электродвигателями, начиная от простейших бытовых электроприборов до вентиляционных установок и приводов оборудования крупнейших предприятий.

Величины КПД современных электродвигателей

У большинства современных электродвигателей КПД лежит в пределах 80-90%. Нередко встречаются маломощные модели с КПД до 75%.

Для машин, работающих в особых условиях, современные технологии позволяют увеличивать КПД до 96%. Это достигается не только за счёт их высокоточного производства, но и благодаря использованию дорогостоящих материалов для сердечников, перемагничивание которых не сопряжено с высокими энергетическими затратами.

Факторы, влияющие на изменение КПД электрической машины

Сразу следует сделать уточнение: КПД электропривода никогда не превышает 100%.

Это объясняется расходом потребляемой мощности на нагрев обмоток двигателя, перемагничивание статора (в асинхронных двигателях), вихревые токи, механическое сопротивление при движении ротора.

Нагрев обмоток двигателя – явление закономерное. Из курса физики известно:

  1. при прохождении электрического тока проводник нагревается;
  2. чем однороднее среда, тем легче происходит теплоотдача.

Если с первым пунктом всё ясно, то пункт 2 требует дополнительных объяснений. Традиционно внимание акцентируется на том, что пропитка обмоток статора делается для их защиты от влияния влаги или агрессивной среды. Но также следует учитывать, что после пропитки не остаётся свободных зазоров между обмоткой и сердечником статора, а это позволяет значительно увеличить теплоотдачу и снизить нагрев во время работы. Для этой же цели предусмотрена такая конструктивная особенность как монолитная отливка корпуса с охлаждающими рёбрами, что в значительной мере стабилизирует рабочий нагрев электропривода и препятствует снижению КПД.

Бывает так, что во время работы электродвигателя наблюдается стремительный рост температуры. Зачастую это происходит из-за замыкания в обмотках статора .

Расчётная температура нагрева для двигателей класса “А” лежит в пределах 90℃, для класса “В” не превышает 110℃.

Любая электрическая машина – это воплощение взаимодействия электрических и магнитных полей. Поэтому в обязательном порядке следует учитывать такое явление как перемагничивание сердечника статора в результате изменения направления тока в обмотках. Чтобы не углубляться в теорию, достаточно вспомнить, что магнитная индукция (В) запаздывает от изменения напряжённости магнитного поля (Н). Эта зависимость отражается на графике под названием “петля гистерезиса”. Дешёвые материалы для сердечников почти всегда имеют широкий график, что указывает на большие энергозатраты на более длительное перемагничивание. И наоборот: чем уже петля гистерезиса, тем быстрее перемагничивается сердечник, и выше КПД двигателя.

Вихревые токи или токи Фуко (иногда можно встретить термин “паразитарные токи”) возникают в металлических элементах там, где есть переменное магнитное поле. Согласно закону Ленца они являются причиной наведения магнитных потоков, противодействующих рабочему магнитному потоку вокруг катушек. Понятно, что это влияет на крутящий момент и вызывает дополнительный нагрев двигателя, снижая КПД.

Для уменьшения потерь от вихревых токов надо увеличить электрическое сопротивление магнитопровода. Поэтому магнитопроводы и сердечники якорей набирают (шихтуют) из очень тонких (до 0,5 мм) пластин электротехнической стали, иногда с добавлением кремния, покрытых специальным лаком для их изоляции друг от друга. До сих пор существуют производственные участки, где для этой цели применяют тяжёлый ручной труд.

Механические факторы снижения КПД электродвигателя возникают в результате конструктивных изменений, трения в подшипниках, воздушного сопротивления

Читать еще:  Шум при запуске двигателя на холодную мазда 6

Нередко в процессе эксплуатации наблюдаются искривление вала и другие дефекты, вызывающие вибрации на опорных подшипниках ротора, и, соответственно, увеличение механического сопротивления.

Бывает так, что в случае заводского брака при изготовлении обмоток (несоблюдении расчётного количества витков одной из обмоток) нарушается плавность хода ротора, что тоже сказывается на эффективности работы электродвигателя. (Утверждение, что опытный электромеханик определяет эту неполадку на слух, является правдой.)

Также следует указать на недопустимость превышения номинальной нагрузки , как на один из факторов снижения КПД. В этом случае нагрев элементов электродвигателя приближается к критическому, и коэффициент полезного действия начинает снижаться.

Важно помнить: никогда производитель электродвигателей не указывает КПД при максимальной (предельной) нагрузке на валу электрической машины. В техническом паспорте прописывается величина КПД при номинальной нагрузке .

Может ли КПД быть более 100%?

Если говорить об электродвигателях, то следует однозначно заявить: нет!

Выше уже отмечалось, что в электрических машинах мы сталкиваемся с энергией магнитного поля, электрической энергией, тепловой и механической. Достаточно минимальных знаний из области физики и основ электротехники, чтобы раз и навсегда усвоить: преобразованию одного вида энергии в другой всегда сопутствуют процессы обратной направленности. Для примера можно вспомнить токи Фуко.

Существует ещё один важный аргумент в пользу утверждения о невозможности достижения КПД свыше 100%. На данном этапе развития человечество не обладает технологиями производства универсальных материалов, которые не нагревались бы в процессе работы или демонстрировали молниеносное перемагничивание, а также не подвергались бы механической усталости.

Многочисленные энтузиасты не оставляют попыток создать устройства, которые могли бы, выполнять механическую работу и одновременно вырабатывать электроэнергию, покрывая потери и собственные энергозатраты. При этом они не учитывают элементарный принцип обратимости электрических машин: либо генератор, либо двигатель.

Коэффициент полезного действия двигателя

КПД двигателя равен отношению полезной (механической) мощности Р2 к затраченной (электрической) Р1:

Здесь Р2 в кВт; М – вращающий момент двигателя, Нм; n – частота вращения, об/мин.

.

Зависимости называютсярабочими характеристиками двигателя. Графически они представлены на рис. 2.4.

Рис. 2.3. Кривая зависимости n=f(Iя) при М=const, U=const

Рис. 2.4. Рабочие характеристики двигателя

Методика проведения лабораторной работы (лаборатория № 221)

Ознакомиться на демонстрационном стенде «Машины постоянного тока» с устройством электродвигателя, а на лабораторном стенде – с приборами, аппаратами и подлежащим испытанию электродвигателем. Записать в отчёт о лабораторной работе технические паспортные данные двигателя.

На рабочей панели стенда «Двигатели постоянного тока» в соответствии с принципиальной схемой (см. рис. 2.5) собрать электрическую цепь для снятия характеристик электродвигателя постоянного тока параллельного возбуждения. Монтаж электрической цепи производить согласно монтажной схеме, указанной на рис. 2.6. В качестве нагрузки на валу испытуемого электродвигателя используется электромагнитный тормоз, тормозной момент которого изменяется при изменении тока в его обмотках возбуждения с помощью регулируемого источника постоянного напряжения. Управление тормозом производится рукояткой «Момент нагрузки электродвигателей», расположенной на панели «Нагрузочные устройства».

Изменение момента на валу и частоты вращения якоря электродвигателя производить измерительными приборами (агрегат 2), расположенными на приборной панели.

Перед пуском исследуемого электродвигателя необходимо убедиться в том, что:

а) сопротивление пускового реостата полностью введено (ручка пускового реостата находится в крайнем левом положении – цепь якоря двигателя разомкнута;

б) сопротивление реостата в цепи обмотки возбуждения электродвигателя полностью выведено (ручка реостата «Регулировка возбуждения» находится в крайнем правом положении);

в) напряжение, подводимое к цепи обмотки возбуждения электромагнитного тормоза, равно нулю (ручка «Момент нагрузки электродвигателя» находится в крайнем левом положении);

Рис. 2.5. Принципиальная электрическая схема лабораторной установки

г) значение питающего напряжения электродвигателя установлено равным номинальному его значению Uном=220 В. Установка питающего напряжения производится кнопками «» и «» панели «Нагрузочные устройства» при предварительно нажатой кнопки «Вкл» на панели «Машины постоянного тока»;

д) нажатием кнопки «Агрегат № 2» на панели «Нагрузочные устройства» включено напряжение питания электрической цепи измерения момента и частоты вращения якоря электродвигателя.

Читать еще:  Opel astra j двигатель работает с перебоями

Произвести пуск электродвигателя плавным переключением пускового реостата из положения «1» в положение «7» с выдержкой времени в каждом промежуточном положении в течение 1 – 1,5 с. После окончания процесса пуска, когда частота вращения якоря двигателя принимает установившееся значение, пусковой реостат полностью должен быть выведен (рукоятка пускового реостата должна быть в крайнем правом положении – положение «7»).

а) осуществить нагрузку электродвигателя с помощью электромагнитного тормоза; изменение момента электромагнитного тормоза должно производиться плавно; в начале опыта устанавливается ток возбуждения, при котором при номинальном питающем напряжении и токе, потребляемом двигателем, частота вращения якоря равна номинальной; это значение тока возбуждения двигателя принимается равным номинальному; в процессе проведения опыта этот ток необходимо поддерживать неизменным;

б) первые точки характеристик снимаются при холостом ходе электродвигателя, т.е. при уменьшенном до нуля моменте электромагнитного тормоза;

в) постепенно нагружая электродвигатель до значения тока, равного I=1,2Iном, произвести регистрацию показаний всех измерительных приборов для 6–7 точек (включая точку номинального режима). Данные наблюдений записать в табл. 2.1.

Обработка результатов измерений:

а) по результатам измерений п. 4 построить механическую n=f1(М) и частотную n=f2(Iя) характеристики электродвигателя;

б) по результатам измерений и вычислений п.4 построить в одной координатной системе рабочие характеристики двигателя, т.е. зависимости момента М, частоты вращения якоря n, тока якоря Iяи КПД от полезной мощности P2на валу электродвигателя при постоянном номинальном значении напряжения U=Uн=const и постоянном токе возбуждения, равном номинальному его значению.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

(кпд) — безразмерная величина т|, характеризующая степень совершенства к.-л. технич. устройства в отношении осуществления в нём процессов передачи энергии или её преобразования из одной формы в другую. Кпд показывает, какая часть (Wполез) суммарной подводимой энергии W полезно используется в рассматриваемом устройстве: n = Wполез/W. Напр., для электрич. двигателя Wполез — работа на валу двигателя, совершаемая за счёт потребляемой им электрич. энергии W. Для электрич. генератора Wполез — работа электрич. тока во внеш. цепи генератора, совершаемая за счёт энергии W, расходуемой на его привод. Для трансформатора Wполез — электроэнергия, получаемая со вторичной обмотки, a W — энергия, подаваемая на первичную обмотку. Для котельной установки Wполез — часть теплоты W, выделяющейся при полном сгорании топлива, к-рая пошла на нагрев воды и образование пара. Для двигателя внутр. сгорания Wполез работа на валу двигателя, a W — энергия, выделяющаяся при полном сгорании топлива. Вследствие разл. рода потерь энергии (из-за выделения джоулевой теплоты, из-за гистерезиса, трения, неполноты сгорания топлива и т. д.), а для тепловых двигателей также в силу второго начала термодинамики кпд любой реальной установки всегда меньше 1. Так, кпд лучших тепловых электростанций достигает 0,4, двигателей внутр. сгорания 0,4 — 0,5, электрич. генераторов 0,95, трансформаторов 0,98.

отношение полезно затрачиваемой работы или получаемой энергии ко всей затраченной работе или соответственно потребляемой энергии. Напр., К. п. д. электродвигателя — отношение механ. мощности, им отдаваемой, к подводимой к нему электр. мощности; К. п. д. парового котла — отношение количества тепла, заключенного в паре (насыщенном и перегретом), приготовленном за какой-либо промежуток времени, к количеству тепла топлива, сожженного для приготовления этого количества пара. К. п. д. котла паровозов не является величиной постоянной и зависит от рода и сорта применяемого топлива, а также от режима работы котла (интенсивности горения). К. п. д. котла паровозов на нефтяном отоплении при рабочих режимах составляет около 0,75—0,80, наручном угольном отоплении — около 0,60—0,70 и на стокерном— около 0,45—0,55. К. п. д. всегда меньше единицы; в этих пределах он дает различные колебания.

Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство . Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941

или коэффициент отдачи (Efficiency) — характеристика качества работы любой машины или аппарата со стороны ее экономичности. Под К. П. Д. подразумевается отношение количества полученной от машины работы или энергии от аппарата к тому количеству работы или энергии, которое затрачено на действие машины или аппарата. К. П. Д. выражается числом меньшим единицы, так как при работе всяких машин происходят непроизводительные потери энергии. Чем ближе К. П. Д. к единице, тем совершеннее машина или аппарат.

Читать еще:  Cf moto x8 датчик температуры двигателя

Самойлов К. И. Морской словарь. — М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941

Коэффициент полезного действия

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта») [1] . КПД является безразмерной величиной и часто измеряется в процентах.

Содержание

  • 1 Определение
  • 2 Другие похожие показатели
    • 2.1 КПД котлов
    • 2.2 Тепловые насосы и холодильные машины
  • 3 Литература
  • 4 Примечания

Определение [ править ]

Файл:Коэффициент полезного действия.webm Математически определение КПД может быть записано в виде:

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

,

где — количество теплоты, полученное от нагревателя, — количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

.

Другие похожие показатели [ править ]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов [ править ]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины [ править ]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент (англоязычный аналог COP)

,

где — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

,

где — тепло конденсации, передаваемое теплоносителю; — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине , отсюда для идеальной машины

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

,

где , — температуры горячего и холодного концов, K [2] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector