Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ВАЗ и турбонаддув: за и против

ВАЗ и турбонаддув: за и против

Вопросы о возможности турбирования вазовских моторов не дают покоя автомобилистам­патриотам. Может, пришло время попытаться ответить на них? Первый и главный вопрос — ЗАЧЕМ? Смысл любой доводки мотора — увеличение его мощности. Этой цели можно достичь двумя способами: вышеупомянутым турбированием двигателя или же его форсированием. Второй способ в этой статье не рассматриваем — не до него пока. С наддувом бы разобраться… Как известно, мощность ДВС определяется, помимо прочего, массой топливовоздушного заряда, попадающего в цилиндры в единицу времени, поэтому — чем больше воздуха (и топлива) поступает в цилиндры, тем больше мощности можно выжать из мотора. Азы! Поэтому моторы и «наддувают», силой загоняя воздух в цилиндры. Мощность и момент (при прочих равных условиях) повышаются, ответ на первый вопрос — получен.

Немного теории Двигатели с наддувом имеют меньшую геометрическую степень сжатия. Если в двигателях без наддува (бензиновых) ее значение порядка 9,5­11,0, то с наддувом степень сжатия, как правило, не превышает 8,5. Дело в том, что при увеличении давления смеси в начале сжатия (что и дает наддув) пропорционально увеличивается и давление в конце его. Если давление не уменьшить увеличением объема камеры сгорания (т.е. уменьшением геометрической степени сжатия), то двигатель не сможет надежно работать из­за детонации. Снижение геометрической степени сжатия — важнейший нюанс, который необходимо учитывать, приступая к турбированию любого двигателя! Далее: поскольку количество топливовоздушной смеси увеличивается (с сохранением рабочего объема), то увеличивается и количество выделившегося при сгорании тепла. Возрастает температура и давление в цилиндрах, что приводит к необходимости усиливать и изменять детали двигателя. Чем выше давление наддува — тем больше изменений требует конструкция. Аксиома, которую упорно игнорируют… Ученье — свет, а неученых — тьма.

Конструктивные особенности установки ТКР на двигатели ВАЗ Прежде всего необходимо определить максимальное избыточное давление, создаваемое ТКР, при котором у двигателя будет сохранен запланированный вами ресурс (чем больше давление наддува — тем ресурс меньше). В зависимости от запланированного давления и определяется, на сколько нужно понижать исходную (заводскую) степень сжатия. Конструктивно это осуществляется утолщением прокладки ГБЦ либо увеличением камеры сгорания путем выборки металла в поршне, или сочетанием перечисленных методов. Далее — установка турбокомпрессора требует замены штатного выпускного коллектора на специальный, предусмотренный под ТКР. Следующие шаги: установка «интеркулера» (радиатора охлаждения надуваемого воздуха), масляного радиатора, замена форсунок на более производительные (для сохранения пропорций топливной смеси). Да и свечи желательно поменять… Заключительный этап — настройка фаз газораспределения и перепрошивка ЭБУ.
Роберт Ишкулов, мастер одной из тюменских СТО:*- Я собирал ВАЗ­21 083 для участия в ралли. Мотор подверг форсировке — от родного двигателя, грубо говоря, остался только блок цилиндров. Остальные узлы были заменены на более прочные — кованые, но и они не устроили — некоторые узлы дорабатывали вручную, на заводе. Сначала я участвовал в гонках на атмосферном моторе, потом — на турбированном. Честно говоря, турбированный понравился меньше: в гонках двигатели традиционно работают на высоких оборотах, а турбодвигатель особо не раскрутишь. Поэтому турбина здесь скорее мешает, нежели помогает. А вот в городском режиме турбовой ВАЗ великолепно показал себя. Нет рывков, смесь более качественно сгорает в цилиндрах. Как следствие — выше КПД. Однако мы не смогли решить проблему «турбоямы» на низких оборотах. Решение видится в установке системы «битурбо»: маленькой «улитки», работающей «на низах», и большой, добавляющей жару «на верхах». …Говорить о сохранении моторесурса нет смысла — автомобиль собирался исключительно для спорта, а там одна гонка — один двигатель… Так что отстраивали работу мотора так, чтобы получить максимальную отдачу. Остальное — неважно! Стоимость установки турбины (с учетом интеркулера, масляного радиатора, патрубков ) составила приблизительно 100 тысяч рублей, что в сравнении с постройкой высокофорсированного атмосферного мотора — мелочь.
*
Денис Ефимов — главный механик завода «СибЭС»; Станислав Чикишев — выпускник ИнТра ТюмГНГУ:*- Мы установливали на ВАЗ­21 083 «турбокит», заказанный в Москве. Когда начинали — думали, что равных машине не будет, все японцы будут глотать выхлоп, но — увы. Ожидаемого эффекта мы не получили. Да, на «низах» двигатель действительно хорошо «подрывает», но «крутить» его бесконечно нельзя — в инструкции к турбине указан рекомендуемый предел — 6500 об./мин. (максимальные обороты стандартного 8­клапанного «восьмерочного» мотора по инструкции — 6300 об./мин.). Турбированный ВАЗ очень хорошо зарекомендовал себя в городском трафике с постоянными рывками и ускорениями. Пропадают рывки, которые так раздражают водителей отечественных автомобилей, плавность хода напоминает иномарку. При установке ТКР на ВАЗ динамические характеристики автомобиля впечатляют. Моторесурс же при грамотной установке «турбокита» не снижается, он остается приблизительно равным заводскому. Однако не все так гладко. Турбированный двигатель требует к себе больше внимания, чем атмосферный — нужно обязательно следить за уровнем масла. Далее — синонимом к слову «турбоВАЗ» должен стать турботаймер. Минусом турбированного мотора является и увеличение расхода топлива — ведь новые форсунки впрыскивают его больше
(мы устанавливали волговские).*При тестировании автомобиля на трассе после 150 км/час температура двигателя начала подниматься до 130° С и более. Причину мы так и не нашли, но решили, что тосол нужно менять на более теплоемкую жидкость…
…Наше мнение: если «турбокит» устанавливается для городской — «овощной» — езды, то это выход. А вот для спорта вряд ли — там нужны кардинальные конструктивные изменения, моторы там работают на максимальных оборотах.
Евгений Виноградов, директор «Турбо­Центра»:­ Не готов был я к такому развитию событий — не ожидал столь высокого интереса молодежи к установке турбины на ВАЗ. Непрекращающиеся звонки побудили разобраться в этом не интересном мне с технической точки зрения вопросе. ТКР на ВАЗ? Зачем? Мощность увеличить? Резонно, но на сколько и для чего? Хочешь быть самым быстрым — купи «японку» с «твин­турбо»! Быть самым быстрым из ВАЗов? Это что­то дает. Автомобиль при рождении наделен некими генами. Грузовик — для грузов, F­1 — для гонок. «Смарт» — для города, джип — понятно для чего, лимузин — для шика… «Лада» — для чего? Явно не для гонок. Сделай ты хоть «химию» дворняжке — не станет она болонкой……А если серьезно — материалы, применяемые в отечественном машиностроении, не соответствуют требованиям, которые предъявляет им турбированный двигатель. Пока мы не научимся создавать качественные материалы, турбировать «наш» двигатель бес­по­лез­но! Он все равно долго не «проживет» — даже при грамотной установке ТКР наши материалы не выдержат возросших нагрузок. Еще в СССР на заводах велись работы по созданию «турбокитов» для «атмосферного» двигателя, но когда при расчетах выяснилось, что затраты на изменение конструкции двигателя таковы, что легче создать новый, изначально турбированный мотор — работы прекратились! Полученный эффект не соответствует материальным и трудовым затратам… При установке ТКР нагрузки возрастают кратно, а вазовский мотор на них не рассчитан.Я считаю, что увеличивать динамические характеристики автомобиля ВАЗ необходимо методом форсирования «атмосферного» мотора. Этим способом можно добиться большего соответствия материальных затрат и полученного эффекта.
Самостоятельно заниматься «творчеством» можно (мотивация у всех своя), но никто не отменял принцип разумности. Установка ТКР на ВАЗ возможна, как, впрочем, и на ЗАЗ. Но! 1. Как рассчитать соотношение воздуха и топлива («настроить» топливо)? 2. Как оптимизировать работу двигателя и турбокомпрессора? Задачка не из легких — переборщили с наддувом, и мотор развалили в первой же поездке. Покупка второго. 3. Турбина — импортный агрегат, данных на который, как правило, нет… 4. Как «прошить мозги»? К специалистам? 5. Коллекторы — их геометрию надо рассчитывать. Как и распредвал, кстати. 6. Поршни, вал, шатуны, блок — читай выше про материалы… 7. Усиление кузова, тормозов (разогнаться проще, чем тормозить!), сцепления, КПП… 8. При штатном масляном фильтре турбина долго жить не будет, масла — только для турбированных моторов… 9. А детонация. Достаточно? У вас еще не пропало желание? Тогда — вперед, и кто знает — может, вы измените ВАЗ, как никто другой! Но что­то не видно турбо­ВАЗов на улицах города… Может, в гаражах — на ремонте. Плюсы турбированного двигателя ВАЗ (по сравнению с атмосферным)

    Неисправности систем турбонаддува

    Типовые неисправности систем турбонаддува, сопряженных с ней систем двигателя и основные причины выхода из строя турбокомпрессоров

    ************************************************************************************************* *************************************************************************************************

    1. Выброс моторного масла в нагнетающий патрубок турбокомпрессора и (или) в приемную трубу глушителя

    1.1 Запредельный износ поверхностей трения турбокомпрессора (радиальных и упорного подшипников, вала, дистанционных втулок, уплотнительных колец)

    Увеличенные зазоры между поверхностями трения вызывают многократное увеличение объема моторного масла, проходящего через картридж турбокомпрессора при его работе. В этом случае сливная магистраль не справляется с объемом масла, внутренний объем картриджа полностью заполняется маслом. Динамические уплотнения перестают работать, давление внутри картриджа превышает давление в турбине и в компрессоре, что приводит к интенсивному выбросу моторного масла во внутренние полости турбины и компрессора.

    — Износ уплотнительного кольца со стороны корпуса компрессора (7)

    — Износ упорной наружной втулки (9)

    — Износ рабочей поверхности уплотнительного диска (18)

    — Износ уплотнительного кольца со стороны корпуса турбины (6)

    — Износ вала турбокомпрессора (посадочное место уплотнительного кольца со стороны корпуса турбины) (22)

    — Износ корпуса подшипников (посадочное место уплотнительного кольца со стороны корпуса турбины)(23)

    1.2. Неисправность системы вентиляции картера ДВС.

    Система вентиляции картера любого двигателя внутреннего сгорания предназначена для устранения избыточного давления в картере двигателя, возникающего вследствие прорыва газов из камеры сгорания в картер при работе двигателя. Патрубок вентиляции картера любого ДВС подключается к зоне пониженного давления (т.е. разряжения). В нетурбированных двигателях это, как правило, впускной коллектор, в двигателях с турбонаддувом — это всасывающий патрубок турбокомпрессора. Сливная масляная магистраль турбокомпрессора подключается к масляной системе двигателя, как правило, ниже нормального уровня масла в картере. Таким образом, если в картере возникает избыточное давление картерных газов, масло не может нормально сливаться по сливной магистрали турбокомпрессора, оно «подпирается» в корпусе подшипников. Происходит заполнение внутренней полости картриджа моторным маслом, динамические уплотнения перестают работать, происходит выброс моторного масла в корпус компрессора (как правило).

    Читать еще:  Электропроводка газель 405 двигатель инжектор схема

    Причиной такого явления может быть сильная закоксованность масляного сепаратора системы вентиляции картера, закоксованность патрубка системы вентиляции картера, перелом или зажатие этого патрубка и т.д.

    1.3. Неисправность маслосливной магистрали турбокомпрессора.

    Затруднен нормальный слив отработанного масла из турбокомпрессора по различным причинам: механическое повреждение (деформация) маслосливной магистрали, приведшее к уменьшению проходного сечения; закоксованность маслосливной магистрали; применение герметика при монтаже маслосливной магистрали, что влечет за собой уменьшения сечения маслосливного отверстия корпуса подшипников и т.д. Происходит заполнение внутренней полости картриджа моторным маслом, динамические уплотнения перестают работать, происходит выброс моторного масла в корпус компрессора.

    1.4. Неисправность воздухозаборной магистрали.

    Затруднен нормальный забор воздуха на турбокомпрессор вследствие сильной загрязненности фильтра очистки воздуха или из-за частичной блокировки воздухозаборного патрубка (например, сильно перегнут, за счет чего уменьшается его проходное сечение).

    При работе турбокомпрессора за счет динамических сил за вращающимся на огромной скорости турбинным колесом создается некоторое разрежение. Если возникает излишнее сопротивление забору воздуха, это разрежение многократно увеличивается, масло просто «высасывается» из среднего корпуса турбокомпрессора.

    1.5. Неисправность системы выпуска отработанных газов.

    Излишнее сопротивление в системе выпуска отработанных газов (засорен или закоксован катализатор, неисправна или деформирована банка глушителя и т.д.) вызывает увеличение давления в корпусе турбины (т.е. в «горячей» улитке турбокомпрессора). В свою очередь, увеличение давления в корпусе турбины вызывает прорыв выхлопных газов в средний корпус турбокомпрессора (картридж) и увеличение давления внутри его, что, в свою очередь, вызывает выброс масла со стороны компрессора в нагнетающую воздушную магистраль.

    1.6. Неисправность поршневой группы ДВС.

    При неисправности поршневой группы одного или нескольких цилиндров (износ поршневых колец, износ или повреждение одного или нескольких поршней, «залегание» поршневых колец вследствие перегрева и т.д.) в двигателе возникает избыточное давление картерных газов. При превышении критического значения этого давления система вентиляции картера не будет справляться с объемом картерных газов. В результате давление в корпусе подшипников превысит давление в корпусе турбины и корпусе компрессора, что приведет к интенсивному выбросу моторного масла в корпус компрессора и корпус турбины.

    2. Повышенный шум турбокомпрессора в различных режимах его работы

    2.1. Запредельный износ поверхностей трения турбокомпрессора (радиальных и упорного подшипников, вала, дистанционных втулок)

    Увеличенные зазоры между поверхностями трения вызывают образование значительных люфтов вала и крыльчаток, что приводит к соприкосновению крыльчаток с корпусами турбины и компрессора при работе турбокомпрессора. При вращении ротора на высоких оборотах соприкосновение крыльчаток со стенками корпусов приводит к возникновению сильного шума (вой, свист).

    — Износ радиального подшипника турбокомпрессора (1,2), большой радиальный люфт вала (22), как следствие – соприкосновение при работе колеса турбины (22) с корпусом турбины (21) и (или) колеса компрессора (24) с корпусом компрессора (25)

    — Износ вала турбокомпрессора (22), большой радиальный люфт вала, как следствие – соприкосновение при работе колеса турбины (22) с корпусом турбины (21) и (или) колеса компрессора (24) с корпусом компрессора (25)

    — Износ упорного подшипника турбокомпрессора (12), большой осевой люфт вала, как следствие – соприкосновение при работе колеса турбины (22) с корпусом турбины (21) и (или) колеса компрессора (24) с корпусом компрессора (25)

    2.2. Повреждение элементов турбокомпрессора посторонними предметами.

    При механическом повреждении элементов турбокомпрессора (лопастей крыльчатки компрессора и (или) лопастей крыльчатки турбины) происходит резкое многократное увеличение значения остаточного дисбаланса ротора, что, в свою очередь, приводит к возникновению специфического «реактивного» звука при работе турбокомпрессора. Звук возникает вследствие чрезмерных радиальных нагрузок на вал, что, в конечном итоге, приводит к поломке турбокомпрессора.

    — Нарушение геометрии колеса компрессора (24) из-за внешнего механического воздействия (попадание постороннего предмета со стороны воздушного фильтра), как следствие – превышение допустимого дисбаланса ротора турбокомпрессора

    — Нарушение геометрии колеса турбины (22) из-за внешнего механического воздействия (попадание постороннего предмета со стороны выпускного коллектора двигателя), как следствие – превышение допустимого дисбаланса ротора турбокомпрессора

    2.3. Неисправность воздухозаборной магистрали

    Затруднен нормальный забор воздуха на турбокомпрессор вследствие сильной загрязненности фильтра очистки воздуха или из-за частичной блокировки воздухозаборного патрубка (например, сильно перегнут, за счет чего уменьшается его проходное сечение). Излишнее сопротивление при заборе воздуха вызывает дополнительный крутящий момент, воздействующий на вал в направлении, противоположном его вращению. При резком изменении момента воздействия на вал (при резком нажатии на акселератор, или при резком сбросе газа) возникает плавающий «реактивный» шум. Дальнейшая эксплуатация турбокомпрессора в таких условиях может вызвать его поломку.

    2.4. Усталостные разрушения лопастей колеса компрессора или лопастей колеса турбины

    Усталостные разрушения лопастей колеса компрессора или лопастей колеса турбины (т.е. отрыв части лопасти) при работе турбокомпрессора вызывает резкое многократное увеличение значения остаточного дисбаланса ротора, что вызывает появление постоянного значительного шума во всем диапазоне рабочих частот турбокомпрессора. Звук возникает вследствие чрезмерных радиальных нагрузок на вал, что, в конечном итоге, приводит к полному выходу из строя турбокомпрессора.

    2.5. Неисправность системы выпуска отработанных газов

    Излишнее сопротивление в системе выпуска отработанных газов (засорен или закоксован катализатор, неисправна или деформирована банка глушителя и т.д.) вызывает возникновение резонансных звуковых явлений в корпусе турбины (в горячей улитке) на различных рабочих частотах турбокомпрессора. Особенно часто резонансные шумы проявляются при неисправности системы выпуска отработанных газов в турбокомпрессорах с изменяемой геометрией турбины (с системой VNT).

    2.6. Избыточное значение давления наддува

    При превышении по различным причинам предельного значения давления наддува возникает избыточный крутящий момент, воздействующий на ротор в направлении, противоположном его вращению. Такое явление может приводить к возникновению высокотонального шума (свиста) при резкой перемене нагрузки на ротор турбокомпрессора (особенно при резком сбросе газа).

    3. Турбокомпрессор не развивает номинального давления наддува

    3.1. Неисправность системы рециркуляции отработанных газов двигателя

    Система рециркуляции отработанных газов предназначена для частичного повторного дожигания отработанных газов с целью улучшения экологических показателей двигателя. Система рециркуляции обычно связывает впускной и выпускной коллектора, запирающим и регулирующим устройством является электромагнитный клапан (клапан EGR). При неисправности клапана EGR (электрической или механической) происходит постоянный частичный перепуск отработанных газов с выпускного коллектора во впускной. В этой ситуации потока отработанных газов через корпус турбины недостаточно для раскручивания ротора до номинальных оборотов. Плюс к этому двигатель «душится» от избыточного количества отработанных газов, поступающих в камеры сгорания через систему рециркуляции. В итоге двигатель теряет в этой ситуации до 60% мощности.

    3.2. Неисправность системы выпуска отработанных газов

    Излишнее сопротивление в системе выпуска отработанных газов (засорен или закоксован катализатор, неисправна или деформирована банка глушителя и т.д.) приводит к значительному снижению скорости потока отработанных газов через систему выпуска (в частности, через корпус турбины), что, в свою очередь, приводит к падению давления наддува и мощности двигателя.

    3.3. Неисправность байпасной системы управления турбонаддувом

    При неисправности «нормально открытой» байпасной системы управления турбонаддувом (система, в которой рабочий клапан управляется вакуумом, в исходном состоянии при незаведенном двигателе он открыт) турбокомпрессор не сможет развить требуемую мощность, так как часть потока отработанных газов будет отводиться через открытый байпасный клапан, а не через крыльчатку турбины. Такая же ситуация будет наблюдаться, если будет неисправен вакуумный рабочий клапан или присутствует утечка вакуума в магистрали управления.

    3.4. Повреждение элементов турбокомпрессора посторонними предметами.

    При механическом повреждении элементов турбокомпрессора (лопастей крыльчатки компрессора и (или) лопастей крыльчатки турбины) происходит резкое многократное увеличение значения остаточного дисбаланса ротора. При работе турбокомпрессора в таких условиях происходит разрушение масляной пленки в зоне трения вал-подшипник, сопротивление вращению ротора резко возрастает, вследствие чего турбокомпрессор не может развить номинальной мощности. Падение мощности турбокомпрессора в этой ситуации происходит также и из-за нарушения геометрических параметров лопастей крыльчаток турбины и (или) компрессора.

    Турбонаддув

    Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбина.

    Содержание

    • 1 История изобретения
    • 2 Принцип работы
    • 3 Состав системы
    • 4 Задержка турбокомпрессора
    • 5 См. также
    • 6 Примечания
    • 7 Ссылки

    История изобретения [ править | править код ]

    Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США [1] .

    История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путём сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности до 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

    Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.

    В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г. на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми массовыми легковыми автомобилями, оснащенными турбинами, были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

    Читать еще:  Будет ли работать дизельный двигатель на пропане

    Начало использования турбодвигателей на спортивных автомобилях, в частности, на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.

    Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel, сохранив при этом значительно более низкий уровень расхода топлива. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходу, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

    Принцип работы [ править | править код ]

    Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большее количество смеси воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ находится под большим давлением и соответственно возникает большая сила, давящая на поршень. [ стиль ]

    Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)) и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

    Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. [ стиль ] Турбонаддув особенно эффективен в дизельных двигателях тяжёлых грузовых автомобилей. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. [ источник не указан 997 дней ] Находит применение турбонаддув с изменяемой геометрией лопаток турбины в зависимости от режима работы двигателя.

    Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например, на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с. [ источник не указан 997 дней ]

    Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W). [ источник не указан 997 дней ]

    Состав системы [ править | править код ]

    Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, или кастомный даунпайп, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

    Задержка турбокомпрессора [ править | править код ]

    Задержка турбокомпрессора («турбояма») — это время, необходимое для изменения выходной мощности после изменения состояния дроссельной заслонки, проявляющееся в виде замедленной реакции на открытие дроссельной заслонки по сравнению с поведением безнаддувного двигателя. Это связано с тем, что выхлопной системе и турбонагнетателю требуется время для раскрутки, чтобы обеспечить требуемый поток нагнетаемого воздуха. Инерция, трение и нагрузка на компрессор являются основными причинами задержки турбокомпрессора.

    Атмосферный двигатель или турбированный: основные характеристики и отличия

    Особенности и отличия

    Чем особенен атмосферный двигатель?

    По сути, это классический мотор, который устанавливается на большинстве современных автомобилей (уже на первой машине стоял такой вид мотора).

    Его название объясняется тем, что для создания топливной смеси необходим воздух. При движении поршня в нижнюю точку происходит его затягивание через карбюратор (ресивер инжектора) и смешивание с топливом (соляркой, бензином).

    Чем особенен турбированный мотор?

    Это модернизированный вид ДВС, в конструкции которого есть специальная турбина. Ее задача – закачать дополнительный объем воздуха к цилиндрам для увеличения мощности двигателя (в среднем прирост составляет 10-15%).

    Таким образом, основное отличие атмосферного двигателя от турбированного для покупателя – это мощность и конструкция.

    К примеру, при объеме 1.5 литра мощность первого будет 75 лошадиных сил. При этом турбированный мотор (при таком же объеме) будет иметь уже 100 лошадиных сил.

    Для полноты картины упомянем и третий вид двигателя – форсированный.

    И снова-таки это привычный ДВС, но отличающийся более сложной конструкцией.

    Для его разработки часто применяются более дорогие материалы и современные конструкции, призванные повысить мощность до максимального уровня. При этом форсированные моторы могут быть с турбиной или без нее.


    О расходе топлива

    Если вы внимательно прочитали о плюсах и минусах обоих моторов (атмосферного и турбированного), то вас удивило то, что мы ничего не рассказали о расходе топлива. На этом вопросе стоит остановиться несколько подробнее. Попробуем разобраться, какой мотор является более экономичным.

    Рекомендуем: Поршень двигателя: функции,конструкция,типы,фото,видео

    Сначала сравним два двигателя с одинаковым объемом (например, 1,4 литра). Атмосферный мотор будет расходовать в среднем около 6÷7 л на 100 км пробега, а трубированному потребуется уже 8÷9 литров. Однако при этом он развивает мощность в 1,5 раза большую, чем атмосферный. Вывод: при одинаковом рабочем объеме «атмосферник» значительно экономичнее (ведь он не только «ест» меньше топлива, но и использует более дешевый бензин), однако значительно уступает турбированному по мощности.

    Теперь проведем сравнение расхода топлива у моторов с одинаковой мощностью (например, около 140÷150 лс). Столько «лошадок» под капотом обычно имеет атмосферный мотор объемом 2,0 литра или турбированный двигатель объемом 1,4 литра. В городском цикле расход у обычного двигателя составит около 12÷14 литров на 100 км, у турбированного – все те же 8÷9 литров. Вывод: даже учитывая меньшую стоимость бензина, необходимого для нормальной эксплуатации атмосферного двигателя, мотор с турбо наддувом значительно экономичнее.

    Преимущества

    Теперь рассмотрим основные положительные черты каждого из видов двигателей.

    Атмосферный мотор

    Атмосферный мотор имеет следующие плюсы:

    • Большой ресурс.

    За все годы применения атмосферный тип двигателей показал себя в отношении трудоспособности и выносливости только с лучшей стороны.

    При этом не имеет значения, какое топливо является основным – бензин или солярка. Есть моторы, которые спокойно проезжают по 400-500 тысяч километров без серьезного вмешательства.

    Истории известны и такие экземпляры а, когда кузов полностью выгнивал, а мотор еще долго дохаживал на другом автомобиле.

    • Простота в эксплуатации и надежность.

    Все мы знаем, что чем проще аппарат, тем он надежнее. Здесь «золотая середина» идеально соблюдена.

    Особый плюс, которым обладает атмосферный двигатель — способность справляться даже с бензином очень низкого качества.

    Здесь более подробно можно узнать про автомобильное топливо и его стандарты.

    Конечно, не исключены определенные сбои, но на общую функциональность и ресурс это сказывается незначительно.

    Если же и потребуется ремонт, то затраты на него будут минимальными.

    • Ремонтопригодность.

    Обусловлена простотой конструкции, о которой мы уже упоминали. Атмосферный мотор при необходимости можно перебрать до последнего винтика и собрать все обратно.

    Следовательно, в сравнении с турбированным двигателем ремонт обходится намного дешевле.

    Турбированный мотор

    Турбированный мотор имеет следующие преимущества:

    • более высокую мощность и крутящий момент, если сравнивать с обычным ДВС при аналогичном объеме двигателя. В итоге автолюбитель может наслаждаться много лучшей динамикой в движении;
    • данный вид мотора менее вреден для окружающей среды, ведь за счет дополнительного наддува воздуха поступающая топливная смесь сгорает практически без остатка;
    • меньшую шумность (атмосферный мотор этим не может похвастаться).

    Атмосферный двигатель или турбированный

    И так, атмосферный или турбированный двигатель. Если взять изначально их различие, то конструктивно двигателя не отличаются. Различие состоит лишь в том, что в систему впуска добавляется усиленный поток воздуха и соответственно меняется подача топлива в сторону его увеличения.

    На атмосферный двигатель можно установить систему наддува, то есть турбину, усиливающую поступающий воздушный поток в систему впуска, подкорректируем подачу топлива, вот вам и турбированный двигатель.

    Разберем глубже что такое атмосферный и турбированный.

    Атмосферный двигатель

    Что значит атмосферный? Как уже было сказано выше, атмосферный двигатель не имеет систему нагнетания воздуха в систему впуска.

    Воздух засасывается естественным образом, поршни на впуске засасывают воздух, создавая отрицательное давление в фазе впуска. В этом цикле вместе с воздухом засасывается и топливо, образуя топливную смесь, необходимую для того или иного режима работы мотора.

    Для хорошей продувки, так называют хорошую наполняемость рабочей смесью и отводом отработавших газов, на современных атмосферных моторах устанавливают по четыре клапана на цилиндр. Два на впуск и два на выпуск.

    Читать еще:  Горит индикатор неисправности в двигателе хендай

    Рекомендуем: Термостат: принцип работы,виды,устройство,фото,видео.

    В этом случае обеспечивается максимальная эффективность мотора, относительно его объема цилиндров и соответственно максимальная мощность.

    Плюсы атмосферного двигателя:

    • повышенный ресурс;
    • простота конструкции;
    • потребление низкооктановых марок топлива;
    • меньший расход масла;
    • больший пробег до замены масла;
    • прогрев двигателя быстрее.

    Минусы атмосферного двигателя:

    • меньшая мощность;
    • расход топлива высокий;
    • менее экологичный.

    Турбированный двигатель

    Как было сказано выше, это атмосферный мотор с установленной на него турбиной. Примерно так можно представить турбированный двигатель. Но установкой турбины просто не обойдешься.

    Турбина работает от движения выхлопных газов, раскручивая вал с крыльчаткой до бешеных оборотов. На другом конце вала турбины находится крыльчатка, так называемого компрессора, которая подает воздух под давлением во впускной коллектор.

    Компрессор нагнетает воздух, его поступает в цилиндры гораздо больше чем в атмосферном моторе. За счет этого появляется возможность создавать готовой горючей смеси в несколько раз больше за один такт впуска. В турбированном конечно при сгорании этой смеси и энергии выделяется больше, результат — резкое повышение мощности.

    Коленвал, распредвалы, шатуны, поршни, клапана в турбированном остаются такими же как на атмосферном моторе.

    Чтобы турбированный двигатель работал стабильно и долго, требуется много доработок и усовершенствований, связанных со смазкой турбины и охлаждением подаваемого воздуха.

    Турбированные двигатели более оборотистые, более мощные, работают при боле высоких температурных режимах.

    Кроме турбины, турбированный движок дополняется дополнительным радиатором (интеркулер), который служит для охлаждения воздуха, поступающего в систему впуска.

    Интеркуллер необходим для того, чтобы смесь не поступала в цилиндры сильно разогретой, чтобы спасти его от детонации и перегрева.

    Плюсы турбированного двигателя:

    • увеличенная мощность;
    • уменьшенные размеры и вес;
    • уменьшенный совакупный расход топлива.

    Минусы турбированного двигателя:

    • уменьшенный ресурс;
    • требует качественное масло;
    • требует качественное топливо;
    • увеличенный расход масла;
    • плохой прогрев;
    • потребность чаще менять масло.

    Как турбировать атмосферный двигатель

    И напоследок давайте рассмотрим, как турбировать атмосферный двигатель.

    Если раньше за такую работу никто не брался, то сегодня некоторые квалифицированные автосервисы способны сделать из обычного мотора настоящего «зверя».

    Единственное, что нужно помнить – данная работа выльется владельцу в серьезные затраты на покупку дополнительных материалов и их установку.

    В частности, необходимо дополнительно смонтировать интеркулер, турбину, дополнительный блок-перехватчик и так далее. Но и это еще не все.

    Чтобы получить турбированный мотор, существенная оптимизация должна быть внесена в топливную систему – придется установить более мощный бензонасос, усилить поршневую группу, потратиться на форсунки с большей пропускной способностью и так далее.

    Таким образом, получиться своеобразный тюнинг двигателя и в случае переделки последнего необходимо несколько раз пересчитать затраты, чтобы убедиться в актуальности такого мероприятия.

    Турбированный двигатель

    Далее, хочу поговорить про турбированые двигатели. Хотя столько уже рассказано про них!

    По сути это обычный атмосферник, с установленной турбиной, которая нагнетает давление в цилиндры (у атмосферного двигателя воздух как бы сам заходит). Таким образом, в камеры сгорания поступает больше воздуха и сжатого под давлением, что позволяет топливу лучше сгорать, что значительно повышает мощность и крутящий момент.

    Плюсы

    1) Мощнее. Как уже писал выше, при меньшем объеме достигает больше мощность за счет нагнетаемого под давлением воздуха.

    2) Меньше расход топлива (относительно лошадиных сил).

    3) Имеет меньший вес и размеры, чем обычные. А это может благотворно сказаться на расходе и компактности расположения силового агрегата.

    4) Могут быть трех и даже двух цилиндровые и очень компактные, особенно сейчас в век экономии топлива. Причем мощности будет достаточно, на уровне 4 цилиндровых атмосферных вариантах.

    Конечно, плюсов немало, основные это меньший расход топлива и большая мощность. Но минусов, как мне кажется, намного больше.

    Минусы

    1) Опять все тот же расход топлива. Ребята, если смотреть со стороны объема двигателя, а не со стороны лошадиных сил, то обычный атмосферник 1,4 литра, будет расходовать меньше, чем турбированый 1,4 литра, но будет намного слабее. Турбированный же будет превосходить по мощности атмосферный.

    2) Более чувствителен к качеству топлива. Если будете лить «дешевый» 92 бензин на сомнительных заправках, турбина быстро умрет.

    3) Качество масла. Нельзя лить минералку и полусинтетику! Для турбированых вариантов нужно свое синтетическое масло, причем производители вас жестко ограничивают, то есть шаг вправо, шаг влево! А это масло недешевое, иногда дороже на 30 – 40 %

    4) Ресурс турбины небольшой, около 120 000 километров, а дальше потребуется замена, даже при надлежащем уходе! Причем замена обходится очень недешево!

    5) Плохо греется зимой. Необходимо потратить больше времени на прогев.

    6) Замена масла. Менять масло нужно через 10 000 километров, а не через 15 – 20000 как на обычных атмосферных двигателях.

    ИТОГ

    Таким образом, можно сделать вывод, что положительных моментов и недостатков хватает и там и там. Но нужно запомнить, что турбированный двигатель потребует от вас более тщательной заботы, он хоть и мощнее, но обходится в обслуживании дороже, за счет частой замены специального масла, использования качественного бензина и недолгого ресурса самой турбины. Атмосферный наоборот — проигрывает по мощности, но экономичнее в использовании — масло дешевле, да и менять его надо реже, отсутствует турбина, а заменить запчасти можно на «неродные» и не у диллера. У меня есть друг, который раньше занимался перегоном автомобилей из Германии. И как вы наверное поняли это б/у машины именно с турбироваными вариантами двигателей. Так вот, по его словам — атмосферный двигатель обходится в эксплуатации в 3 раза дешевле, он даже статистику небольшую вел. Вопрос в другом – многим хочется немецкий автомобиль именно с турбированным двигателем, из Европы и все тут! Ну ребята, за Mercedes и BMW и платить нужно соответственно.

    Сейчас небольшое видео.

    Голосование, как вы считаете что лучше турбо или обычный атмо?

    А на этом у меня все! Читайте наш АВТОБЛОГ. Мы плохого не посоветуем.

    Как правильно использовать турбированный двигатель автомобиля

    Турбина в настоящее время устанавливается практически во все автомобили, начиная со среднего ценового сегмента. Но далеко не все автомобилисты знают, как нужно правильно эксплуатировать турбированный двигатель, чтобы он прослужил долго. Из-за этого имеется среди водителей “миф”, что на вторичном рынке даже не стоит смотреть на машины, которые оборудованы турбомотором. В данной статье рассмотрим, какие действия должен предпринимать владелец автомобиля с турбированным двигателем, чтобы он прослужил не одну сотню тысяч километров пробега.

    Уровень и качество масло

    Первое, за чем должен постоянно следить водитель, который управляет автомобилем с турбированным двигателем, это уровень и качество масла. Дело в том, что даже минимальный момент масляного голодания может привести к непоправимым последствиям для турбины и двигателя в целом.

    При этом важно не только достаточное количество масла, но и его качество. При эксплуатации турбированного двигателя рекомендуется заливать именно то масло, которое рекомендует производитель, избегая более дешевых аналогов.

    Следует обратить внимание и на то, что масло для турбированного двигателя отличается от масла для обычного мотора по характеристикам. Это связано с тем, что наличие турбины в моторе приводит к более высокой температуре, до которого разогревается масло. Соответственно, оно не должно терять свои свойства при высоких температурах.

    Пуск и остановка турбированного двигателя

    В холодное время года водителю следует внимательно подходить к вопросу пуска турбированного двигателя, чтобы продлить его ресурс работы. Чтобы масло начало “растапливаться” и циркулировать по системе, необходимо провернуть двигатель несколько раз, до того как его полностью запустить. Когда пуск мотора будет произведен, необходимо дать некоторое время, чтобы двигатель поработал на холостом ходу — порядка 2-3 минут, и только после этого можно отправляться в поездку. Таким образом мотор получит необходимое количество смазки и избежит перегрузок, которые могут быть при резком старте сразу после пуска.

    Кроме того, после остановки автомобиля следует дать некоторое время двигателю, чтобы он “остыл”, прежде чего его заглушить. Данное правило применимо не только для турбированных, но и для обычных двигателей, но в ситуации с турбомоторами оно, как никогда, актуально. Из-за работы турбированного двигателя при сверхвысоких температурах, ему требуется некоторое время, чтобы остыть после поездки и избежать резкого температурного перепада.

    Как правильно управлять автомобилем с турбированным двигателем

    Теперь о самом главном — об управлении автомобилем с турбированным двигателем. Специалисты дают следующие рекомендации по управлению автомобилем с таким мотором:

    • Лучше избегать работу двигателя на низких оборотах в течение продолжительного времени. Например, если вы движетесь по трассе с примерно одинаковой скоростью, лучше держать средние обороты, а не низкие;
    • Двигателю с турбиной время от времени нужно работать “на полную”. Это значит, что хотя бы раз в неделю следует выполнять “разгон” при высоких оборотах;
    • Постоянно ездить на высоких оборотах не рекомендуется — это может привести к “перекрутке” турбины;
    • Двигателю с турбиной не рекомендуется в течение продолжительного времени работать на холостых оборотах. Это способно привести к образования сажи и налета в турбине, в результате чего она засорится. В перспективе, такая проблема приведет к выходу из строя не только турбины, но и двигателя в целом.

    Качество топлива

    Качество топлива важно для любого двигателя, но в случае с турбированным оно может сыграть критическую роль. Не рекомендуется заправлять автомобиль на непроверенных заправках, особенно если речь идет о дизельном топливе.

    Опасность использования плохого топлива в турбированном моторе кроется в том, что топливная система может засориться, что приведет к снижению мощности мотора. Это вынудит турбину работать “на износ”, чтобы автомобиль имел прежнюю мощность, что приведет к скорому выходу турбины из строя.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector