Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

КПД двигателя внутреннего сгорания

КПД двигателя внутреннего сгорания. Сколько приблизительно равен, а также мощность в процентах

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала …

ОГЛАВЛЕНИЕ СТАТЬИ

Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

КПД двигателя внутреннего сгорания – это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую. Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов. Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потери. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД бензинового и дизельного агрегатов – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного больше крутящий момент, сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению степени сжатия, есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

На этом заканчиваю, читайте наш АВТОБЛОГ.

(59 голосов, средний: 3,78 из 5)

ПРИНЦИП ДЕЙСТВИЯ ТЕПЛОВЫХ МАШИН. ТЕПЛОВЫЕ ДВИГАТЕЛИ. КПД ТЕПЛОВЫХ ДВИГАТЕЛЕЙ. ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ ТЕПЛОВЫХ ДВИГАТЕЛЕЙ.

Тепловой двигатель – устройство, преобразующее внутреннюю энергию сгоревшего топлива в механическую энергию. Виды тепловых двигателей: 1) двигатели внутреннего сгорания: а) дизельные, б) карбюраторные; 2) паровые двигатели; 3) турбины: а) газовые, б) паровые.

Все названые тепловые двигатели имеют разную конструкцию, но состоят из трех основных частей: нагревателя, рабочего тела и холодильника. Нагреватель обеспечивает поступление теплоты в двигатель. Рабочее тело превращает часть полученной теплоты в механическую работу. Холодильник забирает от рабочего тела часть теплоты.

T1 – температура нагревателя;

T2 –температура холодильника;

Q1 – теплота, полученная

Q2 – теплота, отданная

A’ – работа, выполненная

Работа любого теплового двигателя состоит из повторяющихся циклических процессов – циклов. Цикл – это такая последовательность термодинамических процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) тепловой машины – это отношение совершенной двигателем работы к количеству теплоты, полученному от нагревателя: .

Французский инженер Сади Карно рассмотрел идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он нашел оптимальный идеальный цикл теплового двигателя, состоящий из двух изотермических и двух адиабатических обратимых процессов – цикл Карно. КПД такой тепловой машины с нагревателем при температуре и холодильником при температуре : . Независимо от конструкции, выбора рабочего тела и типа процессов в тепловом двигателе его КПД не может быть больше КПД теплового двигателя, работающего по циклу Карно, и имеющего те же, что и у данного теплового двигателя, температуру нагревателя и холодильника.

КПД тепловых двигателей невысок, поэтому важнейшей технической задачей является его повышение. Тепловые двигатели имеют два существенных недостатка. Во-первых, в большинстве тепловых двигателей используется органическое топливо, добыча которого быстро истощает ресурсы планеты. Во-вторых, в результате сгорания топлива в окружающую среду выбрасывается огромное количество вредных веществ, что создает значительные экологические проблемы.

С изучением вопроса о максимальном КПД тепловых машин связано открытие в 1850 г. немецким физиком Р. Клазиусом второго начала термодинамики: невозможен такой процесс, при котором теплота самопроизвольно переходила бы от более холодных тел к более горячим телам.

Физические величины и их единицы измерения:

Наименование величинаОбозначениеЕдиница измеренияФормула
Относительная молекулярная массаMr (эм эр)безразмерная величина
Масса одной молекулы (атома)mкг
Массаmкг
Молярная массаM
Количество веществаν (ню)моль (моль) ;
Число частицN (эн)безразмерная величина
Давлениеp (пэ)Па (паскаль)
Концентрацияn (эн)
ОбъёмV (вэ)
Средняя кинетическая энергия поступательного движения молекулы Дж (джоуль)
Температура по шкале Цельсияt°C
Температура по шкале КельвинаTК (кельвин)
Средняя квадратичная скорость молекул
Поверхностное натяжениеσ (сигма)
Абсолютная влажностьρ (ро)
Относительная влажностьφ (фи)%
Внутренняя энергияU (у)Дж (джоуль)
РаботаА (а)Дж (джоуль)
Количество теплотыQ (ку)Дж (джоуль)
Читать еще:  Двигатель ваз 2108 в оке как поставить

Физические постоянные:

Атомная единица массы 1а.е.м.=1,6606∙10 -27 кг.

Масса молекулы углерода mc = 1,995∙10 -26 кг.

Число Авогадро NA=6,02∙10 23 моль -1

Постоянная Больцмана k=1,38∙10 -23 .

Универсальная газовая постоянная R=8,31

1. Развина Т. И. и др. Физика для школьника и абитуриента. – Минск: Сэр-Вит, 2009. – 296 с.

2. Жилко В. В. Физика: Учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения – Мн.: Нар. асвета, 2002. – 282 с.: ил.

3. Жилко В. В. Физика: Учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения – 2-ое изд., исправленное. – Минск.: Нар. асвета, 2008. – 359 с.: ил.

4. Буров Л. И., Стрельченя В. М. Физика от А до Я. – Мн.: Парадокс, 2000. — 560с.

ФИЗИКА. Учебное пособие для учащихся.

Часть 1. МОЛЕКУЛЯРНАЯ ФИЗИКА.

Составитель: Зинковский В. Н. — преподаватель физики УО «Жлобинский ГПТК»

§ 5.12. Максимальный кпд тепловых двигателей

Идеальная тепловая машина Карно

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Все процессы в машине Карно рассматриваются как равновесные (обратимые).

В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и двух, адиабат (рис. 5.16). Кривые 1—2 и 3—4 — это изотермы, а 2—3 и 4—1 — адиабаты.

Сначала газ расширяется изотермически при температуре T1. При этом он получает от нагревателя количество теплоты Q1. Затем он расширяется адиабатно и не обменивается теплотой с окружающими телами. Далее следует изотермическое сжатие газа при температуре Т2. Газ отдает в этом процессе холодильнику количество теплоты Q2. Наконец газ сжимается адиабатно и возвращается в начальное состояние.

При изотермическом расширении газ совершает работу А’1 > О, равную количеству теплоты Q1. При адиабатном расширении 2—3 положительная работа А’3 равна уменьшению внутренней энергии при охлаждении газа от температуры T1 до температуры Т2: А’3 = -ΔU12 = U(T1) — U (Т2).

Изотермическое сжатие при температуре Т2 требует совершения над газом работы А2. Газ совершает соответственно отрицательную работу А’2 = -А2 = Q2. Наконец, адиабатное сжатие требует совершения над газом работы А4 = ΔU21. Работа самого газа А’4 = -А4 = -ΔU21 = U(T2) — U(Т1). Поэтому суммарная работа газа при двух адиабатных процессах равна нулю. За цикл газ совершает работу

Эта работа численно равна площади фигуры, ограниченной кривой цикла (заштрихована на рис. 5.16).

Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах 1—2 и 3—4. Расчеты приводят к следующему результату:

Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя.

Карно Никола Леонар Сади (1796— 1832) — талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя.

Можно выразить работу, совершаемую машиной за цикл, и количество отданной холодильнику теплоты Q2 через КПД машины и полученное от нагревателя количество теплоты Q1. Согласно определению КПД

Так как η η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина — по прямому циклу (рис. 5.18).

Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5)

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q2 = |Q’2|.

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

Так как по условию η’ > η, то А’ > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η’, то можно другую машину заставить работать по обратному циклу, а машину Карно — по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η’ = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η’ > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение η’

КПД реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и Т2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД — около 44% — имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения , где Т1 — абсолютная температура нагревателя, а Т2 — абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

(1) Однако это не означает, что холодильная машина и тепловой насос — это одно и то же. Назначение холодильной машины — охлаждать некоторый резервуар, передавая теплоту в окружающую среду. Назначение теплового насоса — нагревать резервуар, забирая теплоту из окружающей среды.

(2) Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Влияние степени сжатия на индикаторный КПД двигателя

Одним из наиболее значимых параметров, которые определяют эффективность различных механизмов машины, является КПД двигателя внутреннего сгорания. Что собой представляет данное понятие, от чего зависит коэффициент полезного действия в случае с автомобильным двигателем? Какой двигатель эффективнее: дизельный или бензиновый? Можно ли увеличить КПД двигателя?

Вопрос о том, насколько мощность соответствует КПД двигателя внутреннего сгорания, интересует практически каждого автолюбителя. В идеале чем выше КПД, тем эффективнее должна быть силовая система. Если же переходить от теории к практике, КПД в районе 95 % наблюдается только у электрических двигателей. Если рассматривать двигатели внутреннего сгорания вне зависимости от типа используемого топлива, то об идеальных цифрах можно только рассуждать.

Разумеется, эффективность современных двигателей существенно повысилась, если сравнивать с моделями, которые были выпущены всего 10 лет назад. Выпускаемые в начале 2000 годов 1,5-литровые моторы были рассчитаны на 70 лошадиных сил, к данному параметру претензий не было. Сегодня же при аналогичном объёме речь идет о 150 лошадиных силах и более.

Производители теряют много времени, сил и ресурсов, чтобы медленно, но уверенно продвигаться в сторону увеличения КПД.

Понятие «КПД двигателя»

Изначально рассмотрим, что такое КПД и как данное понятие рассматривать в аспекте автомобильного двигателя. Коэффициент полезного действия представлен показателем, с помощью которого отображается эффективность конкретного механизма относительно превращения полученной энергии в полезную работу. Показатель отображается в процентном соотношении.

В случае с двигателем внутреннего сгорания речь идет о преобразовании тепловой энергии, которая является продуктом сгорания топлива в цилиндрах мотора. КПД в данном случае отображает фактически реализуемую механическую работу, которая напрямую зависит от того, сколько поршень получит энергии от сгорания топлива. Также на данный параметр влияет итоговая мощность, которую установка отдаёт на коленчатом вале.

Читать еще:  Двигатель без мочевины что это такое

Вариант определения

В технической документации можно найти информацию о мощности двигателя внутреннего сгорания. После заливки в него топлива и работы на максимальных оборотах в течение нескольких минут остатки топлива сливают. Вычтя из начального объема конечный результат, вооружившись плотностью, можно посчитать массу топливной смеси.

В настоящее время максимальной эффективностью обладает электрический силовой агрегат. Его КПД может достигать 95%, что является превосходным результатом. Если первые моторы при объеме двигателя 1,6 литра развивали не больше 70 лошадиных сил, то в наши дни этот показатель доходит до 150 лошадиных сил.

КПД – величина отношения мощности, подаваемой на коленчатый вал двигателя, к величине, получаемой от сгорания газовой смеси поршнем. В зависимости от того, какое топливо используется для работы автомобильного двигателя, КПД может варьироваться в диапазоне от 20 до 85 процентов. Безусловно, производители топливных систем ищут способы их улучшения, позволяющие существенно увеличить итоговую величину двигателя внутреннего сгорания.

Для снижения механических потерь от нагрузки генератора, трения в настоящее время в промышленности используют смазки. Но, несмотря на подобные достижения, полностью справиться с силой трения пока еще не удалось никому.

Даже после усовершенствований бензинового двигателя удалось добиться изменения у него коэффициента полезного действия до 20 процентов, только в некоторых случаях удается повышать КПД до 25 %.

Более высокий показатель коэффициента полезного действия свидетельствует о топливной эффективности. К примеру, при объеме дизельного двигателя 1,6 литра в городском цикле расход топлива составляет не более 5 литров. У бензинового аналога эта величина достигает 12 л. Сам дизельный агрегат гораздо легче и компактнее, к тому же считается более экологичным вариантом, чем бензиновый двигатель.

Эти положительные технические характеристики гарантируют дизелям более продолжительный эксплуатационный срок службы.


Смотреть галерею

От чего зависит КПД?

Ошибочно полагать, что КПД дизельного или бензинового двигателя может хоть как-то приблизиться к 100 %. На самом деле итоговый параметр во многом зависит от потерь:

  1. Потери при сгорании топлива стоит рассматривать первостепенно. Всё топливо, которое поступает в мотор, не может полностью сгорать, поэтому его часть просто улетает в выхлопную трубу. Потери в данном случае составляют около 25 %.
  2. Тепловые потери находятся на втором месте по значению. Получение тепла невозможно без энергии. Следовательно, энергия теряется при образовании тепла. Поскольку в случае с двигателем внутреннего сгорания тепло образуется с избытком, возникает необходимость в эффективной системе охлаждения. Однако тепло выделяется не только при сгорании топлива, но также во время работы самого мотора. Это происходит за счёт трения его деталей, поэтому часть энергии он теряет самостоятельно. На эту группу потерь приходится около 35 — 40 %.
  3. Последняя группа потерь имеет место в ходе обслуживания дополнительного оборудования. Расход энергии может идти на кондиционер, генератор, помпу системы охлаждения и прочие установки. Потери в данном случае составляют 10 %.

Это интересно: Топливный фильтр Ford Focus 2

Страшно представить, что у нас остаётся, поскольку в случае с бензиновыми агрегатами это в среднем 20 %, в иных не более 5 — 7 % дополнительно. Следовательно, заливая 10 литров топлива, которые уходят за 100 км пробега, всего 2,5 литра уходит на полезную работу, тогда как остальные 7 — 8 литров считаются пустыми потерями.

Коэффициент полезного действия: дизель или бензин?

Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной.

Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.

Крутящий момент и мощность

Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.

Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.

Если сравнивать с бензином, то солярка образует тепло в большей степени при более высокой температуре сгорания топлива. Также наблюдается более высокий параметр детонационной стойкости.

Это интересно: 5 возможных причин, почему не крутит стартер и не заводится машина

Эффективность бензина и солярки

Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.

Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.

Потребность в экономии затрат

«У газовых двигателей высокое давление в цилиндре и большая удельная мощность.В этой связи для того, чтобы избежать изнашивания в результате полужидкостного трения, смазочный зазор должен быть минимален. Даже при очевидной кратковременной выгоде от экономии топлива применение масел класса SAE 30 или же SAE 20 может негативно повлиять на ресурс узлов двигателя. Так как мы не смогли продемонстрировать существенное снижение расхода топлива при использовании маловязких масел, то в нашей текущей научно-исследовательской деятельности не уделяется значительного внимания таким маслам. По моему мнению, намного интереснее разработка новых модификаторов трения».

В данном случае технологи компании Texaco полностью разделяют мнение Феликса Кайфера (технический специалист по маслам и технологическим жидкостям компании Caterpillar Energy Solutions GmbH) насчет необходимости работы над формулировкой масел, а не повторения стандартных формулировок, которыми заполнен рынок. Новая линейка масел для стационарных газовых двигателей HDAX имеет ряд отличительных особенностей, в частности модификатор трения, о котором упоминает Феликс Кайфер.

Пакет присадок собственной разработки в сочетании с кристально-чистыми базовыми маслами II группы, также собственного производства, обеспечивает полную совместимость компонентов масла и содержит ряд элементов (в т.ч. молибден на уровне 300 мг/кг), необходимых для решения проблем прогара и полного закрытия клапанов в газовых двигателях. В двигателях, работающих на газе, топливо подается в камеру сгорания в газообразном состоянии, что отражается на состоянии впускных (прежде всего) и выпускных клапанов, так как газ не может обеспечить смазку пары клапан/седло, как это делает жидкое топливо. При этом смазкой между тарелкой клапана и седлом служит только зола, образуемая маслом, ввиду естественного расхода масла на угар. Слишком малое количество золы или не тот тип золымогут усилить износ клапана и седла. В то же время, слишком большое количество золы приводит к ее накоплению на поверхности клапанов и поршней, что может вызвать перегрев последних и их разрушение ввиду нарушения теплоотдачи.

Стандартный диалкилдитиофосфат цинка, который используется во многих продуктах представленных сейчас на рынке, в ходе полевых испытаний оказался гораздо менее эффективен для защиты клапанов.

Желание сократить эксплуатационные расходы – еще один серьезный стимул для внедрения новых высокоэкономичных двигателей. Однако у таких двигателей высокий КПД, что существенно усложняет их конструкцию и повышает затраты на их установку. Как поясняет Феликс Кайфер, важно предоставить для каждого рынка правильный двигатель. «Для того чтобы выполнить требования каждого из наших целевых рынков, мы должны найти оптимальное соотношение между эксплуатационными характеристиками, затратами на установку, эксплуатационной пригодностью и надёжностью».

Читать еще:  Датчик положения распредвала и его влияние на работу двигателя

Повышение КПД двигателя

Топливная эффективность и КПД современных двигателей находятся на своём максимальном уровне, поскольку все усовершенствования, которые только могли иметь место в автомобильной инженерии, уже произошли. Тем не менее, производители стремятся повышать коэффициент полезного действия, но результат, который они получают, никак не сопоставим с огромными ресурсами, усилиями и временем, которое тратят для достижения цели. Итогом является увеличение КПД лишь на 2 — 3 %.

Частично именно эта ситуация стала причиной появления полноценной индустрии так называемого тюнинга двигателя в любой крупной стране. Речь идёт о многочисленных полукустарных мастерских, мелких фирмах и отдельных мастерах, которые доводят традиционные моторы массовых брендов для более высоких показателей, как в плане тяги, так и мощности или КПД. Это может быть форсирование, доработка, доводка и другие ухищрения, определяемые, как тюнинг.

Например, используемый впервые в 20-х годах турбонаддув воздуха, который поступает в двигатель, применяется и сейчас. Такое устройство было запатентовано ещё в 1905 году швейцарским инженером Альфредом Бюхи. В начале Второй мировой войны наблюдалось массовое внедрение систем прямого впрыска топлива в цилиндры поршневых моторов военной авиации. Следовательно, те передовые технические ухищрения, которые мы считаем современными, известны уже более 100 лет.

Урок физики в 8-м классе по теме «КПД теплового двигателя»

Разделы: Физика

  • Образовательная:
    Привитие интереса к предмету.
    Демонстрация применимости в жизни знаний, получаемых на различных уроках.
    Вовлечение каждого ученика в активный познавательный процесс.
    Выработка предметных компетенций.
  • Воспитательная: воспитание внимательного, доброжелательного отношения к ответам одноклассников.
  • Развивающая:
    развитие умений и способностей учащихся работать самостоятельно;
    расширение кругозора;
    повышение эрудиции;
    Развивать умения творчески подходить к решению задач;
    Развитие умений выступления перед аудиторией.
  1. Постановка учебной цели.
  2. Повторение пройденного материала.
  3. Изучение нового материала.
  4. Закрепление изученного.
  5. Домашнее задание.

Оборудование:

  • мультимедиа;
  • презентация PowerPoint

I. Организационный момент.

II. Повторение пройденного материала.

На прошлом уроке мы с вами разобрали понятия тепловых машин, их виды и краткую историю развития. Давайте вкратце повторим пройденный материал, но сначала послушаем сообщения, которые вы подготовили.

История ДВС (Презентация. Слайд 1). Сообщение учащегося “Первые тепловые машины”.

  1. Какие устройства называются тепловыми двигателями? (Машины, в которых внутренняя энергия топлива превращается в механическую энергию, называются тепловыми двигателями.)
  2. Можно ли огнестрельное оружие отнести к тепловым двигателям? (Да. Энергия сгоревшего пороха переходит в механическую энергию снаряда.)
  3. Можно ли человеческий организм отнести к тепловым двигателям? (Да.)
  4. Почему ДВС не используются в подводных лодках при подводном плавании? (Под водой для работы двигателя внутреннего сгорания необходим воздух, а его там нет, либо необходимо брать сжиженный воздух, но это нерентабельно и усложняет процесс.)
  5. Изменяется ли температура пара в турбине? (Да, она уменьшается.)
  6. Все ли тепловые двигатели одинаково рентабельны? (Нет, не все, есть более экономичные, например дизельный двигатель.)

III. Изучение нового материала.

Обычно, рентабельность двигателей определяется их КПД. (Коэффициентом полезного действия.)

Физический словарик.

Коэффициент (от лат coefficientis) обычно постоянная или известная величина – множитель при переменной или известной величине./

. Что мы называли коэффициентом полезного действия при изучении механики? (Отношение полезной работы к работе затраченной.)

( h = А п / Аз записать формулу на доске).

При работе тепловых двигателей механическая работа совершается за счет превращения внутренней энергии горения топлива в механическую энергию.

Т.е. то, производя математические преобразования основной формулы ή получим новые формулы для расчета КПД теплового двигателя: (учащиеся на местах, а затем у доски производят необходимые преобразования).

Совершая работу, тепловой двигатель использует лишь некоторую часть той энергии, которая выделяется при сгорании топлива.

Физическая величина, показывающая, какую долю составляет совершаемая двигателем работа от энергии, полученной при сгорании топлива, называется коэффициентом полезного действия теплового двигателя.

КПД теплового двигателя находят по формуле

где Q – количество теплоты, полученное в результате сгорания топлива; А – работа, совершаемая двигателем.

Задание: стр. 56–57 учебника, найти определение и формулу для расчета КПД теплового двигателя. В чем сходство или отличие данных понятий?

Кроме того КПД теплового двигателя можно вычислять по формулам:

Рассмотрим характеристики некоторых, наиболее используемых тепловых двигателей

Характеристики тепловых двигателей (Слайд 5)

карбюраторный

3 × 10 5

. Как вы думаете, на что тратится большая часть внутренней энергии тепловых двигателей?

. Безопасны ли тепловые двигатели с точки зрения экологии?

Вы правы и это хорошо видно из следующих данных:

Применение тепловых машин и проблемы охраны окружающей среды (Слайд 6)

При сжигании топлива в тепловых машинах требуется большое количество кислорода. На сгорание разнообразного топлива расходуется от 10 до 25% кислорода, производимого зелеными растениями.

Тепловые машины не только сжигают кислород, но и выбрасывают в атмосферу эквивалентные количества двуокиси углерода (углекислого газа). Сгорание топлива в топках промышленных предприятий и тепловых электростанций почти никогда не бывает полным, поэтому происходит загрязнение воздуха золой, хлопьями сажи. Сейчас во всем мире обычные энергетические установки выбрасывают в атмосферу ежегодно 200–250 млн. т золы и около 60 млн. т диоксида серы.

Кроме промышленности воздух загрязняет и транспорт, прежде всего автомобильный (жители больших городов задыхаются от выхлопных газов автомобильных двигателей).

IV. Закрепление.

Качественные задачи: (Слайд 7)

1. Один из учеников при решении получил ответ, что КПД теплового двигателя равен 200%. Правильно ли решил ученик задачу? (Нет. КПД теплового двигателя не может быть больше 100% или равен 100%)

2. КПД теплового двигателя 45%. Что означает это число? (45% энергии идет на совершение полезной работы, а 55% энергии тратится впустую на обогрев атмосферы, самого двигателя и т.д.)

3. Может ли КПД теплового двигателя быть равен 1,8; 50; 4; 90; 100%? (КПД теплового двигателя всегда меньше 100%)

4. Задача для любителей биологии: (Слайд 8)

В организме человека насчитывается около 600 мышц. Если бы все мышцы человека напряглись, они вызвали бы усилие, равное приблизительно 25 т. считается, что при нормальных условиях работы человек может развивать мощность 70–80 Вт, однако возможна моментальная отдача энергии в таких видах спорта, как толкание ядра или прыжки в высоту. Наблюдения показали, что при прыжках в высоту с одновременным отталкиванием обеими ногами некоторые мужчины развивают в течение 0,1 с среднюю мощность около 3700 Вт, а женщины – 2600 Вт.

КПД мышц человека равен 20%. Что это значит? Какую часть энергии мышцы тратят впустую? (20% энергии тратится на полезную работу; 80% энергии мышцы тратят впустую.)

5. Тепловой двигатель за цикл получает от нагревателя энергию, равную 1000 Дж, и отдает холодильнику энергию 800 Дж. Чему равен КПД теплового двигателя? (20%)

Попробуйте решить данную задачу самостоятельно, а в помощь я напомню вам общую схему теплового двигателя. (Затем разобрать решение у доски).

обратной стороны на доске)

6. Тепловой двигатель за цикл получает от нагревателя энергию, равную 1000 Дж, и отдает холодильнику энергию 700 Дж. Чему равен КПД теплового двигателя? (30%) (Решить самостоятельно.)

V. Итог урока (повторить основные понятия и формулы).

§ 24; вопросы на с.57; индивидуальные карточки с задачами; всем желающим – составить ребус или кроссворд по изученной теме.

Индивидуальные карточки домашнего задания:

  1. Какое количество теплоты потребуется , чтобы расплавить 500 г льда, взятого при температуре -10 ºС, полученную воду довести до кипения и испарить 100 г воды? (620,5кДж)
  2. Чему равен КПД плавильной печи, в которой на плавление 1 кг меди, взятой при температуре 85 ºС, расходуется 400 г каменного угля? (≈ 5,7%)
  1. На нагревание и плавление меди израсходовано 1276 кДж теплоты. Определить массу меди, если ее начальная температура 15 ºС. (2 кг)
  2. Какую массу антрацита надо сжечь в котле с КПД 40%, чтобы 1 т воды, поступающей в него при 20 ºС, нагреть до 100 ºС и половину превратить в пар при 100 ºС? (≈ 124 кг)
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector