Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромагнитный двигатель

Электромагнитный двигатель

Изобретение относится к энергомашиностроению и электротехнике, а именно к устройствам, использующим энергию постоянных и электромагнитов. Оно может быть использовано в качестве привода с широким диапазоном мощности для экологически чистых двигателей, электрогенераторов.

Задачей изобретения, является создание более простой конструкции электромагнитного двигателя, который обладает лучшими тяговыми характеристиками. Предлагаемая конструкция должна обеспечить более эффективное преобразование магнитного поля постоянных и электромагнитов в энергию движения. Еще одной задачей является расширение арсенала экологически чистых технических средств.

Поставленная задача достигается тем, что в электромагнитном двигателе, содержится по меньшей мере один подвижный и один неподвижный коаксиальные магнитные элементы, взаимодействующие их магнитными полями преимущественно вдоль их поверхностей с ускорением в направлении движения подвижного элемента на участке траектории.

Такой магнитный двигатель согласно изобретению отличается тем, что взаимодействующие магнитные элементы выполнены коаксиальными, что намного увеличивает площадь взаимодействия подвижных и неподвижных магнитных элементов. У коаксиальных магнитных элементов к тому же плотность взаимодействия магнитных полей больше чем у плоских пластинчатых магнитов, которые рассеяны в отличии от коаксиальных.

Магнитные элементы одной из групп установлены по окружности и связаны с осью вращения, совпадающей с осью окружности установки другой группы элементов, причем обе окружности совпадают, а одна группа магнитных элементов имеет продольные щели во внутреннем радиальном направлении, причем ширина щелей достаточна для прохождения элементов осевой связи другой группы магнитных элементов.

При этом элемент осевой связи одной из групп магнитных элементов может быть выполнен в виде диска.

Альтернативно элементы осевой связи одной из групп магнитных элементов выполнены в виде спиц или пластин.

В варианте конкретной реализации магнитный двигатель содержит подвижный элемент, например, в виде поверхности, имеющей возможность вращаться по окружности, на которой закреплено n-магнитных элементов, которые установлены с возможностью взаимодействия с m — магнитными элементами, установленными неподвижно. Если каждый из магнитных элементов, входящих в группу m, выполнен в виде постоянного магнита, то магнитные элементы группы n выполнены в виде электромагнита. Одна из групп магнитных элементов (m или n) состоит из магнитных элементов, каждый из которых выполнен со сквозным каналом, соединяющим торцы этого магнитного элемента и плоской щелью, соединяющей внешнюю поверхность магнитного элемента со сквозным каналом по всей длине. Другая группа магнитных элементов включает магнитные элементы, каждый из которых установлен таким образом, что он имеет возможность проходить через сквозной канал магнитного элемента из другой группы. Магнитные элементы одной из групп представляют собой электромагниты, витки которой(го) уложены таким образом, чтобы не перекрывать плоскую щель, соединяющую по всей длине сквозной канал с внешней поверхностью магнитного элемента.

В случае когда магнитные элементы одной из групп являются внешними элементами взаимодействующих коаксиальных магнитных элементов и являются электромагнитом, то их витки уложены таки образом, чтобы не перекрывать плоскую щель, соединяющую по всей длине сквозной канал с внешней поверхностью магнитного элемента. А внутренними элементами являются постоянные магниты из другой группы , взаимодействующих коаксиальных элементов и представляют собой слегка изогнутый стержень, форму которого лучше всего описывается как часть тела, имеющую тороидальную поверхность.

В другом случае когда магнитные элементы одной из групп являются внешними элементами взаимодействующих коаксиальных магнитных элементов и являются постоянными магнитами, то каждый из них имеют сквозной канал соединяющий торцы этого магнитного элемента и плоскую цель, соединяющий внешнюю поверхность магнитного элемента со сквозным каналом по всей длине. А внутренними магнитными элементами являются электромагниты, из другой группы взаимодействующих коаксиальных магнитных элементов и представляют собой слегка изогнутый стержень, форму которого лучше всего описывается как часть тела, имеющую тороидальную поверхность.

Принцип работы предлагаемого двигателя покажем в двух вариантах. В одном варианте одна из групп магнитных элементов, которые являются неподвижными электромагнитами, жестко закреплены на корпусе электродвигателя. Другая группа магнитных элементов закреплены на роторе электродвигателя с помощью держателей. Подвижные магнитные элементы представляющие собой постоянные магниты, которые могут свободно проходить через сквозные каналы неподвижных электромагнитов. В начальной стадии работы электродвигателя электрический ток подается на неподвижные электромагниты. В электромагнитах появляется электромагнитное поле которое втягивает подвижные постоянные магниты в свою полость. Подвижные постоянные магниты которым придано ускорение за счет взаимодействия магнитных полей на входе в каналы электромагнитов, продолжает движение по каналу и приближается к выходному отверстию электромагнита. Полярность этой части электромагнита совпадает с полярностью с приближающейся частью подвижного постоянного магнита. Однако резкого торможения подвижного постоянного магнита не происходит так как в это время автоматически с помощью электронного или механического коммутатора в электромагниты подается электрический ток противоположной полярности. В следствии чего подвижный постоянный магнит продолжает движение получив дополнительное ускорение и выходит из полости электромагнита и приближается к следующему неподвижному электромагниту расположенному на окружности. По мере приближения к следующему электромагниту приближаются и их взаимодействующие магнитные поля одинаковой полярности и в это время происходит последующая смена полярности неподвижного электромагнита. И подвижный постоянный магнит продолжает свое движение. Описанный процесс может непрерывно повторяться не только для одного постоянного магнита и электромагнита но для нескольких других подвижных и неподвижных магнитов.

Магнитные элементы могут быть выполнены, как в виде постоянных магнитов, так и в виде электромагнитов или их комбинаций, закрепленных на кольце или на ином роторе.

Другой вариант конструктивного выполнения электродвигателя приводится ниже.

Предлагаемое изобретение иллюстрируется прилагаемыми графическими материалами:

На фиг. 1 изображен электромагнитный двигатель в варианте когда неподвижные магниты – электромагниты, а подвижные магниты – постоянные магниты.

На фиг. 2 –продольный разрез А-А электромагнитного двигателя с четырех роторной конструкцией.

На фиг. 3 – поперечный разрез В-В электромагнитного двигателя.

На фиг. 4 и фиг. 5 варианты электромагнитного двигателя с более большой площадью взаимодействия между магнитными элементами (взаимодействующие магнитные элементы вытянутой формы).

На фиг. 6 электромагнитный двигатель в варианте когда неподвижные магниты – постоянные магниты, а подвижные магниты – электромагниты.

Еще в одном варианте предлагаемый магнитный двигатель относится к одному из примеров предпочтительного осуществления изобретении. Он состоит из корпуса 1 (фиг. 2, фиг. 3 и фиг. 6) и крышки корпуса 9 неподвижных постоянных магнитов 2 с плоской щелью, жестко закрепленные на корпусе 1. Подвижные электромагниты 3 жестко закрепленные на роторе 5 с помощью держателей 4. Ротор 5 жестко закреплен на вале 6 с возможностью вращения вместе с валом 6. Корпус 1, крышка корпуса 9, держатель 4 и вал 6 выполнены из материала, который не взаимодействует с магнитами. Неподвижный постоянный магнит 2 представляет собой часть тела тороидальной формы со сквозным каналом соединяющим торцы этого тела и полой щелью, соединяющей внешнюю поверхность со сквозным каналом по всей длине этого тела.

Подвижный электромагнит 3 представляет собой слегка изогнутый стержень, форма которого лучше всего описывается как часть тела, имеющего тороидальную поверхность. Концы катушек 7 электромагнитов 3 закреплены на элементах токосъема 8 и запитываются электрически током посредством скользящих пластин коммутатора (коммутатор-распределитель не показан). Коммутатор-распределитель меняет полярность подаваемого электрического тока в зависимости от места расположения электромагнита 3 относительно неподвижного постоянного магнита 2.

Предлагаемый двигатель работает следующим образом. Как показано на фиг. 6 электромагниты 3 закрепленные в держателях 4 на вращающем роторе 5 могут проходить через каналы неподвижных постоянных магнитов 2. При подаче электрического тока на элементы токосъема 8 через коммутатор в электромагнитах 3, концы катушек 7, которые закреплены на токосъемах 8, возбуждается электромагнитное поле. Электромагнит 3 втягивается в сквозной канал постоянного магнита 2, так как полярность полюсов электромагнита 3 и постоянного магнита 2 в момент их приближения к друг другу противоположна. Электромагнит 3, которому придано ускорение взаимодействием магнитных полей на входе в канал, продолжает движение и приближается к другой части выходному отверстию канала постоянного магнита. Однако резкого торможения электромагнита 3 не происходит. Конструктивно обеспечено выполнение условия, при котором автоматически с помощью электронного или механического коммутатора в электромагниты 3 подается электрический ток противоположной полярности. В следствии чего постоянный магнит 2 выталкивает из своей полости электромагнит 3 так как меняется полярность электромагнита 3 на противоположную, взаимодействующие магнитные поля электромагнита 3 и постоянного магнита 2 в данном участке одноименные. Последующие перемещение электромагнита 3 вместе с ротором 5 и валом 6 обеспечивает приближение электромагнита 3 к следующему постоянному магниту 2, расположенному по окружности. По мере приближения взаимодействующих одноименных полюсов электромагнита 3 и постоянного магнита 2 происходит следующая смена полярности электромагнита 3. И электромагнит 3 продолжает свое движение. Описанный процесс непрерывно повторяется не только для описанного электромагнита 3, но и для каждого электромагнита из числа закрепленных таким же образом на роторе 5.

Так возможно исполнение предлагаемого двигателя с продолговатыми формами взаимодействующих магнитных элементов (фиг. 4), что увеличивает их площадь взаимодействия. Из чего следует увеличение мощности электродвигателя.

Следует иметь в виду, что для специалиста в данной области техники становится очевидным возможные изменения и модификации предлагаемого изобретения.

Еще одним направлением использования предлагаемого изобретения является возможность использования его в виде конструкций, каждая секция которых включает свой ротор с закрепленными магнитными элементами, взаимодействующими с неподвижными магнитными элементами.

Как работает «вечный двигатель» и примеры его конструкции

Вечный двигатель будоражит умы ученых и изобретателей всего мира. Сейчас многие одержимы им примерно так же, как в свое время алхимики были одержимы идеей получения золота из свинца. Все из-за того, что он — вечный двигатель — принесет очень много пользы не только в краткосрочной перспективе, но и на далекое будущее. Главное понимать, что вечный двигатель это не совсем то, что многие себе представляют. Это куда более продвинутая вещь, но в то же время более простая, чем принято считать. А еще есть несколько концепций такого двигателя. Давайте разберемся с некоторыми из них.

Вечный двигатель это то, что невозможно даже в теории. Он противоречит сам себе.

Можно ли запатентовать вечный двигатель

Прежде всего стоит определится, что запатентовать вечный двигатель невозможно. То есть, если вы найдете способ обмануть законы физики, вам, конечно, скажут спасибо, но коммерческих прав на свое изобретение вы иметь не будете. Максимум, вы получите Нобелевскую премию и сможете рассчитывать на всемирное уважение. Если вас это устраивает — стоит постараться и поработать в этом направлении.

Патенты на вечный двигатель перестали рассматриваться очень давно. Например, Патентное ведомство США не принимает такие заявки уже более ста лет, а Парижская академия наук с 1775 года не рассматривает проекты таких двигателей.

Что такое вечный двигатель

Если говорить о том, что такое вообще вечный двигатель, то все основные определения сводятся к тому, что это воображаемое устройство, которое работает неограниченно долго. А самое главное, у него должен быть КПД более 100%. То есть количество выдаваемой им энергии должно быть больше, чем та, которую он потребляет для работы. Это вечный двигатель первого рода.

На латыни вечный двигатель будет Perpetuum Mobile

Есть еще понятие вечного двигатель второго рода. Такой механизм должен получать тепло от одного резервуара и полностью превращать его в работу. Такой тип вечного двигателя невозможен по определению, так как это противоречит первому и второму закону термодинамики.

Может показаться, что космос в некотором роде можно назвать системой вечного двигателя, но это тоже не так. Светила рано или поздно погаснут, а планеты, спутники и галактики, которые движутся в пространстве, только кажутся вечными. На самом деле они постепенно рассеивают свою кинетическую энергию за счет сопротивления солнечного ветра, притяжения других объектов, теплового излучения и даже гравитационных волн.

Эта штука миллиарды лет крутится сама по себе, но она не может считаться вечным двигателем.

В космосе это почти незаметно, так как расстояние и размеры тел огромны, а силы сопротивления минимальны, но потеря энергии все равно есть. Проще говоря, если дать нашей планете бесконечное количество времени вращения, исключив изменения остальных факторов, рано или поздно она просто остановится. На самом деле все немного сложнее и в реальности ее притянет к Солнцу, но суть вы поняли.

Читать еще:  Что с двигателем по состоянию свечей

Рев двигателей и комендантский час: как SpaceX вынудила жителей Техаса продать свои дома

Можно сказать, что двигатель тоже рано или поздно остановится, если дать ему бесконечно много времени (все равно мы не проверим), но именно для этого и есть требование, что вечный двигатель должен производить больше энергии, чем потреблять. Даже если он будет вырабатывать на ничтожную долю процента больше энергии, чем заберет, он сам сможет обеспечить себя ”топливом”.

Немного юмора на тему вечного двигателя. Вот он!

Как сделать вечный двигатель

В мире было предпринято бесчисленное количество попыток сделать вечный двигатель. Конструкции предлагались самые разные, но объединяло их одно — все они не прошли проверку и не стали настоящим вечным двигателем. Хотя, на первый взгляд может показаться, что некоторые предложенные ниже конструкции будут работать, но это ошибка. Максимально близко к настоящей концепции вечного двигателя может приблизиться конструкция магнитного двигателя.

Вечный двигатель на магнитах

Конструкция вечного двигателя на магнитах может показаться простой и гениальной одновременно, но в ней есть одно ”но”. Прежде всего, магнит, даже самый хороший, не может давать энергию бесконечно и его сила магнетизма со временем будет уменьшаться. В итоге, двигатель просто перестанет работать. Хотя изначально идея действительно не плохая.

Идея вечного двигателя стала активизироваться в умах изобретателей с появленим неодимовых магнитов. Их пытались применить где угодно, а Майкл Брэди даже сделал двигатель, который запатентовал, хоть и не как вечный.

Такие вещи немного завораживают:

Суть в том, что магнит притягивает расположенные на вращающемся колесе ответные части и проводит конструкцию в движение. Конструкция проста и незамысловата, но даже если не учитывать потери от трения или просто исключить их, поместив систему в вакуум, двигатель все равно не будет вечным. Как раз из-за того, что магниты со временем теряют свои свойства.

Первый вечный двигатель

В любом деле кто-то должен быть первым. Пионер был и в ”вечнодвигателестроении” — им стал индийский математик Бхаскара. Упоминание вечного двигателя встречается в его рукописях, которые датируются XII веком.

В этих рукописях математик описывает механизм, который приводится в движение за счет перетекания ртути или другой жидкости внутри трубочек, которые надо разместить по окружности колеса. Конструкция выглядит перспективной из-за того, что жидкость на одной стороне колеса всегда будет находиться дальше от его центра.

Примерно так выглядел концепт первого вечного двигателя.

В реальности такая система не работает. Если сделать только две трубочки на разных сторонах колеса, то его действительно перевесит, но когда их много, разное положение жидкости в каждом все равно уравновесит систему и вращения не будет.

У Бхаскара были последователи, которые предлагали вместо жидкости использовать меняющие свое положение грузы. Кончено, все эти проекты были обречены на провал и постепенно первоначальная идея конструкции вечного двигателя сменялась другими.

Одна из вариаций на тему вечного двигателя Бхаскара.

Вечный двигатель Архимеда

На самом деле сам Архимед не изобретал никакого вечного двигателя. Он только сформулировал закон, согласно которому и работает следующая система. С этим законом знаком каждый, кто хоть раз бросал в воду мяч, поплавок или другой надувной предмет.

Так как то, что весит меньше, чем вода, выталкивается ей, это тоже можно использовать в качестве вечного двигателя и подобные концепты были. Например, можно попробовать поместить в систему шарики, которые будут всплывать из воды и раскручивать двигатель.

В этой конструкции не учтено только то, что невозможно сдержать выду в резервуаре, а если и возможно, то она будет давить на входящие поплавки с такой силой, которую не смогут компенсировать всплывающие.

Проблема в том, что в замкнутой системе ”отработанные” шарики надо снова погружать в воду, а на это нужно больше энергии, чем появляется при всплывании. Именно поэтому система почти моментально придет в равновесие и перестанет двигаться. Если только не заставить жидкость находиться с одной стороны, то удержать ее без потерь будет невозможно. Если ее постоянно подливать, то такой механизм уже не будет соответствовать основным требованиям, предъявляемым к вечному двигателю.

Самая большая подводная лодка и история создания субмарин

Вечный двигатель на противовесах

Еще одна система вечного двигателя подразумевает использование смещенной системы, в которой подвешенные на цепь грузы должны тянуть за собой всю конструкцию.

Вот так должна выглядеть эта система и крутиться против часовой стрелки, но она очень быстро придет в состояние равновесия.

Такую конструкцию предложил нидерландский математик Симон Стевин. В цепочку должны быть объединены 14 шаров. Эту цепочку надо перекинуть через треугольную призму. Согласно задумке, с одной стороны будет в два раза больше шаров и они будут тянуть всю систему. При этом шары, которые висят снизу, не участвуют в процессе, так как уравновешены и не должны мешать работе на призме.

Звучит здорово и логично, но та часть системы, где шаров в два раза больше, имеет более пологую плоскость и составляющая силы тяжести шаров с этой стороны будет меньше. В итоге, система опять придет в равновесие и быстро остановится.

Это тоже не вечный двигатель, а просто игрушка, так как кинетическая энергия будет теряться.

Почему невозможно создать вечный двигатель

В первую очередь, создание вечного двигателя невозможно из-за того, что он нарушает многие сформулированные и проверенные столетиями (и тысячелетиями) законы физики. Выработать в результате движения больше энергии, чем затрачено на приведение системы в движение, просто невозможно.

С другой стороны, многое раньше считалось невозможным. Вдруг человечество так до сих пор и не смогло найти фундаментальную ошибку ученых прошлого? Если вы хотели попробовать — попробуйте! Если не хотели заниматься этим, но у вас есть идея, которой вы готовы поделиться, то сделайте это в нашем Telegram-чате или в комментариях к статье.

Новости, статьи и анонсы публикаций

Свободное общение и обсуждение материалов

Гамма-лучевые всплески, мощные вспышки света, — это самые яркие события в нашей Вселенной, которые длятся не дольше нескольких секунд или минут. Некоторые на…

Итак, ученые обнаружили гравитационные волны — рябь пространства-времени. Альберт Эйнштейн предположил их существование еще 100 лет назад, и прямые наблюдени…

Если человечество хочет когда-нибудь понять космос, ученые должны согласовать основные компоненты реальности. Клиффорд Джонсон, профессор физики и астрономии…

Магнитный двигатель.

Это из серии «вечных» двигателей. Мечта. Эх, сделать бы такой двигатель… и вечно получать энергию.

О магнитном двигателе человек задумался давно. Во всех книгах о разных «вечных» I и II рода, их вариациях, научных и не очень, магнитный двигатель встречается постоянно.

В последнее время появилось много сообщений о том, что такой двигатель, наконец, сделан. И даже показали, как он работает. И не у одного изобретателя. Демонстрировали несколько конструкций.

Но далее этого почему-то никто не идет. Нет ни схем, ни самих двигателей.

Я как-то сделал очередной поиск в Интернете по этой же теме. Если двигатели есть, то должна быть хоть какая-то информация о них, их существовании, разработке, патентовании…

Есть очередные « околосказочные » конструкции, жутко засекреченные, продаваемые за бешенные деньги на этапе одной только идеи. И почти детские конструкции, выдаваемые за серьезные разработки. Удивительно, как на такие игрушки патенты выдают. Почему? Проверить невозможно. Возможно, в конструкции действительно что-то есть. Раз патент выдан, стало быть, так возможно что-то получить, кроме собственных усилий.

Возможно, что двигатель, в самом деле, разработан. Но, может быть, существует какой-то секретный заговор по его применению. Вернее, неприменению.

Ну, действительно, а куда прикажете девать всю энергетику, нефтяные запасы и пр., составляющие основу мировой экономики и политики. Проще быстренько разобраться с очередным нарушителем спокойствия и: нет человека – нет проблемы.

Как ни крути, есть в этом жуткое рациональное зерно. И один из вариантов ответа на вопрос: куда деваются все «вечные двигатели», в том числе и магнитные, может быть, реально разработанные и сделанные. Слишком велика ставка…

Но, есть и другие варианты. Реальные трудности создания и принятие желаемого за действительное. Даже вполне объективно, без коммерческой стороны. Нарисованное на бумаге кажется вполне работоспособным. И сам изобретатель верит в то, что говорит. Он действительно так думает. И разубедить его невозможно. Все заработает, если сделать чуть точнее, чуть сильнее, из уникальных материалов,… вот еще один шаг, и заработает…, но шаги делаются, а результата они так и не достигают. А публикации, репортажи и прочая информационная шумиха уже поднята. И народ верит. И принимает подобные «утки» за чистую правду.

Науке бы сказать свое слово, но она молчит. Вернее, она его давно уже сказала: Ерунда все это. И возвращаться к этому не стоит. Сделать магнитный двигатель или невозможно, или весьма проблематично. А тем более – мощный . Есть масса препятствий этому. Они давно известны. Бесплатный сыр только в мышеловке.

Наука магнитными двигателями не занимается. Вполне осознанно.

Научную аргументацию отказа от разработки магнитных двигателей надо знать и изобретателям, все же пытающимся такой двигатель сделать. Чтобы ясно представлять, за что они, собственно берутся, начав игрушки с магнитиками и колесиками.

Но, четких научных объяснений и аргументов я так и не нашел. Что-то узнал на собственном опыте, что-то вычитал в литературе. Действительно, возникающие проблемы огромны и трудно разрешимы.

Например, я с трудом представляю себе магнитный двигатель, вырабатывающий энергию в 1Мвт. Сделать-то его еще можно, но что с ним потом делать?

Мне могут возразить – сделать сначала надо, а потом уж разбираться .

Правильно. Но, подумать об этом все же стоит. Не будет иллюзий и многих сказок.

Магнитная масса.

Мощность магнитного двигателя напрямую зависит от этого. Чем больше и сильнее применяемые постоянные магниты, тем мощнее двигатель, тем большую энергию он должен выдавать.

А что такой суперсильный магнит объемом, например, 1 куб. метр?

Масса -8-12 тонн. Огромное силовое поле.

К нему даже подходить небезопасно. Его поле из нашей крови быстро магнитопровод устроит. Остановит ее. И разрушит.

Такой магнит ни сделать, ни перевезти. На изготовление нужны огромные мощности. Нет пока такого оборудования. И транспортировка его – одни сплошные трудности. Прилипнет к транспорту, к рельсам, все костыли из полотна в кучу соберет. Рельсы в узел завяжет. В трюм положить опасно, на палубе оставить – тоже. Можно, конечно, экранировать, но реальное действие произведет только экран сопоставимый по массе с самим магнитом. Но, и сам экран в поле магнита становится вторичным магнитом. И не хилым. От него тоже надо защищаться.

Но одного такого кубика на мегаваттный двигатель не хватит. Его поле имеет потенциальную энергию только на 150-300 квт . И КПД магнитного двигателя не 100%. Даже самые оптимистичные расчеты дают не более 40% от имеющейся в магните энергии поля.

Для постройки генератора энергии с мощностью 1Мвт необходимо, таким образом, не менее 3- 5 куб. м . очень хорошего магнита и, что самое неприятное – и статорный и роторный, и прочие применяемые силовые магниты должны быть одним куском. Сборка из мелких магнитиков одного большого — не проходит. Возникают и трудности сборки, и качество такого магнита резко падает.

Что же у нас получилось?

Для изготовления двигателя надо иметь магнитную массу 25-35тонн. Магнитопровод примерно такой же массы. Подвижной механизм или ротор, способный выдержать такие нагрузки поля массой в 5-7тонн, а с учетом возможности доступа к нему для мелкого ремонта и профилактики, то и все 10тонн. Устройство регулировки мощности. Защитный магнитный экран.

Читать еще:  Все для тюнинга двигателя ford mustang

Посчитали? Под 100тонн. Снизить общую массу сильно не удастся Н икакими ухищрениями. Можно только на 10-15% . Основная масса и неприятности связанные с ней заложены магнитом.

Большая магнитная масса – большие проблемы. И растут они, эти проблемы, в геометрической прогрессии от увеличения этой самой магнитной массы. И потому, всякие сказки про « легкие и мощные магнитные двигатели» для поездов на воздушной подушке или магнитной подвеске, самолетов и пр. – не более чем выдумки фантастов.

Соотношение мощность/масса у магнитного двигателя далеко уступает как двигателям внутреннего сгорания, так и электродвигателям без «вечной» подкачки.

Такой двигатель даже на танк не поставишь. Не утащит. К сожалению. Транспортное средство с таким двигателем просто обречено быть медленным и тяжелым. Если оно не в космосе, конечно…

Схемы магнитных двигателей.

Для возможностей конструирования магнитных двигателей наука устанавливает объективные ограничения, про которые вольные изобретатели иногда не знают, а иногда просто забывают. Вот некоторые из них:

· Сколько энергии вырабатывается при подходе к магниту, столько же и даже больше надо потратить при отходе. При использовании встречных полей соответственно – наоборот, сколько энергии при отталкивании, столько же при силовом сближении.

· Магнит или любой элемент, работающий в качестве движущегося, не может «проскочить» поле магнита. Любые схемы, рассчитанные на это, сразу обречены.

· В постоянном поле никаких движущих сил нет. Движущая сила появляется от неравномерности поля. В этом корень низкой эффективности магнитных двигателей. Само поле магнита в создании движущего момента прямого участия не принимает. Оно лишь создает фон для создания неравномерности. В небольших пределах. От этого и зависит КПД.

· Мощность и эффективность достигаются только замыканием магнитного потока на рабочий зазор. Без магнитопровода в системе магнит – движение — энергия никаких приемлемых результатов не будет. А это всегда масса сопоставимая с магнитом.

· И, почти риторическое – магнит, это не два полюса, а круговое поле. Взаимодействуют не полюсы магнитов, а их поля. Интенсивность поля одинакова по всей длине внешней силовой линии, от полюса до полюса…

Можно и дальше приводить полезные правила и советы от науки. Только, кто бы их читал…

Мы же вольные изобретатели, нам наука нипочем. И потому, творим, что хотим.

Основная масса публикаций на тему магнитного двигателя, а тем более, идеи, заложенные в основу разработок, при ближайшем рассмотрении не выдерживают никакой критики. Сплошное дилетантство. На уровне «проскакивающего» магнита. Или из серии «разыграть лишнего». От такого подхода тоска берет.

Удивительно, но большинство изобретателей ищет движущий момент своего двигателя там, где его нет. Во взаимодействии разного рода магнитиков на статорах и роторах, подводимых и отводимых магнитов. В комбинациях мелких магнитов на подвижных и неподвижных частях двигателя. Момент движения таких систем всегда равен 0. К сожалению.

Еще один класс схем магнитных двигателей в основе которых лежит преобразование энергии магнитного поля в электрическую энергии простым внесением обмотки в поле и накоплением полученной энергии в конденсаторных накопителях. А потом накопленная энергия работает на нужды двигателя и потребителя. Контур выходит на резонанс, мы ему еще пьезокерамику подставим для повышения КПД.

Красиво, современно, но… такие схемы требуют несуществующих пока материалов и законов физики. А пока, увы…

В нескольких публикациях проходили сообщения о каких-то дисках, напоминающих дисковую пилу. Они крутились с бешенными оборотами, и почти всегда, в конце рассказа отрывались, пробивали крыши и стены, а потом исчезали в неизвестном направлении. Как говорится в репортаже, в основе их вращения лежит вращающееся магнитное поле. Возможно. Но…

Магнитный поток можно переключать с одного пути его движения на другой путь. И таким образом создавать вращение. За счет чего? Создать опережение или отставание. Чем? На это нужна энергия, сопоставимая с энергией нашего магнитного генератора. Что-то нужно принудительно двигать…

Конечно, хотелось бы, чтобы генератор это делал сам. Но, магнит – элемент пассивный, он найдет точку максимума или минимума поля и замрет на ней. Правда, тут решение где-то есть, оно эфемерно, но теоретически возможно. Оно в теории поля, в новых магнитных материалах. Нужен «магнитный ключ», резко изменяющий поток от величины приложенного внешнего поля.

Есть схемы магнитных двигателей, использующих в качестве управляющего элемента переключения поля магнитные экраны. Вот — поле есть, мы его экраном прикрыли и поля – нет. Потом убрали экран, и поле снова есть. А в таком переменном поле что-то движется. Ротор, магнитный «поршень», и пр. Расчеты, и не только мои, показывают возможность создания такого двигателя. Но, и тут – но…

Расчет соотношения мощностей на движение экрана к мощности самого двигателя быстро выведет вас к нулевому результату. Или близко к этому. КПД такого двигателя очень мал, даже теоретически. На собственное движение может быть и хватит, но реальную энергию он будет отдавать очень незначительную. Если не придумать какого-то радикального решения. Может быть, изменение магнитных свойств экрана. Тогда его или не надо будет двигать, или движение экрана будет расходовать значительно меньше энергии.

И последний класс магнитных двигателей. Магнит используется только в качестве силового . В его поле двигаются элементы, создающие и использующие неравномерность поля. В этом случае работает не основное поле магнита, а наведенные им вторичные поля рассеяния. Таким типом двигателей я пока занимаюсь сам.

Нужен ли магнитный двигатель?

Вопрос вполне разумный. Энергетических проблем человечества он не решает. Высокие мощности ему недоступны. Как силовой агрегат к транспортному средству он может применяться весьма ограниченно. Большие переменные поля рассеяния закрывают ему путь во многие области его возможного применения.

Что остается? В основном, одна область – двигатель и генератор энергии малой мощности. Может быть, в пределах до 10квт. Но, в основном, от долей ватта, до 100вт. В этих пределах мощностей он реальной опасности не представляет и трудности его сборки, разборки и ремонта вполне преодолимы. Относительно большой вес, по сравнению с другими двигателями не дает ему преимущества в конкуренции. Но, и не умаляет его достоинств. Из которых главное – отсутствие потребления энергии или топлива. Его источник питания у него всегда с собой и не требует замены.

КПД магнитного двигателя в любом случае будет относительно низким. Видимо, не более 30%. Это не делает его лучше или хуже остальных типов двигателей. И «вечность» его весьма относительна . Есть поле магнита, есть его использование, и есть необходимая двигателю профилактика и ремонт. О «вечности» и разговора нет.

Такой двигатель и источник энергии безусловно нужен. Тем более , что теперь мы реально представляем его возможности, достоинства и недостатки.

Синхронный двигатель с постоянными магнитами

  • Управление синхронным электродвигателем с постоянными магнитами
    • Трапециидальное управление
    • Полеориентированное управление

Главное отличие между синхронным двигателем с постоянными магнитами (СДПМ) и асинхронным электродвигателем заключается в роторе. Проведенные исследования 1 показывают, что СДПМ имеет КПД примерно на 2% больше, чем высоко эффективный (IE3) асинхронный электродвигатель, при условии, что статор имеет одинаковую конструкцию, а для управления используется один и тот же частотный преобразователь. При этом синхронные электродвигатели с постоянными магнитами по сравнению с другими электродвигателями обладают лучшими показателями: мощность/объем, момент/инерция и др.

Конструкции и типы синхронного электродвигателя с постоянными магнитами

Синхронный электродвигатель с постоянными магнитами, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Обычно ротор располагается внутри статора электродвигателя, также существуют конструкции с внешним ротором — электродвигатели обращенного типа.

Ротор состоит из постоянных магнитов. В качестве постоянных магнитов используются материалы с высокой коэрцитивной силой.

Электродвигатель с неявно выраженными полюсами имеет равную индуктивность по продольной и поперечной осям Ld = Lq, тогда как у электродвигателя с явно выраженными полюсами поперечная индуктивность не равна продольной Lq ≠ Ld.

    Также по конструкции ротора СДПМ делятся на:
  • синхронный двигатель c поверхностной установкой постоянных магнитов
    (англ. SPMSM — surface permanent magnet synchronous motor);
  • синхронный двигатель со встроенными (инкорпорированными) магнитами
    (англ. IPMSM — interior permanent magnet synchronous motor).

Статор состоит из корпуса и сердечника с обмоткой. Наиболее распространены конструкции с двух- и трехфазной обмоткой.

    В зависимости от конструкции статора синхронный двигатель с постоянными магнитами бывает:
  • с распределенной обмоткой;
  • с сосредоточенной обмоткой.

Распределенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 2, 3. k.

Сосредоточенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 1. При этом пазы расположены равномерно по окружности статора. Две катушки, образующие обмотку, можно соединить как последовательно, так и параллельно. Основной недостаток таких обмоток — невозможность влияния на форму кривой ЭДС [2].

    Форма обратной ЭДС электродвигателя может быть:
  • трапецеидальная;
  • синусоидальная.

Форма кривой ЭДС в проводнике определяется кривой распределения магнитной индукции в зазоре по окружности статора.

Известно, что магнитная индукция в зазоре под явно выраженным полюсом ротора имеет трапециидальную форму. Такую же форму имеет и наводимая в проводнике ЭДС. Если необходимо создать синусоидальную ЭДС, то полюсным наконечникам придают такую форму, при которой кривая распределения индукции была бы близка к синусоидальной. Этому способствуют скосы полюсных наконечников ротора [2].

Принцип работы синхронного двигателя

Принцип действия синхронного электродвигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора. Концепция вращающегося магнитного поля статора синхронного электродвигателя такая же, как и у трехфазного асинхронного электродвигателя.

Принцип работы синхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора.

Магнитное поле ротора, взаимодействуя с синхронным переменным током обмоток статора, согласно закону Ампера, создает крутящий момент, заставляя ротор вращаться (подробнее).

Постоянные магниты, расположенные на роторе СДПМ, создают постоянное магнитное поле. При синхронной скорости вращения ротора с полем статора, полюса ротора сцепляются с вращающимся магнитным полем статора. В связи с этим СДПМ не может сам запуститься при подключении его напрямую к сети трехфазного тока (частота тока в сети 50Гц).

Управление синхронным двигателем с постоянными магнитами

Для работы синхронного двигателя с постоянными магнитами обязательно требуется система управления, например, частотный преобразователь или сервопривод. При этом существует большое количество способов управления реализуемых системами контроля. Выбор оптимального способа управления, главным образом, зависит от задачи, которая ставится перед электроприводом. Основные методы управления синхронным электродвигателем с постоянными магнитами приведены в таблице ниже.

УправлениеПреимуществаНедостатки
СинусоидальноеСкалярноеПростая схема управленияУправление не оптимально, не подходит для задач, где нагрузка меняется, возможна потеря управляемости
ВекторноеПолеориентированное управлениеС датчиком положенияПлавная и точная установка положения ротора и скорости вращения двигателя, большой диапазон регулированияТребуется датчик положения ротора и мощный микроконтроллер системы управления
Без датчика положенияНе требуется датчик положения ротора. Плавная и точная установка положения ротора и скорости вращения двигателя, большой диапазон регулирования, но меньше, чем с датчиком положенияБездатчиковое полеориентированное управление во всем диапазоне скоростей возможно только для СДПМ с ротором с явно выраженными полюсами, требуется мощная система управления
Прямое управление моментомПростая схема управления, хорошие динамические характеристики, большой диапазон регулирования, не требуется датчик положения ротораВысокие пульсации момента и тока
ТрапециидальноеБез обратной связиПростая схема управленияУправление не оптимально, не подходит для задач, где нагрузка меняется, возможна потеря управляемости
С обратной связьюС датчиком положения (датчиками Холла)Простая схема управленияТребуются датчики Холла. Имеются пульсации момента. Предназначен для управления СДПМ с трапециидальной обратной ЭДС, при управлении СДПМ с синусоидальной обратной ЭДС средний момент ниже на 5%.
Без датчикаТребуется более мощная система управленияНе подходит для работы на низких оборотах. Имеются пульсации момента. Предназначен для управления СДПМ с трапециидальной обратной ЭДС, при управлении СДПМ с синусоидальной обратной ЭДС средний момент ниже на 5%.
Читать еще:  Что такое коммутация в двигателях постоянного тока

Для решения несложных задач обычно используется трапециидальное управление по датчикам Холла (например — компьютерные вентиляторы). Для решения задач, которые требуют максимальных характеристик от электропривода, обычно выбирается полеориентированное управление.

Трапециидальное управление

Одним из простейших методов управления синхронным двигателем с постоянными магнитами является — трапецеидальное управление. Трапециидальное управление применяется для управления СДПМ с трапециидальной обратной ЭДС. При этом этот метод позволяет также управлять СДПМ с синусоидальной обратной ЭДС, но тогда средний момент электропривода будет ниже на 5%, а пульсации момента составят 14% от максимального значения. Существует трапециидальное управление без обратной связи и с обратной связью по положению ротора.

Управление без обратной связи не оптимально и может привести к выходу СДПМ из синхронизма, т.е. к потери управляемости.

    Управление с обратной связью можно разделить на:
  • трапециидальное управление по датчику положения (обычно — по датчикам Холла);
  • трапециидальное управление без датчика (бездатчиковое трапециидальное управление).

В качестве датчика положения ротора при трапециидальном управлении трехфазного СДПМ обычно используются три датчика Холла встроенные в электродвигатель, которые позволяют определить угол с точностью ±30 градусов. При таком управление вектор тока статора принимает только шесть положений на один электрический период, в результате чего на выходе имеются пульсации момента.

Полеориентированное управление

Полеориентированное управление позволяет плавно, точно и независимо управлять скоростью и моментом бесщеточного электродвигателя. Для работы алгоритма полеориентированного управления требуется знать положение ротора бесщеточного электродвигателя.

    Существует два способа определения положения ротора:
  • по датчику положения;
  • без датчика — посредством вычисления угла системой управления в реальном времени на основе имеющейся информации.
Полеориентированное управление СДПМ по датчику положения
    В качестве датчика угла используются следующие типы датчиков:
  • индуктивные: синусно-косинусный вращающийся трансформатор (СКВТ), редуктосин, индуктосин и др.;
  • оптические;
  • магнитные: магниторезистивные датчики.

Полеориентированное управление СДПМ без датчика положения

Благодаря бурному развитию микропроцессоров с 1970-х годов начали разрабатываться бездатчиковые векторные методы управления бесщеточными электродвигателями переменного тока. Первые бездатчиковые методы определения угла были основаны на свойстве электродвигателя генерировать обратную ЭДС во время вращения. Обратная ЭДС двигателя содержит в себе информацию о положении ротора, поэтому вычислив величину обратной ЭДС в стационарной системе координат можно рассчитать положение ротора. Но, когда ротор не подвижен, обратная ЭДС отсутствует, а на низких оборотах обратная ЭДС имеет маленькую амплитуду, которую сложно отличить от шума, поэтому данный метод не подходит для определения положения ротора двигателя на низких оборотах.

    Существует два распространенных варианта запуска СДПМ:
  • запуск скалярным методом — запуск по заранее определенной характеристики зависимости напряжения от частоты. Но скалярное управление сильно ограничивает возможности системы управления и параметры электропривода в целом;
  • метод наложения высокочастотного сигнала – работает только с СДПМ у которого ротор имеет явно выраженные полюса.

На текущий момент бездатчиковое полеориентированное управление СДПМ во всем диапазоне скоростей возможно только для двигателей с ротором с явно выраженными полюсами.

Вечный двигатель

Ве́чный дви́гатель (лат. perpetuum mobile ) — воображаемое неограниченно долго действующее устройство, позволяющее получать большее количество полезной работы, чем количество сообщённой ему извне энергии (вечный двигатель первого рода) или позволяющее получать тепло от одного резервуара и полностью превращать его в работу (вечный двигатель второго рода) [2] [3] . Создать вечный двигетель невозможно, так как его работа противоречила бы соответственно первому или второму закону термодинамики [4] [5] [6] [7] .

Однако, можно создать механизмы, способные работать хотя и не бесконечно, но неопределённо долго (до износа своих составных частей) без вмешательства человека. В отличие от вечного двигателя, они не нарушают законов термодинамики, поскольку черпают энергию из окружающей среды (например, это может быть энергия Солнца или радиоактивного распада) [⇨] .

Содержание

  • 1 Современная классификация вечных двигателей
  • 2 История
  • 3 Конструкции вечных двигателей из истории
  • 4 Патенты и авторские свидетельства на вечный двигатель
  • 5 Известные изобретатели вечных двигателей
  • 6 Псевдовечный двигатель
    • 6.1 Разновидности
    • 6.2 Экономическая эффективность
    • 6.3 Пример псевдовечного двигателя 2-го рода
  • 7 См. также
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Современная классификация вечных двигателей

  • Вечный двигатель первого рода — неограниченно долго действующее устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
  • Вечный двигатель второго рода — неограниченно долго действующая машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики[8] .

И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей. Из этих начал выросли многие физические теории, проверенные множеством экспериментов и наблюдений, и у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно. В частности, второе начало термодинамики может быть сформулировано как один из следующих (эквивалентных) постулатов:

  1. Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
  2. Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.

Демон Максвелла и броуновский храповик, если бы такие устройства были осуществимы, позволили бы реализовать вечный двигатель второго рода. Однако доказано, что работа таких систем как замкнутых (без обмена энергией с внешней средой) невозможна [ уточнить ] .

История

Попытки исследования места, времени и причины возникновения идеи вечного двигателя — задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде [9] . В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своём стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикреплёнными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещённых на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе» [10] . Первые проекты вечного двигателя в Европе относятся к эпохе развития механики, приблизительно к XIII веку. К XVI—XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран.

Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя, но в целом он скептически относился к идее вечного двигателя. [10]

Конструкции вечных двигателей из истории

На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо, в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага, должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

Однако, если такое колесо изготовить, оно останется неподвижным. Причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда. Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

Здесь не учтено следующее: выталкивающая сила — это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет уравновешивать или превосходить силу, действующую на остальные баки.

Патенты и авторские свидетельства на вечный двигатель

В 1775 году Парижская академия наук приняла решение не рассматривать проекты вечного двигателя из-за очевидной невозможности их создания [11] . Патентное ведомство США не выдаёт патенты на perpetuum mobile уже более ста лет [12] . Тем не менее, в Международной патентной классификации сохраняются разделы для гидродинамических (раздел F03B 17/04) и электродинамических (раздел H02K 53/00) вечных двигателей.

Известные изобретатели вечных двигателей

  • Бесслер, Иоганн Эрнст Элиас
  • Дзамбони, Джузеппе

Псевдовечный двигатель

Псевдовечный двигатель (даровой двигатель, мнимый вечный двигатель [13] , псевдо-вечный двигатель [14] ) — механизм, способный работать неопределённо долго (до износа своих составных частей) без вмешательства человека, но, в отличие от вечного двигателя, не нарушающий законов термодинамики. Энергию он черпает из окружающей среды (например, это может быть энергия Солнца или радиоактивного распада).

Разновидности

Известны псевдовечные двигатели, использующие: энергию периодических суточных колебаний атмосферного давления [15] [16] ; энергию теплового расширения вследствие суточных колебаний температуры [17] [16] ; энергию распада радия [18] ; солнечную энергию (магнитно-тепловой двигатель) [19] [20] .

Экономическая эффективность

Я. И. Перельман [17] и Н. В. Гулиа [16] пишут, что даровые двигатели экономически невыгодны для промышленного применения из-за малой стоимости производимой энергии по сравнению с капитальными вложениями в их создание и обслуживание.

Например, для завода часов на сутки работы нужна энергия 1 , 5 5> Дж. Если этот механизм проработает 10 лет, то за свой срок службы он выработает энергии 1 , 5 ⋅ 365 ⋅ 10 = 5500 5cdot 365cdot 10=5500> Дж. При стоимости механизма в 10 долларов себестоимость производства одного киловатт-часа энергии с его помощью составит 3 , 6 ⋅ 10 6 5500 ⋅ 10 = 6 , 5 6cdot 10^<6>><5500>>cdot 10=6<,>5> тыс. долларов [16] .

В. М. Бродянский считает этот вывод неверным, поскольку стоимость устройства не пропорциональна его размерам [14] .

Пример псевдовечного двигателя 2-го рода

Анализ конкретной конструкции вечного двигателя 2-го рода может представлять собой нетривиальную задачу, особенно если речь идёт о конструкции сложной или такой, принцип действия которой на первый взгляд вообще непонятен, либо потоки энергии и их источник неочевидны. Зафиксируем, например, один конец работающей на изгиб биметаллической пластины, а ко второму концу подвесим груз и поместим получившуюся конструкцию на открытый воздух. За счёт колебаний температуры пластина будет изгибаться/распрямляться, а груз подниматься и опускаться, то есть устройство будет совершать работу. Заменив груз на храповой механизм, получим механический привод, способный выполнять полезную работу за счёт извлечения энергии из единственного теплового резервуара — окружающей среды. Но поскольку окружающая среда попеременно выступает в качестве то нагревателя, то охладителя, противоречие со вторым законом термодинамики отсутствует. Таким образом, рассмотренная конструкция представляет собой не вечный, а псевдовечный двигатель 2-го рода [21] .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector