Avtoargon.ru

АвтоАргон
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рабочее тело теплового двигателя; Энциклопедия по машиностроению XXL

Рабочее тело теплового двигателя – Энциклопедия по машиностроению XXL

Тепловые машины – готовимся к ЕГЭ по Физике с ЕГЭ-Студией. На нашем сайте вы найдете широкую подборку материалов для самостоятельной подготовки к ЕГЭ.

  1. Тепловые двигатели
  2. Тепловые двигатели: принцип действия, устройство, схема
  3. К параметрам состояния газа относятся:
  4. Особенности теплового двигателя
  5. Холодильные машины
  6. КПД тепловых машин
  7. Двигатель внутреннего сгорания
  8. Тепловые двигатели и охрана окружающей среды
  9. Теория и практика
  10. Как работают тепловые двигатели
  11. Видео по теме
  12. Структурная схема работы теплового двигателя

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть 0″ src=»https://l.wordpress.com/latex.php?latex=A%3E0&bg=FFFFFF&fg=000000&s=1″ title=»A>0″> , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2 ).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Тепловые двигатели: принцип действия, устройство, схема

Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.

Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.

К параметрам состояния газа относятся:

  • абсолютная температура
  • абсолютное давление
  • удельный объем
  • внутренняя энергия
  • энтропия
  • энтальпия
  • и др.

Абсолютная температура, абсолютное давление и удельный объем являются основными параметрами газообразного вещества.

Особенности теплового двигателя

Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3 ).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Читать еще:  Блок управления шаговыми двигателями схема

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4 ).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Двигатель внутреннего сгорания

Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.

На первом этапе наблюдается плавное передвижение клапана вниз, процесс происходит благодаря заполнению камеры рабочей смесью. В конце первого такта впускной клапан закрывается. Далее поршень передвигается вверх, при этом происходит сжатие рабочей смеси. Появление искры в свече приводит к воспламенению горючей смеси. Давление, которое оказывают пары воздуха и бензина на поршень, приводят к его самопроизвольному движению вниз, поэтому такт называют «рабочим ходом». В движение приводится коленчатый вал. На четвертом этапе открывается выпускной клапан, происходит выталкивание в атмосферу отработанных газов.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Теория и практика

Как отразились работы теоретиков на качестве паровых двигателей? Начался быстрый процесс совершенствования этой техники. В семидесятые годы девятнадцатого века паровозы отчаянно дымили и имели КПД = 3%, а в 1910 году паровозы дымили не меньше, но имели КПД = 7-9%. Это большой прогресс, но подняться выше при разработке паровых машин не удалось.

На смену паровозам пришли двигатели внутреннего сгорания: их КПД сразу же превысил паровые двигатели, составил 25%. Современные дизельные двигатели, с электронной системой управления, имеют КПД=40%.

Является ли это пределом? Для двигателей внутреннего сгорания, пожалуй, является. Но есть более производительные тепловые машины: это турбины. Нагретый газ, непрерывной струей вырываясь из сопла, вращает турбину; это не цикличный, а постоянный процесс, и при его реализации без особого труда достигается КПД=60%. Недаром сейчас активно разрабатываются турбодвигатели.

Как работают тепловые двигатели

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Видео по теме

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

Проголосовавших: 7 чел.
Средний рейтинг: 4.7 из 5 .

Что является рабочим телом в двигателе?

На практике рабочим телом тепловых двигателей являются продукты сгорания углеводородного топлива (бензина, дизельного топлива и др.), или водяной пар, имеющие высокие термодинамические параметры (начальные: температура, давление, скорость и т. д.)

Что называется рабочим телом нагревателем и холодильником?

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна. … В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

Как устроены все тепловые двигатели?

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник. В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1.

Для чего служит рабочее тело в тепловом двигателе?

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ.

Как работает тепловая машина?

Принцип действия тепловых машин заключается в следующем. Нагреватель передает рабочему телу теплоту , вызывая повышение его температуры. Рабочее тело совершает работу над каким-либо механическим устройством, например, приводит во вращение турбину, и далее отдает холодильнику теплоту , возвращаясь в исходное состояние.

Что называют нагревателем и холодильником?

Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником.

Что является нагревателем в холодильнике?

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется. В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю.

Где сейчас используются тепловые двигатели?

На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и …

Читать еще:  Kia rio как установить защиту двигателя

Как тепловые двигатели влияют на окружающую среду?

Тепловые машины не только сжигают кислород, но и выбрасывают в атмосферу эквивалентные количества оксида углерода (углекислого газа). Сгорание топлива в топках промышленных предприятий и тепловых электростанций почти никогда не бывает полным, поэтому происходит загрязнение воздуха золой, хлопьями сажи.

Какие существуют тепловые двигатели?

Типы тепловых двигателей

  • Паровая машина
  • Паровая турбина
  • Двигатель Стирлинга
  • Поршневой двигатель внутреннего сгорания
  • Газовая турбина
  • Реактивный двигатель
  • Другие типы

Что является рабочим телом в тепловом двигателе?

Рабо́чее те́ло — в теплотехнике и термодинамике условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа.

Почему рабочим телом в тепловых двигателях является газ?

Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле.

Для чего служит холодильник в тепловом двигателе?

Холодильник поглощает часть энергии рабочего тела, он нужен для того, чтобы работа, совершаемая телом за один цикл, была положительной. В двигателе внутреннего сгорания роль холодильника играет атмосфера. Привет!

Что нужно сделать чтобы повысить кпд тепловой машины?

Коэффициент полезного действия идеальной тепловой машины можно увеличить,

  1. только уменьшив температуру нагревателя.
  2. только увеличив температуру холодильника.
  3. используя в качестве рабочего тела другой газ.
  4. уменьшив температуру холодильника или увеличив температуру нагревателя.

Что такое тепловая машина Приведите 3 4 примера тепловых машин используемых в быту или на производстве?

(Тепловая машина — это машина, в которой внутренняя энергия топлива превращается в механическую. Примеры — двигатель внутреннего сгорания, газовая или паровая турбины, реактивный двигатель и др.)

Что такое идеальная тепловая машина?

Идеальная тепловая машина — машина в которой произведенная работа и разница между количеством подведенного и отведенного тепла равны. Работа идеальной машины описывается циклом Карно.

Рабочее тело и параметры его состояния

Рабочее тело в теплотехнике и термодинамике — это условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа.

Рабочее тело тепловых двигателей — это продукты сгорания углеводородного топлива (бензина, дизельного топлива и др.), или водяной пар, имеющие высокие термодинамические параметры (начальные: температура, давление, скорость и т. д.).

Рабочее тело в ракетостроении — это отбрасываемое от ракеты с целью получения импульса тяги вещество. Например, в электрическом ракетном двигателе рабочим телом является ионизированное расходуемое вещество (например, ксенон).

Рабочее тело в лазерной технике — это оптический элемент лазера, в котором происходит формирование когерентного электромагнитного излучения.

Всякая тепловая машина приводится к движение вследствие происходящего в ней изменения состояния вещества, называемого рабочим телом или рабочим агентом.

Термодинамическая система — это совокупность тел, находящихся в тепловом и механическом взаимодействии друг с другом и окружающей средой.

Рабочее тело определяет тип и назначение тепловой машины. Так у паровой машины рабочим телом является водяной пар, у поршневых двигателей внутреннего сгорания и газотурбинных двигателей — продукты сгорания топлива, у компрессоров холодильных машин рабочим агентом является пар аммиака, фреона и т. д. Для расчета термодинамического анализа работы тепловой машины необходимо знать термодинамические свойства рабочего тела.

Наиболее эффективными рабочими телами для тепловых машин являются газы и пары, обладающие наибольшим коэффициентом объемного расширения.

В технической термодинамике в качестве рабочего тела принимается идеальный газ — условное газообразное вещество, силами взаимодействия между молекулами которого пренебрегают.

В реальных же газах учитываются силы притяжения между молекулами, а молекулы имеют объем. Если реальные газы сильно разряжены, их свойства близки к свойствам идеального газа.

В качестве идеальных газов могут рассматривать такие газы, как азот, гелий, водород.

В общем случае для теплотехнических расчетов вполне допустимо распространение свойств идеального газа на все рассматриваемые газы. Это позволяет упростить математические выражения законов термодинамики.

Очевидно, что одно и то же вещество при различных условиях может находиться в различных состояниях.

Для того чтобы определить конкретные физические условия, при которых рассматривается данное вещество и тем самым однозначно определить его состояние, вводятся параметры состояния вещества.

Параметры состояния газа — это величины, характеризующие данное состояние газа.

К параметрам состояния газа относятся:

  • абсолютная температура
  • абсолютное давление
  • удельный объем
  • внутренняя энергия
  • энтропия
  • энтальпия
  • и др.

Абсолютная температура, абсолютное давление и удельный объем являются основными параметрами газообразного вещества.

Система смазки двигателя: назначение, устройство, устранение неполадок

Изучая устройство транспортного средства, применяемые в его работе технические жидкости и порядок проведения технического обслуживания, нельзя не затронуть особенности системы смазки. Система смазки автомобильного двигателя обеспечивает средству передвижения стабильность и эффективность в его ежедневной работе, поэтому очень важно разобраться в ее строении, изучить выполняемые ею функции и ознакомиться с принципом ее работы.

Назначение системы смазки и выполняемые функции

Двигатель внутреннего сгорания любого транспортного средства состоит из множества элементов, которые в процессе его работы весьма агрессивно взаимодействуют между собой. Ввиду их постоянного движения внутри установки возникает высокая сила трения, влекущая за собой большие мощностные потери и, как следствие, повышенное потребление топлива. Длительная работа «на сухую» может и вовсе привести к заклиниванию силового агрегата: усиленное взаимодействие деталей приведет к нагреванию их поверхностей и дальнейшему расширению; в результате, это уменьшит рабочие зазоры конструкции и приведет к их заполнению металлической стружкой, образовавшейся вследствие разрушения основных элементов.

Чтобы предотвратить это состояние и продлить срок полезного использования, двс оборудуется смазочной конструкцией, которая облегчает ход деталей, создавая вокруг элементов системы внутреннего сгорания прочную защитную пленку.

Таким образом, система смазки любого двухтактного или четырехтактного двигателя выполняет следующий ряд функций:

  1. Уменьшение силы трения между рабочими элементами;
  2. Охлаждение их поверхностей;
  3. Снижение рабочей температуры двигателя;
  4. Выведение металлической стружки и загрязняющих частиц за пределы рабочего пространства установки;
  5. Предотвращение скоротечного износа, разрушения и закоксовки деталей;
  6. Обеспечение требуемого давления рабочей жидкости для эффективной работы двс (изменение фаз газораспределительного механизма, регулировка гидравлическими компенсаторами рабочих зазоров клапанов).

Устройство системы смазки

Для чего предназначена данная система разобрались, теперь настало время изучить ее устройство. У каждого автомобиля – своя система смазки, поэтому ее конструктивные составляющие могут существенно отличаться друг от друга. Она может дополняться какими-то элементами, а может и вовсе не иметь нижеперечисленные компоненты, но, как правило, для современных систем характерно наличие следующих элементов:

  • Картер с поддоном. Поддон – это самая нижняя часть силовой установки. К картеру он прикрепляется при помощи болтов и уплотнительных прокладок и служит своего рода «хранилищем» для рабочей жидкости. В поддоне происходит ее охлаждение и «успокоение» — благодаря специальным перегородкам моторное масло перестает волноваться при движении транспортного средства по неровностям.
  • Фильтр. Фильтрующий элемент в системе смазки служит местом, куда рабочая жидкость «приносит» ухудшающий работу силовой установки мусор. Это может быть нагар, копоть, попавшая извне пыль, металлическая стружка и прочие загрязняющие вещества. После засорения фильтра, моторное масло начинает быстро терять свои свойства из-за чрезмерного количества грязевых частиц, что приводит к потере мощностных показателей всего автомобиля. Чтобы не допустить губительные для двс последствия, необходимо своевременно проводить замену рабочей жидкости и не забывать менять фильтрующие элементы.
Читать еще:  Шум из кпп на холодном двигателе

  • Масляный насос. Без насоса работа механизма не была бы возможна: именно он создает требуемое давление внутри установки и «заставляет» рабочую жидкость воздействовать на механизмы. В автомобилях применяется два вида насосов – шестеренчатые и роторные. Первый вид агрегатов обеспечивает подачу масла с постоянным давлением, роторный – допускает изменение силы подачи. Внутри моторного отсека создается давление от 2 до 16 атмосфер.
  • Радиатор. Данный элемент системы смазки двигателя обеспечивает охлаждение моторного масла. Причем охлаждение может быть двух видов – жидкостное и воздушное.
  • Редукционные и перепускные клапаны. Эти элементы позволяют уменьшать давление, если его показатель превышает установленную норму. Устанавливаются данные элементы внутри силовой установки рядом с масляным насосом, фильтром и т.д. и активируются благодаря срабатыванию специальных датчиков. Например, при засорении фильтра перепускной клапан пускает рабочую жидкость в обход ему, чтобы не допустить остановку всего двигателя.
  • Датчики давления и температуры масла. Именно благодаря им бортовой компьютер узнает о работоспособности системы. Датчик давления устанавливается в центральной магистрали и осуществляет замер основного параметра. В случае отклонения его от нормы, на приборной панели автомобиля загорается индикатор.
  • Каналы смазки. Не трудно догадаться для чего используются данные элементы: они обеспечивают подачу моторной жидкости к взаимодействующим механизмам.
  • Главная магистраль. Осуществляет поступление масла от насоса к фильтру. Благодаря большому сечению магистраль сохраняет циркуляцию жидкости на нужном уровне. Также, благодаря магистрали осуществляется смазывание подшипников коленчатого вала.

В зависимости от конструктивных особенностей транспортного средства, современная смазочная установка может быть дополнена иными компонентами.

Виды систем смазок

Несмотря на то, что все приборы системы смазки выполняют одни и те же функции, она может быть трех видов:

  • система с разбрызгивающей подачей масла,
  • система с подачей жидкости под давлением,
  • комбинированная система.

Первый вид имеет достаточно простое устройство: здесь масло попадает на рабочие детали благодаря специальным черпакам, установленным на кривошипных головках шатунов. Захватываемая из поддона жидкость рассеивается по рабочей зоне в виде масляного тумана.

Второй вид системы подразумевает непрерывную подачу моторного масла на все элементы установки. Смазочный состав собирается в картере установки, а затем по специальным каналам подается на рабочий узел. После выполнения поставленных целей масло стекает в поддон картера. Если в первом типе системы отрегулировать количество масла не получается, то во втором такая регулировка вполне возможна. Несмотря на то, что система обеспечивает экономное и рациональное распределение технической жидкости, широкого распространения она не получила – слишком затратное и трудоемкое производство она предполагает.

Объединив технологии разбрызгивания и подачи масла под давлением, инженерам удалось создать комбинированный тип распределения смазки: на основные узлы конструкции, максимально подверженные износу, защитная жидкость подается под давлением, в то время, как остальная часть механизмов, эксплуатируемая в более спокойных условиях, орошается маслом путем разбрызгивания.

Комбинированная система предполагает применение мокрого и сухого картера. Под мокрым картером подразумевается его постоянное заполнение рабочей жидкостью. Простота и надежность принципа позволили ему получить массовое распространение: практически все стандартные автомобили оснащены подобной системой. Тем не менее, в ней присутствуют не совсем приятные недостатки: в случае попадания в картер воздуха или топливной смеси, масляный состав начинает пениться и терять смазочные свойства. В результате, двс остается без должного уровня защиты. Чтобы не допустить подобный неблагоприятный эффект, диагностика системы автомобиля на предмет ее разгерметизации должна проводиться регулярно.

Сухой картер обеспечивается благодаря наличию в силовой установке специального бачка, куда стекает вся отработанная жидкость. Здесь ее смешивание с воздухом и топливной смесью попросту невозможно. К преимуществам такой системы следует отнести стабильность ее работы в условиях прохождения транспортным средством препятствий с большим углом наклона. Принцип сухого картера применяется на гоночных, спортивных автомобилях и некоторых внедорожниках.

Принцип работы смазочной конструкции

Принцип работы системы смазки заключается в бесперебойной подаче рабочей жидкости ко всем элементам, подверженным механическому износу.

Схема работы смазочной системы выглядит следующим образом. Во время запуска силовой установки маслоприемник захватывает требуемое количество масла из поддона картера и направляет его в масляный насос. Насос в свою очередь задает жидкости силу и скорость, с которой она будет циклически циркулировать по системе. После насоса масло попадает в фильтр и проходит тщательное очищение. Как говорилось ранее, если данный элемент цепи загрязнен, то перепускной клапан пустит рабочую смазку в обход фильтрующего элемента. После него ГСМ направляется к подшипникам шатунов и коленвала, опорам и пальцам распредвала, к коромыслам привода клапанов. При наличии турбокомпрессора масло также распределяется на его вал.

Попадание рабочей смеси на внутренние стороны цилиндров рабочая смесь осуществляется посредством отверстий в головке шатуна. Здесь оно обеспечивает беспрепятственный ход маслосъемных и компрессорных колец, снижает износ стенок цилиндров. После смазывания элементов силовой установки отработанная жидкость возвращается обратно в поддон автомобиля, где под воздействием бесперебойно вращающегося кривошипно-шатунного механизма распыляется по остальным элементам системы.

Возможные неполадки в работе системы и способы их устранения

Некоторые моторные неполадки в системе смазки могут возникнуть неожиданно, даже если вы не так давно осуществляли ремонт автомобиля или проводили его техническое обслуживание. Перечислим основные проблемы и разберемся со способами их решения:

Вид неисправностиПричинаУстранение
Датчик давления масла не горит при включении зажигания1. Индикатор перегорел1. Замените лампочку датчика в приборной панели
2. Повреждение провода, окисление разъема2. Осмотрите место соединения и при необходимости произведите замену провода
3. Выход из строя датчика давления масла3. Замените датчик на новый
Индикатор давления масла горит на холостому ходу, при повышении оборотов отключаетсяНизкое давление масла из-за его перегрева. Система охлаждения работает неправильно«Погоняйте» автомобиль на повышенных оборотах в течение 15-20 минут, чтобы охладить двигатель; проведите диагностическое обследование работоспособности охлаждающей системы
Индикатор на приборной панели горит при повышенных оборотах мотораНеисправен редукционный клапанС помощью щупа проверьте уровень моторного масла в автомобиле, при необходимости замените редукционный клапан
Индикатор горит постоянно1. Слишком низкое количество масляной жидкости1. Проверьте уровень масла и долейте его при необходимости
2. Насос не работает, канал масляного насоса загрязнен2. Прочистите или замените насос
Большой расход маслаИзнос цилиндров, поршневых колец, маслосъемных колпачков, уплотнительных элементовПроизведите осмотр двигательной системы и устраните причину утечки

И напоследок

Система смазки двигательной установки защищает автомобиль от ежедневных перегревов и значительно повышает его ресурс. Поэтому важно держать ее в исправном состоянии. Для этого водитель должен своевременно проводить техническое обслуживание транспортного средства и устранять мелкие неисправности, которые в дальнейшем могут привести к дорогостоящему ремонту.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector