Avtoargon.ru

АвтоАргон
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство асинхронных электродвигателей с фазным ротором

Устройство асинхронных электродвигателей с фазным ротором

Основными частями любого асинхронного двигателя является неподвижная часть — статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Доливо-Добровольский первым создал двигатель с короткозамкнутым ротором и исследовал его свойства. Он выяснил, что у таких двигателей есть очень серьёзный недостаток — ограниченный пусковой момент. Доливо-Добровольский назвал причину этого недостатка — сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором.

На рис. приведен вид асинхронной машины с фазным ротором в разрезе: 1 — станина, 2 — обмотка статора, 3 — ротор, 4 — контактные кольца, 5 — щетки.

У фазного ротора обмотка выполняется трёхфазной, аналогично обмотке статора, с тем же числом пар полюсов. Витки обмотки закладываются в пазы сердечника ротора и соединяются по схеме звезда. Концы каждой фазы соединяются с контактными кольцами, закреплёнными на валу ротора, и через щётки выводятся во внешнюю цепь. Контактные кольца изготавливают из латуни или стали, они должны быть изолированы друг от друга и от вала. В качестве щёток используют металлографитовые щётки, которые прижимаются к контактным кольцам с помощью пружин щёткодержателей, закреплённых неподвижно в корпусе машины. На рис. приведено условное обозначение асинхронного двигателя с короткозамкнутым (а) и фазным (б) ротором.

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Асинхронный двигатель с фазным роторомимеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

15. Правило Буравчика: Если поступательные движения буравчика совпадает с направлением тока в проводе, то вращение рукоятки буравчика укажет направление магнитных силовых линий.

Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией.В = F/(i·l)

Напряженность электрического поля — это отношение силы, действующей на заряд, к величине заряда.

Напряженность — векторная физическая величина, численно равная отношению

силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда.

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.

Произведение магнитной индукции B однородного поля и площадки S, перпендикулярной вектору этой индукции, называется магнитным потоком. Ф = В S

Характеристики магнитного поля

Магнитная индукция В — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля. Эта характеристика является основной характеристикой магнитного поля, так как определяет электромагнитную силу, а также ЭДС индукции в проводнике, перемещающемся в магнитном поле.

Единицей магнитной индукции является вебер, деленный на квадратный метр, или тесла (Тл):[В] =1Вб/1 м 2 = 1 Тл.

Абсолютная магнитная проницаемость среды μa — величина, являющаяся коэффициентом, отражающим магнитные свойства среды:

где μ = 4π*10 -7 (Ом*с)/м — магнитная постоянная, характеризующая магнитные свойства вакуума.

Единицу Ом*секунда (Ом*с) называют генри (Гн) Таким образом, [μ]=Гн/м.

Величину μr, называют относительной магнитной проницаемостью среды. Она показывает, во сколько раз индукция поля, созданного током в данной среде, больше или меньше, чем в вакууме, и является безразмерной величиной.

Для большинства материалов проницаемость μr постоянна и близка к единице. Для ферромагнитных материалов μr является функцией тока, создающего магнитное поле, и достигает больших значений (10 2 -10 5 ).

Напряженность магнитного поля Н — векторная величина, которая не зависит от свойств среды и определяется только токами в проводниках, создающими магнитное поле.

Магнитный поток Ф — поток магнитной индукции.

Магнитный поток Ф через площадку S в однородном магнитном поле равен произведению нормальной составляющей вектора индукции Вn на площадь S площадки: Ф=ВnS=BS cos β

Магнитное напряжение (рисунок 3.3, а) в однородном магнитном поле определяется как произведение проекции H вектора Н на отрезок АВ и длину этого отрезка ℓ:

При прохождении электрического тока по про­воднику в окружающем пространстве возникает магнитное поле.

16. Принцип действия однофазного трансформатора. При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемыйтоком холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Читать еще:  Что такое eci multi на двигателе

На замкнутом магнитопроводе, выполненном из магнитомягкой листовой стали, расположены две (или более) катушки (обмотки). К одной из обмоток подводится электрическая энергия от источника переменного тока. Эта обмотка называется первичной. От другой, вторичной, обмотки с числом витков W2 энергия отводится к приемнику. Все величины, относящиеся к этим обмоткам (токи, напряжения, мощности и т.п.) называются соответственно первичными или вторичными.

17. Вещества, обладающие большой магнитной проницаемостью и способные усиливать внешнее магнитное поле называются ферромагнетиками. К ним относятся: сталь, железо, никель, кобальт, их сплавы и др. В ферромагнетиках имеются группы молекул с самопроизвольным намагничиванием, называемые доменами.

Процесс, в результате которого ферромагнетик приобретает магнитные свойства, называется намагничиванием.

Петлей гистерезисаназывают кривые, отражающие изменение намагниченности ферромагнетика под воздействием циклически изменяющегося внешнего магнитного поля.

18Коэффициент полезного действия (КПД) определяется как отношение полезной, или отдаваемой, мощности P2к потребляемой мощности P1

100 %.×или в процентах Электрическая мощность, потребляемая двигателем из сети P1=Pя+Pв, где Pя=UнIя– мощность якорной цепи,

Механическая мощность на валу двигателя, отдаваемая приводному механизму P2=ωМ.

Современные машины постоянного тока имеют высокий КПД, который в зависимости от мощности, колеблется в пределах ηн = 0,75÷0,96. Высшее значение КПД относится к машинам большей мощности.

Потери мощности в электрических машинах.Преобразование
механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе сопровождается некоторыми потерями энергии, которые выделяются в виде тепла, нагревая электрическую машину.

19Если внести проводник с током в магнитном поле (рис. 86, а), то в результате сложения магнитных полей магнита и проводника произойдет усиление результирующего магнитного поля с одной стороны проводника (на чертеже сверху) и ослабление магнитного поля с другой стороны проводника (на чертеже снизу). В результате действия двух магнитных полей произойдет искривление

магнитных линий, и они, стремясь сократиться, будут выталкивать проводник вниз, (рис. 86, б).

Сила, действующая на проводник с током, помещенный в магнитное поле, называется электромагнитной силой. Направление этой силы можно определить по «правилу левой руки»: если левую руку расположить в магнитном поле так, чтобы магнитные линии, выходящие из северного полюса, как бы входили в ладонь, а четыре вытянутых пальца совпадали с направлением тока в проводнике, то большой отогнутый палец руки покажет направление действия силы

Если близко один к другому расположены проводники с токами одного направления, то магнитные линии этих проводников, охватывающие оба проводника, обладая свойством продольного натяжения и стремясь сократиться, будут заставлять проводники притягиваться (рис. 90, а).

Магнитные линии двух проводников с токами разных направлений в пространстве между проводниками направлены в одну сторону. Магнитные линии, имеющие одинаковое направление, будут взаимно отталкиваться. Поэтому проводники с токами противоположного направления отталкиваются один от другого .

20.Трансформаторомназывают статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.Основное назначение трансформаторов — изменять напряжение переменного тока.

Магнитопровод. Магнитопровод в трансформаторе выполняет две функции: во-первых, он составляет магнитную цепь, по которой замыкается основной магнитный поток трансформатора, а во-вторых, он предназначен для установки и крепления обмоток, отводов, переключателей. Магнитопровод имеет шихтованную конструкцию, т.е. он состоит из тонких (обычно толщиной 0,5 мм) стальных пластин, покрытых с двух сторон изолирующей пленкой (например, лаком). Такая конструкция магнитопровода обусловлена стремлением ослабить вихревые токи, наводимые в нем переменным магнитным потоком, а, следовательно, уменьшить величину потерь энергии в трансформаторе.

Силовые трансформаторы выполняются с магнитопроводами трех типов: стержневого, броневого и бронестержневого.

В трансформаторах большой мощности применяют бронестержневую конструкцию магнитопровода (рис. 1.5), которая хотя и требует повышенного расхода электротехнической стали, но позволяет уменьшить высоту магнитопровода <Нбс [1] , краем которой является этот контур [2] [3] [4] .

В формуле — магнитный поток, — сила тока в контуре, — индуктивность.

Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.

Ротор асинхронного двигателя с фазным ротором: использование в асинхронных машинах

Асинхронный двигатель – это электрическая машина, предназначенная для преобразования электрической энергии в механическую. Конструкция состоит из нескольких частей, но сегодня мы рассмотрим только подвижную часть электродвигателя – ротор.Также мы уделим внимание тому, как устроен ротор асинхронного двигателя с фазным ротором.

Конструкция ротора

Чаще всего устройство ротора асинхронного двигателя выглядит так: ротор — это стальной вал, на который напрессованы пластины холоднокатанной анизотропной электротехнической стали. Ротор выполняется пластинами, которые изолированы между собой слоем оксидной пленки. Это необходимо для уменьшения вихревых токов, которые влияют на КПД двигателя.

Виды обмоток ротора асинхронного двигателя

Далее мы разберем еще один момент. Нам предстоит выяснить то, какими бывают обмотки ротора асинхронного двигателя, для чего они нужны, разновидности, конструктивные особенности, а также методы укладки. Существует 2 типа обмотки ротора: короткозамкнутый и фазный ротор. Короткозамкнутый ротор встречается чаще, он более дешевый в исполнении, чем фазный.

Двигатели с таким ротором требуют меньше обслуживания, чем с фазным ротором. Фазный ротор применяется реже, он немного дороже в исполнении, а также из-за наличия контактных колец требует более частого обслуживания. Далее станет ясно, для чего инженеры внедрили эту конструкцию. Теперь поговорим конкретнее о каждом роторе.

Короткозамкнутый ротор

На роторе асинхронного электродвигателя имеются обмотки, которые залиты или запаяны в пазы. Для машин низкой и средней мощности обычно материалом обмоток является алюминий, а для более мощных – медь. Это необходимо для создания электромагнита, который будет как бы тянуться вслед за вращающимся магнитным потоком. Ротор под воздействием вращающегося в пространстве магнитного поля намагничивается.

Вот так и получается, что ротор имеет свое магнитное поле, которое как бы тянется вслед за вращающемся магнитным полем, расположенным в статоре.Такая конструкция обмоток ротора называется «беличья клетка». Беличья клетка контактирует напрямую с ротором, и на ней, подобно трансформатору, индуцируется магнитное поле, и, соответственно, некая электродвижущая сила. Несмотря на это, напряжение равно нулю. Ток ротора асинхронного двигателя меняется в зависимости от механической нагрузки на вал. Чем выше нагрузка, тем выше ток, протекающий в обмотках ротора.

Фазный ротор

Основная часть конструкции устроена подобно короткозамкнутому ротору. Все тот же стальной вал, на который напрессованы пластины электротехнической стали с пазами. Особенностью ротора асинхронного двигателя с фазным ротором является наличие в пазах не залитой или впаянной обмотки, а уложенной, как в статоре, обычной медной обмотки. Эти обмотки соединены между собой звездой.

Читать еще:  Электрическая схема уаз 390995 инжектор 409 двигатель

То есть все концы — в одну скрутку, а оставшиеся 3 конца выводятся к контактным кольцам. Фазный ротор изготавливается для ограничения пускового тока. К контактным кольцам присоединены меднографитовые щетки, которые скользят по ним. Затем от щеток выводятся обычно контакты в клейменную коробку, где пусковой ток регулируется или реостатом, или жидким реостатом путем изменения глубины погружения электродов в электролит.

Как уже сказано, эта мера позволяет ограничить пусковой ток. Современные электродвигатели для уменьшения износа щеток оснащены конструкцией, которая после пуска откидывает щетки и коротко замыкает между собой все обмотки. По остановке двигателя щетки возвращаются на свое место.

Особенности обслуживания привода с фазным ротором

Обслуживание ротора асинхронного двигателя с фазным ротором представляет из себя регулярный осмотр щеток, контактных колец, проверку состояния или уровня жидкости в реостате. Также стоит осмотреть погружаемые электроды. По результатам осмотра ротора асинхронного двигателя с фазным ротором при необходимости щетки подлежат замене, но мастера еще сразу советуют протереть ветошью контактные кольца и полость, где расположены кольца. Так как абразив электропроводен, это создает опасность неправильной работы или даже короткого замыкания.

В случае износа контактных колец их заменяют. Если кольца износились слишком быстро, то это значит то, что щетки используются не из того материала. Также на них могут быть раковины, но их демонтируют, и затем стачивают в несколько проходов, чтобы поверхность, прилегающая к щеткам, была гладкой. Эту работу выполняют на токарном станке для сохранения соосности.

Скорость вращения

Частоту вращения ротора асинхронного двигателя задает количество полюсных пар, ног она не более 3000 при включении непосредственно в нашу сеть. Это обусловлено частотой сети 50 Гц. Именно с такой скоростью вращается магнитный поток в статоре электродвигателя. Ротор за ним чуть запаздывает, собственно поэтому двигатель и асинхронный. Запаздывание обусловлено конструктивно и устанавливается отдельно для каждого двигателя.

При 1 полюсной паре скорость вращения магнитного поля составит 3000 об/мин, при 2 полюсных парах — 1500 об/мин, при 4 — 750 об/мин. При необходимости увеличить или регулировать число оборотов в минуту без внесения значительных изменений, в конструкцию устанавливают частотный преобразователь. На выходе из частотного преобразователя может быть частота и 100, и 200 Гц. Для того, чтобы найти скорость, следует воспользоваться формулой (60*50)/1 =3000, где:

• 1 – количество полюсных пар;

• 3000 – обороты в минуту магнитного поля при данной частоте.

Предположим, что мы можем регулировать частоту некоторого двигателя, и подняли ее до 75 Гц. Воспользуемся формулой, чтобы найти скорость вращения: 1/(60*75) = 4500 оборотов в минуту. Теперь мы разобрали то, что частота вращения ротора асинхронного двигателя не зависит от самого ротора, а зависит от количества полюсных пар.

В заключение хотим сказать, что в бытовом исполнении электрические машины с фазным ротором практически не встречаются. Эти машины предназначены для промышленного использования в местах, где нежелательна просадка напряжения. Также это применимо для огромных машин, пусковой ток которых может быть и в 20 раз больше номинального. Установка таких машин подразумевает экономию ресурсов и средств при монтаже. На скорость вращения не влияет то, какой ротор в асинхронном двигателе: с фазным или короткозамкнутым ротором.

Асинхронный двигатель с фазным ротором

Надёжность электродвигателя это одно из важнейших качеств его. Обычно она связана с простотой конструкции. Чем проще конструкция, тем надёжнее движок. Эта зависимость подтверждается асинхронными электродвигателями. Они получили самое широкое распространение из всех электродвигателей именно по причине простоты устройства и надёжности. В них реализован самый простой способ получения крутящего момента на валу движка. Максимум магнитного поля статора перемещается вокруг вала, вызывая его ответную реакцию.

Причины появления фазного ротора в асинхронном двигателе

Реакция ротора вызвана током, который возникает в нём. Ведь по своей сути статор является первичной обмоткой трансформатора. А ротор – его вторичная обмотка. При неподвижном роторе величина тока в нём максимальна. Это объясняется тем, что скорость перемещения максимума магнитного поля статора относительно вала получается максимальной. Такой режим асинхронного движка аналогичен включению трансформатора с вторичной обмоткой замкнутой накоротко.

А поскольку обмотки взаимосвязаны магнитопроводом, который в асинхронном двигателе разделён на железо вращающейся части его и сердечник статора, в обмотке статора тоже получается максимум величины тока. Если мощность электросети недостаточна для того, чтобы при пуске асинхронных движков поддержать напряжение в пределах необходимого значения, применяются меры по уменьшению пускового тока этих двигателей. Это делается либо при помощи специальных схем, которые позволяют регулировать токи в обмотках статора, либо использованием асинхронных движков специальной конструкции – с фазным ротором.

Как устроен фазный ротор?

Фазный ротор содержит обмотки в виде катушек с витками. Эти катушки соединены по схеме «звезда». Конец каждой обмотки соединён с ответствующим кольцом. При подаче напряжения на статор на каждом кольце появляется напряжение. В скользящем контакте с кольцом находится щётка, которая даёт возможность подключения внешних элементов. Эти элементы являются частью схемы управления. Она получается более простой, по сравнению с теми схемами, которыми движок управляется со стороны статора. Чаще всего схема управления содержит набор резисторов.

Они подключаются по мере разгона вала. Хотя такой способ управления пуском асинхронного двигателя не самый экономичный, он наиболее часто применяется на практике в силу своей простоты и минимума коммутационных помех. Ограничение тока ротора это не только возможность плавного запуска двигателя, но и ограничение скорости вращения вала. Но тогда более рациональным решением будет использование индуктивностей вместо резисторов. Иллюстрации, показывающие особенности конструкции асинхронного движка с фазным ротором показаны далее.

При автоматическом управлении лучше всего применять реле или полупроводниковые коммутаторы, которые параллельно стартовому резистору подключают новые резисторы, постепенно уменьшая их суммарное сопротивление до нуля с шунтированием всех резисторов последним коммутатором или контактами реле. Для наиболее плавного пуска необходимо использовать реостат 1, который на схеме слева включён в электрической цепи ротора и своими ползунками 5 соединён с кольцами 2 через клеммы щёток 3. Движок начинает работать после замыкания контактов рубильника 4. При этом ползунки реостата должны быть установлены в положение «Пуск».

В этом положении сопротивлении реостата максимально. Вал движка начинает вращаться. Перемещение ползунка будет приводить к разгону вала до максимальной скорости, которая появится при нулевом значении сопротивлении реостата. Однако есть ещё одно следствие такой регулировки двигателя с фазным ротором. Меняется связь крутящего момента и скольжения. Этот эффект показан на графике ниже. При определённой величине сопротивления в цепи ротора максимум крутящего момента смещается в сторону более высоких оборотов движка, как на кривой 2. Кривая 1 соответствует нулевому значению сопротивления в цепи фазного ротора.

При нулевом сопротивлении кольца, по сути, замкнуты накоротко. Щётки и кольца из-за трения изнашиваются. А поскольку после завершения разгона вала этот узел фактически не используется его целесообразно исключить из процесса работы. По этой причине асинхронный двигатель с фазным ротором предусматривает специальный механизм. Он отодвигает щётки от колец и одновременно замыкает последние накоротко. В результате кольца и щётки работают намного дольше по сравнению с тем вариантом, который предусматривает их непрерывный контакт.

Читать еще:  Что такое критическое скольжение в асинхронном двигателе

Простота и надёжность асинхронных двигателей основана на конструкции ротора. Но именно это обстоятельство и создаёт проблемы с их эксплуатацией. Большие пусковые токи в некоторых случаях неприемлемы настолько, что оправдывается более сложная и дорогостоящая намоточная конструкция ротора с кольцами и щётками. Тогда и применяют асинхронный двигатель с фазным ротором. Но более сложная конструкция и цена их в сравнении с асинхронными двигателями с короткозамкнутым ротором оправдывается также и тем, что они позволяют получить величину крутящего момента в рабочем режиме при меньших габаритах и массе. Поэтому эти особенности делают асинхронные двигатели с фазным ротором в ряде случаев наиболее предпочтительными.

Ротор асинхронного двигателя с фазным ротором: применение в асинхронных машинах

Асинхронный двигатель – это электрическая машина, предназначенная для преобразования электрической энергии в механическую. Конструкция состоит из нескольких частей, но сегодня мы рассмотрим только подвижную часть электродвигателя – ротор.Также мы уделим внимание тому, как устроен ротор асинхронного двигателя с фазным ротором.

Конструкция ротора

Чаще всего устройство ротора асинхронного двигателя выглядит так: ротор — это стальной вал, на который напрессованы пластины холоднокатанной анизотропной электротехнической стали. Ротор выполняется пластинами, которые изолированы между собой слоем оксидной пленки. Это необходимо для уменьшения вихревых токов, которые влияют на КПД двигателя.

Виды обмоток ротора асинхронного двигателя

Далее мы разберем еще один момент. Нам предстоит выяснить то, какими бывают обмотки ротора асинхронного двигателя, для чего они нужны, разновидности, конструктивные особенности, а также методы укладки. Существует 2 типа обмотки ротора: короткозамкнутый и фазный ротор. Короткозамкнутый ротор встречается чаще, он более дешевый в исполнении, чем фазный.

Двигатели с таким ротором требуют меньше обслуживания, чем с фазным ротором. Фазный ротор применяется реже, он немного дороже в исполнении, а также из-за наличия контактных колец требует более частого обслуживания. Далее станет ясно, для чего инженеры внедрили эту конструкцию. Теперь поговорим конкретнее о каждом роторе.

Короткозамкнутый ротор

На роторе асинхронного электродвигателя имеются обмотки, которые залиты или запаяны в пазы. Для машин низкой и средней мощности обычно материалом обмоток является алюминий, а для более мощных – медь. Это необходимо для создания электромагнита, который будет как бы тянуться вслед за вращающимся магнитным потоком. Ротор под воздействием вращающегося в пространстве магнитного поля намагничивается.

Вот так и получается, что ротор имеет свое магнитное поле, которое как бы тянется вслед за вращающемся магнитным полем, расположенным в статоре.Такая конструкция обмоток ротора называется «беличья клетка». Беличья клетка контактирует напрямую с ротором, и на ней, подобно трансформатору, индуцируется магнитное поле, и, соответственно, некая электродвижущая сила. Несмотря на это, напряжение равно нулю. Ток ротора асинхронного двигателя меняется в зависимости от механической нагрузки на вал. Чем выше нагрузка, тем выше ток, протекающий в обмотках ротора.

Фазный ротор

Основная часть конструкции устроена подобно короткозамкнутому ротору. Все тот же стальной вал, на который напрессованы пластины электротехнической стали с пазами. Особенностью ротора асинхронного двигателя с фазным ротором является наличие в пазах не залитой или впаянной обмотки, а уложенной, как в статоре, обычной медной обмотки. Эти обмотки соединены между собой звездой.

То есть все концы — в одну скрутку, а оставшиеся 3 конца выводятся к контактным кольцам. Фазный ротор изготавливается для ограничения пускового тока. К контактным кольцам присоединены меднографитовые щетки, которые скользят по ним. Затем от щеток выводятся обычно контакты в клейменную коробку, где пусковой ток регулируется или реостатом, или жидким реостатом путем изменения глубины погружения электродов в электролит.

Как уже сказано, эта мера позволяет ограничить пусковой ток. Современные электродвигатели для уменьшения износа щеток оснащены конструкцией, которая после пуска откидывает щетки и коротко замыкает между собой все обмотки. По остановке двигателя щетки возвращаются на свое место.

Особенности обслуживания привода с фазным ротором

Обслуживание ротора асинхронного двигателя с фазным ротором представляет из себя регулярный осмотр щеток, контактных колец, проверку состояния или уровня жидкости в реостате. Также стоит осмотреть погружаемые электроды. По результатам осмотра ротора асинхронного двигателя с фазным ротором при необходимости щетки подлежат замене, но мастера еще сразу советуют протереть ветошью контактные кольца и полость, где расположены кольца. Так как абразив электропроводен, это создает опасность неправильной работы или даже короткого замыкания.

В случае износа контактных колец их заменяют. Если кольца износились слишком быстро, то это значит то, что щетки используются не из того материала. Также на них могут быть раковины, но их демонтируют, и затем стачивают в несколько проходов, чтобы поверхность, прилегающая к щеткам, была гладкой. Эту работу выполняют на токарном станке для сохранения соосности.

Скорость вращения

Частоту вращения ротора асинхронного двигателя задает количество полюсных пар, ног она не более 3000 при включении непосредственно в нашу сеть. Это обусловлено частотой сети 50 Гц. Именно с такой скоростью вращается магнитный поток в статоре электродвигателя. Ротор за ним чуть запаздывает, собственно поэтому двигатель и асинхронный. Запаздывание обусловлено конструктивно и устанавливается отдельно для каждого двигателя.

При 1 полюсной паре скорость вращения магнитного поля составит 3000 об/мин, при 2 полюсных парах — 1500 об/мин, при 4 — 750 об/мин. При необходимости увеличить или регулировать число оборотов в минуту без внесения значительных изменений, в конструкцию устанавливают частотный преобразователь. На выходе из частотного преобразователя может быть частота и 100, и 200 Гц. Для того, чтобы найти скорость, следует воспользоваться формулой (60*50)/1 =3000, где:

• 1 – количество полюсных пар;

• 3000 – обороты в минуту магнитного поля при данной частоте.

Предположим, что мы можем регулировать частоту некоторого двигателя, и подняли ее до 75 Гц. Воспользуемся формулой, чтобы найти скорость вращения: 1/(60*75) = 4500 оборотов в минуту. Теперь мы разобрали то, что частота вращения ротора асинхронного двигателя не зависит от самого ротора, а зависит от количества полюсных пар.

В заключение хотим сказать, что в бытовом исполнении электрические машины с фазным ротором практически не встречаются. Эти машины предназначены для промышленного использования в местах, где нежелательна просадка напряжения. Также это применимо для огромных машин, пусковой ток которых может быть и в 20 раз больше номинального. Установка таких машин подразумевает экономию ресурсов и средств при монтаже. На скорость вращения не влияет то, какой ротор в асинхронном двигателе: с фазным или короткозамкнутым ротором.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector