Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электродвигатель тяговый асинхронный АТД для электропривода вагона трамвая

Электродвигатель тяговый асинхронный АТД для электропривода вагона трамвая.

Основные технические характеристики тягового электродвигателя АТД

Тип исполнения

АТД-1, АТД-3

АТД-2

АТД-4

АТД-7

Номинальная мощность, кВт

Номинальное линейное напряжение, В

Номинальный линейный ток, А

Частота питающей сети, Гц

Синхронная частота вращения, мин-1

— номинальная

— наибольшая

Скольжение, %

Число фаз обмотки статора

Схема соединений

Момент на валу при номинальной синхронной частоте вращения, Н • м

Коэффициент мощности при номинальной нагрузке

Максимальное среднее квадратичное значение виброскорости по ГОСТ 20815-93 при частоте вращения 1500 об/мин, мм/с

Степень защиты по ГОСТ 17494-87

Климатическое исполнение и категория размещения по ГОСТ 15150-69

Класс изоляции по ГОСТ 8865-93

Коэффициент полезного действия, %

Режим работы по ГОСТ 183-74

Масса двигателя, кг

Габаритные и присоединительные размеры двигателя АТД-1


* размеры для справок.
Масса двигателя 350 ± 17 кг.
Общие допуски по ГОСТ 3089.1:H14 ± f2/2.
Датчик частоты вращения устанавливает заказчик электродвигателей АТД-4.
Максимальное смещение вала под установку энкодера не более ± 0,05 мм.
n4 — место установки датчика частоты вращения Universal, compact Type 5020, фирмы Kubler.

Габаритные и присоединительные размеры двигателя АТД-2


Размеры без допусков указаны для справок.
Масса двигателя 350 ± 17 кг.
В лобовой части обмотки статора каждой фазы установлен терморезистор.
СТ14-2А на 60 ° ОЖО 468.165 ТУ.
Соединитель типа 2РТТ28Б7Ш11В установлен ключом вниз.

Габаритные и присоединительные размеры двигателя АТД-3.1


Габаритные и присоединительные размеры двигателя АТД-3.2


* размеры для справок.
Масса двигателя 350 ± 17 кг.

Габаритные и присоединительные размеры двигателя АТД-3.3


* размеры для справок.
Масса двигателя 350 ± 17 кг.
n3 — место установки датчика частоты вращения Universal, compact Type 5020, фирмы Kubler.

Габаритные и присоединительные размеры двигателя АТД-4



* размеры для справок.
Масса двигателя 350 ± 17 кг.

Габаритные и присоединительные размеры двигателя АТД-7


Электродвигатель привода вагона трамвая АТД купить по лучшей цене у нас — это просто!

СпецЭлектро — доступная цена на электродвигатели и электрооборудование.

Производство локомотивов с асинхронным тяговым приводом

В 2012 году при поддержке ОАО «РЖД» успешно реализованы совместные проекты российских производителей с иностранными партнерами в области разработки и производства инновационного подвижного состава — группы «Синара» с немецкой группой Siemens AG и ЗАО «Трансмашхолдинг» с французской компанией Alstom. Обе зарубежные компании являются мировыми лидерами в своем направлении деятельности.

Кроме того, в 2012 году:

  • утверждены технические задания на тепловоз 2ТЭ116УД с дизелем General Electric и на тепловоз 2ТЭ25АМ с дизелем MTU;
  • проведены приемочные испытания тепловоза ТЭМ14 с двухдизельной силовой установкой и электровоза с асинхронным тяговым приводом ЭП20;
  • проведены квалификационные испытания электровоза 2ЭС10;
  • разработаны технические требования на тепловоз с газопоршневым двигателем и газотурбовоз ГТ1h;
  • утверждено техническое задание на разработку четырехосного вагона-платформы для контрейлерно-контейнерных перевозок;
  • проведены приемочные испытания крытого универсального вагона с раздвижными стенами с осевой нагрузкой 25 тс;
  • завершен эскизный проект электропоезда серии ЭС2Г (ООО «Уральские локомотивы»).
  • Достоинства асинхронного тягового привода
  • Увеличенная мощность при одинаковых габаритах с двигателем постоянного тока
  • Больший срок службы
  • Повышенная надежность
  • Меньшая стоимость жизненного цикла
  • Возможность электрического рекуперативно-реостатного торможения до остановки
  • Увеличение весовой нормы поездов
Пассажирский электровоз ЭП20 «Олимп»Грузовой электровоз постоянного тока 2ЭС10 «Гранит»Грузовой электровоз переменного тока 2ЭС5Грузовой магистральный тепловоз 2ТЭ25А «Витязь»Маневровый гибридный тепловоз ТЭМ9Н

201320142015
302524

Двухсистемный электровоз ЭП20 «Олимп» с асинхронными тяговыми электродвигателями создан инжиниринговым центром «Технологии рельсового транспорта» — совместным предприятием ЗАО «Трансмашхолдинг» и французской компании Alstom Transport. Локомотивы производит Новочеркасский электровозостроительный завод (в составе АО «Трансмашхолдинг»).

Этот проект — пилотный проект для создания единой базовой платформы российских электровозов5-го поколения. Сертификационные испытания нового пассажирского электровоза ЭП20 успешно завершены (подробнее см. раздел «Развитие сети скоростных и высокоскоростных перевозок»).

ЭП20 предназначен для организации скоростных пассажирских перевозок (до 200 км/ч). По своим характеристикам электровоз не имеет равных на «пространстве 1520» и не уступает зарубежным аналогам. При этом стоимость его жизненного цикла на 15 % ниже, чем у существующих моделей.

201320142015
405055

Электровоз 2ЭС10 «Гранит» с асинхронными тяговыми электродвигателями создан ООО «Уральские Локомотивы» совместно с концерном Siemens AG. Порядка 60 % инженерных решений, используемых в его конструкции, впервые применяются в российском машиностроении. Производительность 2ЭС10 более чем в 3 раза превышает показатель используемых сегодня локомотивов 1,5ВЛ11, значительно лучше и показатели энергоэффективности: удельный расход электроэнергии ниже до 30 %, а удельная рекуперация выше в 2,2 раза.

Новое поколение грузовых электровозов станет одним из основных факторов повышения эффективности перевозочного процесса: появляется возможность организовать сквозное движение тяжеловесных составов по участкам со сложным профилем без переформирования поездов или применения локомотивов-толкачей. В 2012 году с использованием «Гранита» был проведен поезд весом 9 000 т с Западно-Сибирской дороги до порта Усть-Луга через Уральский хребет на расстояние 4 000 км.

В 2012 году были изготовлены два головных образца двухсекционного грузового электровоза переменного тока серии 2ЭС5 и проведены заводские испытания.

Микропроцессорная система управления и система автоматизированного радиоуправления нового электровоза обеспечивает совместную работу двух, трех и четырех секций локомотива в голове, середине или хвосте состава. Это позволяет водить несколько соединенных поездов распределенной тягой.

Читать еще:  Что произойдет с двигателем если в нем 1 литр масла

Локомотив может управляться одним машинистом.

Кроме того, электровоз оборудован системой управления по радиоканалу для использования в качестве толкача.

201320142015
113056

Чтобы ликвидировать технологическое отставание в производстве локомотивных дизельных двигателей нового поколения, ОАО «РЖД» приняло решение привлечь к их разработке ведущие зарубежные компании.

В 2012 году ЗАО «Трансмашхолдинг» были изготовлены и сертифицированы опытные образы грузового магистрального двухсекционного тепловоза 2ТЭ25А «Витязь», моторизованные дизелями производства германской компании Tognum (торговая марка MTU) серии 4 000 мощностью 2 700 кВт (в секции).

Тепловозы проходят эксплуатационные испытания в локомотивном депо Брянск-Льговский.

Инновационный проект по разработке первого отечественного маневрового локомотива с гибридным приводом реализован инжиниринговой компанией ООО «Центр инновационного развития СТМ» машиностроительного холдинга ОАО «Синара — Транспортные машины». Грант на его разработку был предоставлен НКО «Фонд развития центра разработки и коммерциализации новых технологий» (Фонд «Сколково»). ОАО «РЖД» — главный научно-технический партнер и заказчик нового локомотива.

Опытный образец маневрово-вывозного тепловоза ТЭМ9Н, выпущенный Людиновским заводом, оснащен интеллектуальной гибридной силовой установкой эквивалентной мощностью 882 кВт, которая сочетает экологичный дизельный двигатель внутреннего сгорания (630 кВт) и накопитель энергии из литий-ионных аккумуляторов и суперконденсаторов (252 кВт).

Тепловоз может использоваться для маневровой работы, в том числе и в закрытых помещениях, с заглушенным дизелем. Новый тепловоз соответствует современным зарубежным стандартам экологии и энергоэффективности: по сравнению с предыдущей базовой моделью (ТЭМ9) снижен расход дизельного топлива на 30 %, выбросы отработанных газов в окружающую среду — до 55 %. В соответствии с современными тенденциями в транспортном машиностроении при проектировании тепловоза применена модульная структура: на раме размещены дизель-генераторный, кабинный, санитарно-бытовой и другие модули, причем каждый блок управления имеет систему самодиагностики, что позволяет оперативно выявлять и устранять неисправности. Тепловоз в 2012 году проходил испытания, по их результатам разработаны мероприятия по доработке конструкции узлов и агрегатов.

Выбор системы возбуждения тяговых электрических двигателей на тепловозах

Рубрика: 7. Машиностроение

Опубликовано в

Дата публикации: 03.11.2017

Статья просмотрена: 831 раз

Библиографическое описание:

Литвинов, А. В. Выбор системы возбуждения тяговых электрических двигателей на тепловозах / А. В. Литвинов, Д. И. Попов, Д. Е. Родина. — Текст : непосредственный // Технические науки в России и за рубежом : материалы VII Междунар. науч. конф. (г. Москва, ноябрь 2017 г.). — Москва : Буки-Веди, 2017. — С. 89-93. — URL: https://moluch.ru/conf/tech/archive/286/12959/ (дата обращения: 30.08.2021).

В связи с интенсивным развитием силовой преобразовательной электронной техники и микропроцессорных систем управления стала возможной разработка новых видов тягового электропривода, обеспечивающих высокие технико-экономические показатели подвижного состава, автоматическое управление режимами их работы, а также снижение затрат в эксплуатации. Как известно, тяговый электропривод может быть бесколлекторного или коллекторного типа. Про достоинства и недостатки указанных типов тягового электропривода известно достаточно много и, как отмечается во многих источниках, будущее стоит за бесколлекторным типом. Однако на сети железных дорог большая часть локомотивного парка имеет в своем составе именно коллекторные тяговые двигатели, обеспечивающие требуемые характеристики. При этом, если рассматривать локомотивы с коллекторными тяговыми двигателями, практически все они выполнены с последовательным возбуждением, исключение, к примеру, составляют электровозы 2ЭС6.

Если рассматривать тепловозный парк, то все локомотивы с коллекторными тяговыми двигателями работают по системе последовательного возбуждения. В статье приведены результаты расчетов при различных алгоритмах системы возбуждения тяговых двигателей локомотивов, которые подчеркивают возможные преимущества в случае применения системы независимого возбуждения или комбинирования системы независимого и последовательного возбуждения в тепловозной тяге.

При независимом возбуждении регулирование магнитного потока позволяет получить оптимальные характеристики тягового электродвигателя. Поэтому применение тяговых двигателей независимого возбуждения служит одним из путей дальнейшего улучшения тяговых характеристик тепловоза и технико-экономических показателей электропередачи. Однако в этом случае тепловоз необходимо оборудовать более сложной системой регулирования тока возбуждения тяговых электродвигателей.

Для обоснования эффективности применения системы независимого возбуждения на магистральных тепловозах выполним расчет тяговых характеристик на примере тепловоза 2ТЭ116. Тяговые характеристики тепловоза 2ТЭ116 с коллекторными тяговыми двигателями последовательного возбуждения приведены на рисунке 1. Как видно из данного рисунка, характеристики на каждой позиции регулирования «мягкие», т. е. с увеличением скорости движения снижается сила тяги.

Рис. 1. Тяговые характеристики тепловоза 2ТЭ116

При использовании независимого возбуждения тяговых двигателей ток возбуждения изменяется по закону:

где — уставка тока возбуждения, А;

k — коэффициент компаундирования обратной связи по току якоря;

— ток якоря ТЭД, А.

При этом необходимо задаться ограничениями по максимальному току возбуждения, минимальному и максимальному ослаблению возбуждения. Для тепловоза 2ТЭ116 — это ток возбуждения IВ ≤ 800 А, минимальный коэффициент ослабления возбуждения βmin = 0,36.

Выполним расчет следующих вариантов работы системы возбуждения тяговых электродвигателей на анализируемом тепловозе 2ТЭ116.

Первый вариант характеризуется тем, что система управления поддерживает ток возбуждения постоянным за счет изменения коэффициента компаундирования k при постоянном значении уставки тока возбуждения [1, 2]. Ток якоря будет принимать значения от 50 до 720 А. Значение уставки тока возбуждения примем равным 50 А. Расчет будет проводиться для значений тока возбуждения от 100 до 800 А для параллельного соединения тяговых двигателей. Коэффициент компаундирования рассчитывается по формуле:

Читать еще:  В чем плюсы и минусы реактивные двигателей

Для дальнейших расчетов потребуются значения кривой намагничивания двигателей (рисунок 2):

где Uд — напряжение, приложенное к ТЭД, В;

rд = 0,082 Ом — сопротивление обмоток ТЭД типа ЭД-125;

I — ток двигателя, А;

V — скорость тепловоза, км/ч.

Рис. 2. Кривая намагничивания ТЭД типа ЭД125

Результаты расчета тяговых характеристик при работе системы независимого возбуждения с поддержанием постоянным тока возбуждения приведены на рисунке 3.

Рис. 3. Тяговые характеристики ТЭД на зонах ослабления возбуждения, при Iв = const на параллельном соединении ТЭД: 1 — Iв = 800 А; 2 — Iв = 650 А; 3 — Iв = 500 А; 4 — Iв = 300 А; 5 — Iв = 150 А

Во втором варианте система управления поддерживает постоянным значение коэффициента компаундирования k, при этом ток возбуждения при постоянном значении уставки равен:

Результаты расчета тяговых характеристик при работе системы независимого возбуждения с поддержанием постоянным коэффициента компаундирования приведены на рисунке 4.

Рис. 4. Тяговые характеристики ТЭД на зонах ослабления возбуждения при k = const: 1 — k = 1; 2 — k = 1,25; 3 — k = 1,5; 4 — k = 1,75; 5 — k = 2; 6 — k = 2,25; 7 — k = 2,5

В третьем варианте система управления поддерживает постоянной скорость тепловоза, при этом ток возбуждения при постоянном значении уставки выбираем из графика кривой намагничивания в зависимости от магнитной постоянной сvФ.

По результатам расчетов можно сделать следующие выводы:

‒ применение независимого возбуждения, за счет реализации различных алгоритмов регулирования тока возбуждения, позволяет получить любые тяговые характеристики;

‒ наибольшую эффективность независимое возбуждение для тепловоза 2ТЭ116 имеет для скоростей свыше 35 км/ч, при этом достигаются высокие показатели силы тяги, широкий диапазон регулирования скорости движения. До 35 км/ч рекомендуется использование последовательного возбуждения тяговых двигателей, что позволит обеспечить высокий пусковой момент, силу тяги и необходимую скорость набора позиций;

‒ работа системы независимого возбуждения может быть использована для имитации последовательного возбуждения тяговых электродвигателей за счет поддержания постоянным коэффициента компаундирования.

Рис. 5. График зависимости тока якоря от тока возбуждения: 1 — V = 20 км/ч; 2 — V = 32 км/ч; 3 — V = 40 км/ч; 4 — V = 46 км/ч; 5 — V = 60 км/ч; 6 — V = 80 км/ч; 7 — V = 100 км/ч.

  1. Системы управления электрическим подвижным составом постоянного тока: методические указания к курсовой работе для студентов специальности 190300 — «Подвижной состав железных дорог»: утв. ред.-изд. советом ун-та / В. О. Мельк, А. П. Шиляков; Омский государственный университет путей сообщения. — Омск: ОмГУПС, 2014. — 49 с.: рис. — Библиогр.
  2. Плакс, А. В. Системы управления электрическим подвижным составом: учебник для студентов вузов железнодорожного транспорта по специальности «Электрический транспорт железных дорог»: рекомендовано Управлением кадров и учебных заведений Федерального агентства железнодорожного транспорта / А. В. Плакс; Учебно-методический центр по образованию на железнодорожном транспорте. — Электрон. текстовые дан. — М.: УМЦ ЖДТ, 2005.

Похожие статьи

Модернизация схемы испытания тяговых двигателей.

Выбор системы возбуждения тяговых электрических двигателей. При использовании независимого возбуждения тяговых двигателей ток возбуждения

rд = 0,082 Ом — сопротивление обмоток ТЭД типа ЭД-125; I — ток двигателя, А; V — скорость тепловоза, км/ч.

Математическое моделирование процесса испытаний двигателей.

Наиболее распространенной схемой для испытаний тяговых двигателей постоянного тока последовательного возбуждения является схема, представленная на рисунке (рисунок 1). Схема работает следующим образом.

Моделирование параметров системы автоматического.

Выбор системы возбуждения тяговых электрических двигателей. При использовании независимого возбуждения тяговых двигателей ток возбуждения изменяется по закону: где — уставка тока возбуждения, А; k — коэффициент компаундирования обратной связи по.

К вопросу о совершенствовании технологии ремонта тяговых.

Работа тягового электродвигателя (ТЭД) при значительных перепадах

5. Овчаренко С. М. Повышение эффективности системы диагностирования тепловозов / С.М. Овчаренко

. влияющие на работу тягового привода, в том числе и на тяговый электродвигатель.

О некоторых особенностях уравнений А. В. Гапонова для.

В системе (2) можно принять: , так как, подавая на обмотку возбуждения постоянный ток и постоянное напряжение, мы регулируем угловую скорость якоря путем регулирования напряжения, подаваемого на обмотку якоря.

Модернизированная схема испытаний асинхронных тяговых.

Наиболее распространенной схемой для испытаний тяговых двигателей постоянного тока последовательного возбуждения является схема, представленная на рисунке (рисунок 1). Схема работает следующим образом.

Оценка эффективности применения универсального стенда для.

‒ первая часть — схема для испытаний тяговых двигателей постоянного тока (рисунок 1)

где — часовой ток, кА; — сопротивление обмотки якоря, Ом; — коэффициент ослабления возбуждения

Перспектива применения электродвигателей в автомобилях

Тяговый асинхронный электродвигатель для мотор-колёс. Следует отметить, что по способу управления автомобиль с мотор-колёсами не

Галимов Н. С., Иванов В. А., Фатыхов К. З. Автоматическое управление включением обмотки возбуждения генератора переменного тока.

Способ прогрева тепловозов от внешнего источника.

Сущность рассматриваемого способа прогрева заключается в том, что при подаче электроэнергии на тяговый генератор прогреваемого дизеля, обеспечения системы возбуждения и отключения топливных насосов высокого давления (ТНВД).

Двадцать лет внедрения асинхронного электропривода на городском электротранспорте

До конца ХХ в. на подвижном составе городского электротранспорта (трамвай, троллейбус, метро) на территории бывшего СССР применялся электропривод постоянного тока с релейно-контакторной системой управления (РКСУ). Такой привод обладает следующими недостатками:

  • Наличие коллектора у двигателей постоянного тока требовало обслуживания коллекторного щеточного узла и диктовало необходимость его защиты от попада­ния влаги, что в условиях эксплуатации достаточно сложно было обеспечить, поэтому в сырую (снежную) погоду увеличивалось число отказов тяговых двигателей.
  • Отсутствие возможности возвращения части энергии при торможении в контактную сеть (рекуперативное торможение).
  • Использование пуско-тормозных реостатов для регулирования скорости приводило к увеличению потерь на регулирование, особенно при движении на низких скоростях.
  • Необходимость использования большого количества контактных элементов, осуществляющих коммутацию под током (до 200 А) и требующих периодического обслуживания.
  • Инертность систем токовой защиты не позволяла ограничить токи в аварийных режимах.
Читать еще:  Что происходит когда двигатель заклинивает

Были попытки заменить РКСУ тиристорными системами управления (ТиСУ), но из-за несовершенства элементной базы широкого распространения такие системы не получили, а в 90-е годы прошлого века в большинстве случаев на подвижном составе ТиСУ были заменены на РКСУ.

Рис. 1. Первый в России трамвай с двигателем переменного тока

В 1996 г. был впервые испытан и передан в эксплуатацию на трамвайном вагоне ЛВС-86А (№ гор. 2200, рис. 1) тяговый электропривод переменного тока, разработанный ЗАО НПП «ЭПРО». В 1998 г. комиссией, созданной по распоряжению Министерства транспорта РФ от 07.12.1998, был успешно испытан комплект тягового электропривода переменного тока ЭПРОТЭТ-300 на серийном трамвае ЛВС-97А.

К концу 90-х годов впервые в Рос-сии тяговый привод переменного тока, разработанный и изготовленный ЗАО НПП «ЭПРО», был внедрен на всех видах городского электротранспорта — трамваях, троллейбусах и метрополитене.

С середины 2000 г. в ряде городов, таких как Москва, Санкт-Петербург, Казань, осуществляется закупка подвижного состава для наземного городского транспорта только с приводом переменного тока. В настоящее время несколько сот единиц наземного подвижного состава с приводом ЗАО НПП «ЭПРО» эксплуатируются во многих регионах России.

Сертифицирован и эксплуатируется подвижной состав с комплектом ЭПРОТЭТ на Украине, в Беларуси, в Болгарии. Только в Донецке комплект ЭПРОТЭТ установлен более чем на 100 троллейбусах производства Львовского автобусного завода (ЛАЗ).

Применение комплектов ЭПРОТЭТ позволило не только заменить тяговые двигатели постоянного тока на более надежные асинхронные тяговые двигатели, но и снизить эксплуатационные расходы как на техническое обслуживание (ТО) систем тягового привода (таблица), так и за счет экономии электрической энергии (нет потерь в пусковых реостатах и за счет возвращения части затраченной электрической энергии при рекуперативном торможении).

Таблица. Сравнительный анализ времени, затрачиваемого на выполнение ТО-1 и ТО-2 вагонов модели ЛВС-97К, зав. № 6203 (РКСУ), и модели ЛВС-97А, зав. № 6201 (с асинхронными тяговыми двигателями)

Тяговые преобразователи, поставляемые для трамваев и троллейбусов, практически идентичны. На рис. 2 показана схема силовых цепей комплекта для троллейбуса. В случае трамвая увеличивается число преобразователей и при необходимости число подключаемых двигателей. Например, на трамвайном вагоне модели АКСМ-843 (трехсекционный низкопольный, эксплуатируется в Санкт-Петербурге и Казани) установлены четыре преобразователя, управляющие четырьмя тяговыми асинхронными двигателями, а на вагонах моделей ЛМ-2008, МТТА и др. установлены два преобразователя, и каждый управляет двумя тяговыми двигателями каждой тележки. Для снижения износа ведущих колес на троллейбусах производства ЛАЗ модели Е301А2 (сочлененный троллейбус) тяговые двигатели установлены на тягаче и прицепе, а управляются от одного тягового преобразователя БСПТ-180. Такие троллейбусы эксплуатируются в Киеве, Донецке и Кременчуге.

Рис. 2. Схема силовых цепей универсального комплекта тягового электропривода ЭПРОТЭТ

Необходимо отметить универсальность тяговых преобразователей, которая позволяет после замены программы использовать их для управления тяговыми двигателями постоянного тока. Такое свойство позволяет применять БСПТ во время капитально-востановительного ремонта трамвайных вагонов и троллейбусов без замены тяговых двигателей.

Представляют интерес проведенные в IV кв. 2012 г. ГУП «Горэлектротранс» Санкт-Петербурга сравнительные испытания троллейбусов, позволившие подтвердить эффект снижения потребления электроэнергии на тягу при замене РКСУ на транзисторные системы управления.

Находившиеся в эксплуатации троллейбусы с РКСУ были оснащены измерительными приборами типа РЭЭТ-2, позволяющими фиксировать как потребляемую, так и рекуперируемую электроэнергию. В течение трех недель троллейбусы эксплуатировались на различных городских маршрутах. При этом ежедневно фиксировался пробег, потребляемая на тягу электроэнергия и рассчитывался удельный расход на 1 км пути. Затем эти же троллейбусы были переоборудованы с заменой РКСУ на транзисторные системы управления. После выполнения модернизации троллейбусы эксплуатировались на тех же городских маршрутах. Контролировались те же показатели, но наряду с расходом электроэнергии фиксировалась и энергия рекуперации. Эксперимент продолжался также в течение трех недель.

В итоге полученный по всем троллейбусам средний процент экономии электроэнергии на тягу по результатам проведенных испытаний составил 52,3%. Этот показатель, в зависимости от насыщенности региона подвижным составом, летнего либо зимнего периода, будет составлять около 40% от общего потребления электроэнергии.

Таким образом, более чем 20-лет­ний успешный опыт применения комплектов тягового привода ЭПРОТЭТ позволяет сделать следующие выводы:

  • Замена тяговых двигателей постоянного тока на асинхронные тяговые двигатели повышает надежность подвижного состава и снижает расходы на обслуживание.
  • Применение транзисторных преобразователей для управления тяговыми двигателями значительно снижает эксплуатационные расходы, связанные как с техническим обслуживанием системы управления, так и с экономией электроэнергии, потребляемой тяговым электроприводом.
  • Любой проводимый капитально-восстановительный ремонт подвижного состава должен сопровождаться заменой резисторно-контакторного привода транзисторной системы управления.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector