Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пуск и синхронизация синхронных двигателей

Пуск и синхронизация синхронных двигателей

Пуск и синхронизация синхронных двигателей различается в зави­симости от особенностей технологического процесса, в котором участ­вует электропривод. Различают легкий и тяжелый пуск синхронного двигателя. Легкий пуск синхронного двигателя происходит при малых моментах инерции электропривода и малых моментах сопротивле­ния Мс на валу электродвигателя. Тяжелый пуск осуществляется при относительно больших моментах инерции электропривода и момен­тах сопротивления Мс. Тяжелый пуск осуществляется за значительное время и вхождение двигателя в синхронизм осложняется.

Для мощных двигателей схемы силовых цепей практически сведе­ны с незначительными вариациями к одной, принципиальная схема ко­торой приведена на рис. 5.52.

Пуск синхронного двигателя осуществляется в асинхронном режи­ме. В большинстве случаев синхронный двигатель мощностью до не­скольких сотен киловатт пускают прямым включением в сеть. Крат­ность пускового тока при прямом пуске kt = = 4^-5.

индуктивное сопротивление рассеяния обмотки статора; Rj, X2о — ак_ тивное сопротивление и индуктивное сопротивление рассеяния обмотки ротора, приведенные к обмотке статора.

Рис. 5.52. Схема силовых цепей синхронного двигателя

Из анализа выражения для тока короткого замыкания (5.75) выте­кают три возможных способа токоограничения при асинхронном пуске синхронного двигателя:

• введение на время пуска добавочного активного сопротивле­ния /^iд05 в цепи обмоток статора;

• введение на время пуска добавочного реактивного сопротив­ления Х1доб в цепи обмоток статора;

• кратковременное уменьшение на время пуска фазного напря­жения обмоток статора.

Наиболее часто токоограничение при пуске синхронных двигате­лей осуществляется использованием реакторов L, включаемых в цепи обмоток статора. В некоторых случаях вместо реакторов L применяют­ся активные резисторы. Кратковременное понижение напряжения обмо­ток статора достигается включением в схему трансформаторов или ав­тотрансформаторов. Вариант схемы ограничения тока статора при пуске

синхронного двигателя с применением автотрансформатора приведен на рис. 5.53.

Рис. 5.53. Схема силовых цепей синхронного двигателя с автотрансформаторным ограничением пускового тока

Статические электромеханические характеристики, поясняющие процесс пуска синхронного двигателя с токоограничением, приведены на рис. 5.54.

Рис. 5.54. Статические электромеханические характеристики, поясняющие процесс пуска синхронного двигателя

Пуск двигателя начинается по характеристике 1, с добавочной ин­дуктивностью L в цепи обмотки статора или пониженном напряжении Uj обмотки статора. По истечении некоторого времени, когда пуско­вой ток уменьшится до тока переключения /іпер, добавочные индуктив­ности (см. рис. 5.52) из цепи обмотки статора выводятся, и процесс пус­ка продолжается по характеристике 2.

При пуске в асинхронном режиме импульсы управления на тири­сторы VS3. VSS не подаются и напряжение управляемого выпрямителя равно нулю. В обмотке возбуждения синхронного двигателя индуциру­ется переменная ЭДС скольжения, под действием которой через стаби­литроны VD1, 17)2 и 17)3, 17)4 открываются вспомогательные тири­сторы VSI и VS2. В процессе асинхронного пуска обмотка возбужде­ния синхронного двигателя закорачивается на разрядное сопротив­ление R. Когда двигатель достигает скорости близкой к подсинхрон — ной, ЭДС скольжения уменьшается, уменьшается и напряжение на управляющих электродах тиристоров VSI, VS2 и они перестают вклю­чаться. Разрядное сопротивление отключается от обмотки возбуждения. После чего в обмотку возбуждения подается постоянный ток от управ­ляемого выпрямителя VS3 . VS8.

Пусковая беличья клетка синхронного двигателя рассчитана на кратковременный режим работы, как правило, 20 + 50 с., длительная ра­бота в асинхронном режиме недопустима. Кроме обеспечения режима пуска, беличья клетка играет роль демпфирующей обмотки, стабилизи­руя переходные процессы при работе двигателя в синхронном режиме.

Для синхронных двигателей мощностью до нескольких сотен кило­ватт возможен пуск прямым включением в сеть без промежуточных пусковых характеристик. Примерный вид переходных процессов мо­мента М и скорости со при прямом пуске синхронного двигателя с уче­том электромагнитных переходных процессов приведен на рис. 5.55. Синхронный двигатель разгоняется в асинхронном режиме до подсин — хронной скорости оопс, после чего в момент времени tBKJl на его обмот­ку возбуждения подается напряжение возбуждения U0B и двигатель втягивается в синхронизм. Принципиально на процесс вхождения в синхронизм влияет момент подключения напряжения к обмотке возбу­ждения. Наиболее благоприятным моментом включения напряжения возбуждения является такое, при котором мгновенное значение наве­денной ЭДС в обмотке возбуждения будет равно нулю. Однако, как по­казали специальные исследования [11], относительное положение рото­ра относительно магнитного поля, созданного обмотками статора, не
имеет большого практического значения ни с точки зрения качества пе­реходного процесса, ни времени его окончания. Поэтому в большинстве практических случаев схема управления не усложняется путем введения устройств, обеспечивающих включение возбуждения в наиболее благо­приятный момент времени.

Синхронные двигатели, пуск и т.п

Синхронные двигатели, пуск и т.п — раздел Образование, Устройство и принцип действия синхронной машины Синхронная Машина, Как Любая Электрическая Машина, Обратима, Т.е. Может Работ.

Синхронная машина, как любая электрическая машина, обратима, т.е. может работать как в двигательном, так и в генераторном режимах. Однако особенности работы машины в том или ином режиме предъявляют различные требования к ее конструктивному исполнению. Наиболее существенным отличием условий работы синхронного двигателя является процесс включения его в сеть, называемый пуском.

Собственный пусковой момент синхронного двигателя равен нулю, так как вследствие инерции ротора поток возбуждения Фf не может сразу достичь синхронной частоты вращения потока статора Ф1. Поэтому после включения возбуждения двигателя в сеть при n = О поля Фf и Ф1 перемещаются относительно друг друга с большой скоростью, и среднее взаимодействие этих полей равно нулю.

Читать еще:  Глохнет двигатель при малых оборотах 2107

Пуск синхронного двигателя можно осуществить с помощью преобразователя частоты, который плавно повышает частоту вращения поля якоря Ф1 от нуля до номинального значения по мере разгона двигателя. Такой способ пуска называется частотным. Возможен также пуск синхронного двигателя при помощи дополнительного асинхронного двигателя, осуществляющего предварительный разгон недовозбужденного синхронного двигателя до подсинхронной частоты вращения. Затем производится включение синхронного двигателя в сеть и его синхронизация по методу грубой синхронизации подобно тому, как это делается для синхронных генераторов.

Однако наиболее распространенным является асинхронный пуск синхронного двигателя. С этой целью на роторе в специальных пазах полюсных наконечников явнополюсных синхронных двигателей размещают коротко-замкнутую обмотку (рис. 5.43) в виде латунных, медных ели бронзовых стержней 1, соединенных по торцам короткозамыкающими кольцами 2. Эта обмотка называете» пусковой. При использования массивных плюсов, а также в случае неявнополюсных синхронных двигателей с ротором в виде массивного стального цилиндра роль пусковой обмотки выполняет внешняя поверхность полюсов или цилиндра ротора

Схема асинхронного пуска представлена на рис. 5.44. В соответствии с этой схемой процесс пуска выполняется в два этапа. На первом этапе после включения обмотки статора в сеть ротор двигателя разгоняется под действием асинхронного момента до подсинхрояной частоты вращения. Скольжение ротора

Обмотка возбуждения в течение первого этапа пуска замыкается на активное сопротивление Rn = (5 — 10)rf. Оставлять обмотку возбуждения разомкнутой нельзя, так как вращающееся поле статора наводит в ней в начальный период пуска значительную ЭДС, способную «пробить» изоляцию обмотки возбуждения и опасную для эксплуатационного персонала.

Замыкать обмотку возбуждения накоротко также нецелесообразно, так как при этом возрастают провалы в кривой асинхронного момента Ма (рис.5.45). Обмотка возбуждена является однофазной обмоткой. Индуцированный в ней ток создает пульсирующее магнитное поле. Прямо вращающаяся составляющая этого поля создает момент Mfa1, а обратно вращающаяся составляющая — момент Mfa2, (см. п.4.13.2). При суммирования этих моментов с моментом пусковой обмотки Мn0 в кривой результирующего момента Ма = f(s) появляются провалы в зоне малых скольжений и в области скольжения s = 0,5, которые могут затруднить пуск двигателя. Введение в цепь обмотки возбуждения дополнительного сопротивления Rn позволяет уменьшить величину этих провалов. Для оценки пусковых свойств синхронного двигателя используются три показателя:

кратность пускового момента Mn/MH

кратность максимального момента Mm/MH

кратность входного момента Mвх/ MH.

Входной момент определяется при скольжении s = 0,05, примерно соответствующем верхнему уровню скольжения, при котором двигатель может войти в синхронизм после подачи возбуждения. Момент сопротивления на валу двигателя Мвн должен быть меньше развиваемого двигателем асинхронного момента Ма (рис. 5.45). Разность моментов Ма н Мвн определяет динамический момент

Чем больше динамический момент, тем меньше время пуска

Если динамический момент мал, то пуск затягивается. Это может привести к перегреву обмотки статора и пусковой обмотки из-за значительных токов, протекающих по этим обмоткам при асинхронном пуске. Пусковой ток статарной обмотки (при s = 1) в несколько раз превышает номинальный ток и обычно составляет

Второй этап пуска начинается, когда ротор достигнет установившейся частоты вращения (s=0,03 — 0,05), и обмотка возбуждения подключается к источнику постоянного тока (возбудителю). После включения возбуждения на ротор помимо асинхронного момента начинает действовать синхронный момент Мс, зависящий от тока возбуждения If и угла Θ.

Эта тема принадлежит разделу:

Устройство и принцип действия синхронной машины

Устройство синхронных машин синхронные машины вне зависимости от режима работы состоят из двух основных частей неподвижного статора выполняющего.. статор трехфазной синхронной машины аналогичен статору трехфазного.. ротор синхронной машины представляет собой электромагнит постоянного тока который создает магнитное поле вращающееся..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Синхронные двигатели, пуск и т.п

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Магнитное поле и параметры обмотки возбуждения
Явнополюсная машина. Обмотка возбуждения создает магнитный поток возбуждения синхронной машины (рис. 32-1), который сцепляется с обмоткой якоря и индуктирует в ней э. д. с. Расчет магнитной цепи яв

Реакция якоря
Ввиду несимметричного устройства индуктора возникает, необходимость рассматривать действие реакции якоря по продольной и поперечной осям в отдельности. Метод такого рассмотрения впервые был Предлож

Поперечная реакция якоря
При установке щеток на геометрической нейтрали /—1 (рис. 5-1, б) поле якоря направлено поперек оси полюсов, и в этом случае оно называется полем поперечной ре.акции якоря. Как следует из р

Продольная реакция якоря
Если щетки сдвинуты с геометрической нейтрали на 90° эл. (рис. 5-3), то поле якоря действует вдоль оси полюсов и называется полем продольной реакции якоря. Это поле в зависимости от направления ток

Векторная диаграмма напряжений синхронного генератора на Активной нагрузке
Для положения, которое занимает вращающийся ротор, ЭДС фазы А максимальна. Так как уг

Читать еще:  Что такое асинхронный режим синхронного двигателя

Отношение короткого замыкания
Отношением короткого замыкания ОКЗ называется отношение установившегося тока трехфазного кор

Условия включения генератора на параллельную работу
Необходимо выполнить следующие требования: 1. ЭДС включаемого генератора EГ должна быть равна напряжению сети Uc; 2. Частота генератора f

Изменение реактивной мощности. Режим синхронного компенсатора
В случае, если выполнены все условия включения генератора на параллельную работу, ток якоря равен нулю, машина работает на холостом ходу. Если ток возбуждения генератора после синхронизации увеличе

Синхронный компенсатор
Синхронные компенсаторы предназначены для повышения коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являетс

Регулирование активной мощности синхронной машины, включенной в сеть
После включения в сеть методом точной синхронизации синхронная машина работает в режиме холо

Регулирование реактивной мощности синхронной машины, включенной в сеть
Регулирование реактивной мощности в энергосистемах имеет такое же важное значение, как и регулирование активной мощности. Реактивная мощность необходима для создания магнитных полей во многих элект

Угловая характеристика синхронной машины
Угловой характеристикой синхронной машины называют зависимость Р1 = f(Θ) при постоянных токе возбуждения, напряжении и частоте сети (If = const, Uc = const, fc = const). Знание этой характерис

U-образные характеристики
Для анализа свойств синхронной машины, работающей параллельно с сетью, наряду с угловой характеристикой Р1 = f(Θ) важное значение имеют U-образные характеристики, представляющие зависимость то

Достоинства и недостатки синхронного двигателя в сравнении с асинхронным
Синхронные двигатели имеют следующие достоинства: а) возможность работы при cos φ = 1; это приводит к улучшению cos φ сети, а также к сокращению размеров двигателя, так как его т

Регулирование частоты вращения синхронных двигателей
Принципы регулирования. Частота вращения синхронного двигателя п2 равна частоте вращающегося магнитного поля n1 = 60f1/p. Следовательно, ее можно регулировать путем изменения часто

Частотное регулирование без самосинхронизации. Электромагнитный момент синхронного двигателя
Частотное регулирование без самосинхронизации. Электромагнитный момент синхронного двигателя М = см IаФв cos ψ = см IаФв cos (φ + θ). (6.48) При частотном регулиров

Способы пуска синхронных двигателей
В подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей

Векторные диаграммы синхронных двигателей
Векторные диаграммы синхронных двигателей можно изображать двояким образом.

Векторная диаграмма короткого замыкания
Зависимость Iк = f(Iв) называется характеристикой КЗ. Прямолинейность характеристики указывает на то, Что магнитная система генератора в этом режиме не насыщена. Чем больше размагничивающее действи

Снятие рабочих характеристик генератора
Характеристики генератора определяют его рабочие свойства и представляют зависимость между основными величинами, которыми являются э. д. с. в обмотке якоря Е, напряжение на его зажимах и, ток в яко

Регулировка мощности СГ
Трехфазный синхронный генератор — обратимая машина, т.е. если обмотку якоря подключить к шин

Методы пуска синхронных двигателей

Пуск синхронных двигателей связан с некоторыми трудностями. Угловая характеристика двигателя показывает то, что он может отдавать механическую энергию только в том случае, когда частота вращения ротора совпадает с частотой вращения магнитного поля машины. При неподвижном роторе результирующий механический момент на валу синхронного двигателя будет равен нулю. Для введения ротора двигателя в синхронизм используют различные методы.

Пуск двигателя с помощью дополнительно двигателя

Синхронный двигатель может быть подключен к сети с помощью установки синхронизации таким же методом, как и синхронный генератор. Для этого машина должна иметь на своей оси специальный пусковой двигатель, который может обеспечивать вращение синхронного двигателя с синхронной частотой, т. е. ввести машину в синхронизм с сетью. Обычно в качестве ускоряющих или вспомогательных двигателей используют асинхронные двигатели относительно малой мощности, имеющие такое же число полюсов, что и синхронный двигатель. Дополнительный двигатель заставляет вращаться синхронную машину со скоростью, почти равной синхронной, и затем машина включается параллельно сети по методу автосинхронизации.

Для разгона может использоваться асинхронный двигатель, число пар полюсов которого меньше на одну пару числа пар полюсов синхронной машины. Такой двигатель заставит вращаться синхронную машину с частотой несколько высшей частоты синхронизма. Если отключить пусковой двигатель от сети, вся группа, замедляя частоту, медленно проходит синхронную частоту, что позволяет включить машину синхронно с сетью.

Пуск синхронного двигателя изменением частоты

Синхронный двигатель может быть запущен с помощью изменения частоты приложенного напряжения, когда частота питающего напряжения изменяется от нуля до минимальной величины. Двигатель в этом случае работает в режиме синхронизации в течение всего времени запуска. Двигатель должен получать питание от синхронного генератора, частота вращения которого должна изменяться от нуля до номинального значения. В этом случае возбуждение генератора и двигателя не может быть реализовано с помощью собственного возбудителя, смонтированного на оси двигателя, так как при малой частоте практически отсутствует напряжение на его зажимах. На начальном периоде пуска генератор должен быть возбужден как можно большим током, а ток возбуждения двигателя должен быть таким, что для частоты синхронизма ЭДС должна быть в два раза меньше, чем ЭДС генератора. С увеличением частоты вращения ток возбуждения двигателя должен быть увеличен. Этот способ запуска синхронных двигателей используется в некоторых специальных установках.

Читать еще:  Что такое двигатель с анодным слоем

Пуск в режиме асинхронного двигателя

Синхронные двигатели могут иметь специальную пусковую обмотку. В этом случае он может быть запущен как обычный асинхронный двигатель с короткозамкнутым ротором. Такой способ пуска является сейчас основным.

Обмотка возбуждения синхронного двигателя в процессе пуска должна быть короткозамкнутой или нагружена сопротивлением, величина которого должна быть примерно в десять раз больше, чем сопротивление обмотки возбуждения. Если в процессе пуска оставить обмотку возбуждения, которая имеет большое количество витков, разомкнутой, в ней будет наводиться достаточно большое напряжение, которое может привести к пробою изоляции. При пуске синхронного двигателя в асинхронном режиме статорная обмотка включена в сеть, и двигатель создает вращающий момент. Ротор двигателя будет вращаться с частотой, близкой к синхронной частоте с небольшим запаздыванием относительно вращающегося магнитного поля. Если теперь обмотку возбуждения включить в сеть постоянного напряжения, двигатель войдет в синхронизм после возможного колебательного процесса установления ротора.

Такой способ пуска обычно используется для двигателей с неявно выраженными полюсами. Двигатели с явно выраженными полюсами, работающие в режиме холостого хода или при малой нагрузке, запускаются также при закороченной обмотке возбуждения.

Пуск синхронных двигателей с явнополюсным ротором с электромагнитным возбуждением

Пуск синхронного двигателя непосредственным включением в сеть невозможен, т.к. ротор из-за своей значительной инерции не может быть сразу увлечен вращающимся полем статора, частота вращения которого устанавливается мгновенно. В результате, устойчивая магнитная связь между статором и ротором не возникает. Для пуска синхронного двигателя приходится применять специальные способы, сущность которых состоит в предварительном приведении ротора во вращение до синхронной или близкой к ней частоте, при которой между статором и ротором устанавливается устойчивая магнитная связь.

В настоящее время практическое применение имеет способ пуска, получивший название асинхронного. Схема включения двигателя при этом способе пуска приведена на рисунке 6.4.

Невозбужденный синхронный двигатель включается в сеть. Возникшее при этом вращающееся магнитное поле статора наводит в стержнях пусковой клетки ЭДС, которые создают I2. Взаимодействие этих токов с полем статора вызывает появление на стержнях пусковой клетки электромагнитных сил Fэм. Под действием этих сил ротор приводится во вращение. После разгона ротора до частоты вращения, близкой к синхронной (n2≈0.95 n1), обмотку возбуждения переключателем П подключают к источнику постоянного тока. Образующийся при этом синхронный момент втягивает ротор двигателя в синхронизм. После этого пусковая обмотка двигателя выполняет функцию «успокоительной» обмотки, ограничивая качания ротора.

С увеличением нагрузочного момента на валу вхождение двигателя в синхронизм затрудняется. Наибольший нагрузочный момент, при котором ротор синхронного двигателя еще втягивает в синхронизм, называют моментом входа двигателя в синхронизм Mвх. Величина асинхронного момента Mа при частоте вращения n2≈0.95 n1 зависит от активного сопротивления пусковой клетки, т.е. от сечения стержней и удельного электрического сопротивления металла, из которого они изготовлены.

Следует обратить внимание, что выбор приведенного сопротивления пусковой клетки r2″, соответствующего значительному пусковому моменту (Мп″), способствует уменьшению момента входа в синхронизм (Мвх″) и, наоборот, при сопротивлении r2′, соответствующем небольшому пусковому моменту (Мп′), момент входа в синхронизм увеличивается (Мвх′ >Мвх″) (см. рис. 6.5).

В процессе асинхронного пуска обмотку возбуждения нельзя оставлять разомкнутой, .т.к. магнитный поток статора, пересекающий ее в начальный период пуска с синхронной скоростью, наводит в ней ЭДС. Вследствие большого числа витков обмотки возбуждения эта ЭДС достигает значений, опасных как для целости изоляции самой обмотки, так и для обслуживающего персонала. Для предотвращения этого обмотку возбуждения на период разгона ротора замыкают на активное сопротивление r (рис. 6.5), примерно в десять раз большее сопротивления обмотки возбуждения. Переключение зажимов И1 и И2 обмотки возбуждения с сопротивления r на зажимы возбудителя осуществляют переключателем П.

Замыкание накоротко обмотки возбуждения на время пуска двигателя нежелательно, т.к. при этом обмотка ротора образует однофазный замкнутый контур, взаимодействие которого с вращающимся полем статора также создает дополнительный асинхронный момент Mд. Однако при частоте вращения, равной половине синхронной, этот момент становится тормозящим и создает «провал» в характеристике пускового (асинхронного) момента (пунктирная кривая). Это заметно ухудшает пусковые свойства синхронного двигателя.

При асинхронном пуске синхронного двигателя возникает значительный пусковой ток. Поэтому пуск синхронных двигателей непосредственным включением в сеть на номинальное напряжение применяют при достаточной мощности сети, способной выдерживать без заметного падения напряжения броски пускового тока пяти- или семикратного значения (по сравнению с номинальным током). Если же мощность сети недостаточна, то можно применить пуск двигателя при понижении напряжения.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector