Avtoargon.ru

АвтоАргон
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные соотношения для двигателей постоянного тока

Основные соотношения для двигателей постоянного тока

Уравнение напряжений для цепи якоря по второму зако­ну Кирхгофа

(2.4)

Рис 2.1. Схемы включения двигателей:

а – независимого возбуждения; б – последовательного возбуждения;

в – смешанного возбуждения; сплошные стрелки – направления токов в генераторном режиме, штри­ховые – в двигательном

ЭДС обмотки якоря и момент

(2.5)

Уравнение электромеханической характеристики

(2.6)

Уравнение механической характеристики

(2.7)

В формулах (2.4–2.7) обозначены: Ra – сопротивление самой обмотки якоря относительно внешних зажимов; – добавочное сопротивление в цепи якоря; – ток обмотки якоря (рис. 2.1); – постоянная для конкретной машины; p – число пар полюсов; N – число эффективных про­водников обмотки якоря; – угловая скорость; Ф – магнит­ный поток в зазоре, ; – коэффициент полюсной дуги, = 0,6 ÷ 0,75; – полюсное деление, ; , – диаметр и длина якоря соответственно; – индукция в зазо­ре, = (0,7 ÷ 1,0) Тл; – скорость идеального холостого хода, ; – снижение скорости под влиянием нагрузки.

Из (2.6, 2.7) видно, что для двигателя независимого возбу­ждения при неизменных характеристики представ­ляются прямыми линиями, а их жесткость зависит от сопро­тивления якорной цепи и потока Ф. Следовательно, изменяя указанные параметры (U, Ф, ), можно регулиро­вать скорость электропривода.

На рис. 2.2 представлены механические характери­стики двигателя независимого возбуждения в различных ре­жимах работы при . При характеристика называется естественной, а осталь­ные – искусственные . Естественная характеристи­ка является жесткой, относительный статический перепад ско­рости . При U= const, Ф = const, все характеристики выходят из одной точки на оси ординат – щ, скорости идеального холостого хода, когда = 0, U= Е. Из графика же следуют и режимы работы (рис. 2.3).

Рис. 2.3. Энергетические режимы ДПТ

а – холостой ход; б – двигательный; в – генераторный параллельно

с сетью; г – короткое замыкание; д – генераторный последовательно

с сетью; е – генератор­ный независимо от сети

I квадрант. Двигательный режим – электрическая энер­гия потребляется из сети и преобразуется в механическую, (рис. 2.3, б).

II квадрант. Генераторный режим – энергия (механиче­ская) поступает с вала и преобразуется в электрическую. При этом она может отдаваться в сеть (рекуперация) при или рассеиваться в реостатах (динамическое или реостатное торможение) (рис. 2.3, в, е). В режиме рекуперации М

Энергетические режимы работы двигателя

Электрическая машина обладает свойством обратимости, то есть может работать как генератором, так и двигателем, переход из одного режима в другой происходит без изменения схемы включения [9; 14].

Энергетический режим работы машины может быть определен, исходя из направления двух переменных: электрических ЭДС (Е) и тока (I) или механических момента (М) и скорости (ω). При одинаковом направлении скорости и момента и разных направлениях ЭДС и тока имеет место двигательный режим. При противоположном направлении скорости и момента и одинаковом направлении ЭДС и тока имеем генераторный режим.

Граничными между генераторным и двигательным режимами являются режимы холостого хода и короткого замыкания, которых одна из электрических или механических переменных равна нулю. При холостом ходе М=0 и I=0, а при коротком замыкании ω=0 и Е=0.

Рассмотрим основные режимы работы электрической машины (рис. 4.2)

1. Двигательный режим М>0, , момент и направление вращения совпадают (характеристика I);

2. Режим холостого хода М=0, , двигатель не получает энергию из сети, за исключением энергии на возбуждение I=0 (с вала двигателя энергия тоже не снимается), (т. А — на характеристике);

3. Генераторный режим при работе машины параллельно с сетью (торможение с рекуперацией энергии в сеть) М

5. Режим работы генератора последовательно с сетью (торможение противовключением) М>Мкз, за счет изменения направления скорости ЭДС также меняет свою полярность, ток в якоре совпадает по направлению с приложенным напряжением и ЭДС . Электрическая энергия, поступающая из сети и вырабатываемая самой машиной, рассеивается в виде тепла в якорной цепи. (характеристика III)

6. режим автономного генератора (рис. 4.3) (динамическое торможение), якорь двигателя отключается от сети и замыкается на тормозной резистор. Механическая энергия, накопленная в системе, выделяется в виде тепла в якорной цепи. Этот режим используется на практике как тормозной. (характеристика IV).

Рис. 4.3. Схема включения ДПТ НВ в режиме автономного генератора

Из уравнения механической характеристики очевидны основные способы регулирования частоты вращения ДПТ НВ:

— механическая характеристика

— электромеханическая характеристика

1) изменением сопротивления якорной цепи R,

Асинхронные тяговые двигатели — Перевод асинхронной машины в генераторный режим

Содержание материала

  • Асинхронные тяговые двигатели
  • Режимы нагрузок асинхронных тяговых двигателей
  • Требования эксплуатации к характеристикам асинхронных тяговых двигателей
  • Формирование вращающейся МДС статорной обмотки
  • Требования к параметрам асинхронных тяговых двигателей
  • Преобразователи частоты
  • Основные требования к элементной базе преобразователей частоты
  • Способы повышения энергетических показателей ЭПС
  • Выходные преобразователи на основе автономных инверторов напряжения
  • Амплитудный и широтно-импульсный способы регулирования выходного напряжения инвертора
  • Особенности конструкции асинхронных тяговых двигателей
  • Особенности проектирования асинхронных тяговых двигателей
  • Электромагнитные процессы в силовых цепях ЭПС
  • Спектральный состав токов и напряжений на выходе преобразователей частоты
  • Устойчивость работы тяготей асинхронной машины в генераторном режиме
  • Перевод асинхронной машины в генераторный режим
  • Система регулирования частоты
  • Система регулирования напряжения
  • Защита полупроводниковых преобразователей от перенапряжений и сверхтоков
  • Отечественный опыт создания электровозов с асинхронными тяговыми двигателями
  • Зарубежный опыт создания ЭПС
Читать еще:  Антифриз попадает в камеру сгорания двигателя причины

Асинхронная машина способна перейти в генераторный режим при выполнении двух условий: 1) частота вращения ротора fвр должна быть выше частоты вращающегося магнитного поля статора f2, при этом абсолютное скольжение ротора f2= f1 — fвр — отрицательная величина; 2) должно быть обеспечено поступление в обмотки статора реактивной составляющей тока, необходимой для создания магнитного потока.
Первое условие обычно выполняется с помощью автоматического регулятора частоты, который измеряет частоту вращения ротора fвр и осуществляет регулирование частоты статора в соотношении f2 = fвр ± f2уст, причем в режиме тяги регулятор суммирует заданную уставку абсолютного скольжения f2уст с частотой fвр. При переводе машины из тягового в тормозной режим регулятор частоты f2 необходимо перевести из режима суммирования значений fвр и f2уcт в режим вычитания.
Выполнение второго условия зависит от конкретного варианта питающей сети и схемы преобразователя.
В дальнейшем будем считать, что перевод асинхронной машины в генераторный режим производится только при наличии напряжения в контактной сети, поскольку по требованиям безопасности в случае исчезновения питающего напряжения машинист должен остановить поезд пневматическим тормозом. Поэтому не рассматриваем способы реализации реостатного торможения асинхронной машины при отсутствии питающего напряжения. Электроснабжение электрифицированных железных дорог имеет высокую степень резервирования, и перерывы питания наблюдаются весьма редко. В этой связи следует отметить, что на электровозах Е-120 производства ФРГ система независимого от сетевого напряжения резисторного торможения была демонтирована, так как опыт эксплуатации показал, что случаи перерыва питания крайне редки и достаточно иметь на электровозе только систему рекуперативного торможения. Вначале рассмотрим процесс перевода тяговой асинхронной машины в генераторный режим при использовании в преобразователе автономного инвертора тока. При этом важно иметь в виду, что если заданное абсолютное скольжение fауст уменьшить до нуля, то на выходе регулятора частоты получим f1= fвр, т. е. асинхронная машина будет работать в режиме синхронной скорости. Если при этом на статор подано напряжение, то по его обмоткам протекает только намагничивающий ток, а момент машины равен нулю, т. е. условие f2уст = 0 соответствует режиму выбега локомотива.
Согласно принципу работы АИТ направление входного тока Id остается неизменным в двигательном и генераторном режимах асинхронной машины. Поэтому перед торможением следует вначале с помощью регулятора частоты перевести машину в режим синхронной скорости при f2густ = 0. При этом на инвертор должно быть подано напряжение Ud, полярность которого является для инвертора прямой, т. е. соответствующей тяговому режиму асинхронной машины. Напряжение Ud при этом незначительно, поскольку ток Id должен быть равен намагничивающему току, т. е. составлять примерно 30% номинального тока статора. При таких условиях асинхронная машина находится в режиме холостого хода и имеет магнитный поток, близкий к номинальному.
Перевод машины в генераторный режим заканчивается увеличением абсолютного скольжения до заданного значения f1уст с одновременным изменением полярности напряжения Ud на обратную (соответствующую генераторному режиму). Напряжение Ud должно быть затем увеличено для достижения заданного тока Id.
Последняя операция, т. е. изменение полярности напряжения Ud и регулирование его значения, наиболее просто может быть выполнена при питании АИТ через управляемый выпрямитель от сети переменного тока. В этом случае выпрямитель УВ (рис. 9.9, а) путем изменения угла отпирания тиристоров переводится из режима выпрямления в режим ведомого сетью инвертора ВСИ.
При питании от сети постоянного тока для изменения полярности напряжения Ud на входе инвертора требуются более сложные схемотехнические решения. В качестве примера на рис. 9.9, б представлена схема, реализованная фирмой Siemens на вагонах метрополитена.


Рис. 9.9. Схемы преобразователей на основе ЛИТ для режимов тяги и торможения
В тяговом режиме контактор К замкнут, напряжение Ud и ток Id регулируются с помощью тиристорного импульсного прерывателя ИП. При этом полярность напряжения на входе АИТ прямая (точка 1 подключена к «плюсу» Ud). Во время закрытого состояния ключа VS1 ток Id замыкается через диод VD2.
При переводе ЭПС в тормозной режим вначале осуществляется режим холостого хода асинхронной машины при f2уст = 0 и ток Id устанавливается на уровне номинального тока намагничивания. Затем выключается контактор К. В результате, как показано на рис. 9.9, в, полярность напряжения на входе АИТ становится обратной, поскольку к «плюсу» питающего источника через диод VD1 подключена точка 2. Регулирование напряжения Ud и тока Id производится с помощью ключа VS1, который периодически соединяет накоротко точки 1 и 2. Диод VD2 при этом исключает режим короткого замыкания питающего источника.
Перейдем к рассмотрению процесса перевода асинхронной машины в генераторный режим при использовании преобразователя с автономным инвертором напряжения, в цепях обратного тока которого используются диоды. Согласно принципу работы такого инвертора при переводе асинхронной машины из двигательного в генераторный режим полярность напряжения Ud на входе остается неизменной, а направление среднего (выпрямленного) тока Id изменяется на противоположное (рис. 9.10). Поэтому наиболее просто перевести асинхронную машину из двигательного в генераторный режим можно в том случае, если питающий источник обладает двусторонней проводимостью.
Таким свойством обладает сеть постоянного тока при ее непосредственном подключении к входу АИН (рис. 9.11, а). Считаем, что в инверторе напряжение регулируется внутренними средствами (методом ШИМ). В этом случае перевод асинхронной машины в генераторный режим осуществляется весьма просто и могут быть использованы два способа: без отключения инвертора от питающей сети и с отключением. В первом случае вводимую в регулятор частоты уставку скольжения вначале уменьшают до нуля и асинхронная машина переходит в режим холостого хода, потребляя намагничивающий ток, а ток Id практически становится равным нулю (рис. 9.10, б). Затем путем переключения регулятора в режим вычитания частот и повышения уставки абсолютного скольжения f1уст до требуемого значения переводят асинхронную машину в генераторный режим.

Рис. 9.10. Принципиальная схема ЛИН и диаграммы его напряжения и токов в режимах тяги (а), холостого хода (б) и торможения (в)

Читать еще:  Что такое двигатель постоянного тока с последовательным возбуждением


Рис. 9.11. Схемы преобразователей на основе АИН для режимов тяги и торможения
Во втором случае вследствие прекращения подачи управляющих импульсов на тиристоры инвертора отключают асинхронную машину от питающей сети. Локомотив при этом движется в режиме выбега, магнитный поток машины равен нулю. Перед вводом машины в генераторный режим переключают регулятор в режим вычитания частот, вводят в него заданное абсолютное скольжение и включают цепи, подающие на тиристоры сигналы управления. Напряжение на выходе инвертора постепенно повышают. Реактивная составляющая тока, создающая магнитный поток в асинхронной машине, поступает через тиристоры инвертора, которые подключены по отношению к полярности питающего напряжения сети в прямом направлении.
Первый из рассмотренных способов целесообразно применять в тех случаях, когда требуется быстро перевести машину из тягового в тормозной режим, второй способ — когда после прекращения тягового режима локомотив довольно продолжительное время движется в режиме выбега.
На линиях, электрифицированных по системе переменного тока. АИН получают питание через однофазный выпрямитель. Условие двусторонней проводимости питающего источника выполняется только в том случае, если встречно-параллельно выпрямителю В включен ведомый сетью инвертор ВСИ (рис. 9.11, в). Отметим, что четырехквадрантный преобразователь, используемый на электровозах Е-120 производства ФРГ и на советско-финском электровозе ВЛ86ф (см. главу 4), по существу состоит из параллельно соединенных диодного выпрямителя и тиристорного сетевого инвертора с принудительной коммутацией. При условии двусторонней проводимости выпрямительного звена перевод асинхронной машины из двигательного в генераторный режим может быть произведен теми же двумя способами, которые рассмотрены при питании АИН от сети постоянного тока.
Однако выполнение выпрямителя с двусторонней проводимостью увеличивает вдвое мощность выпрямительного звена преобразователя, заметно усложняя электрооборудование и увеличивая его массу и габаритные размеры. Поэтому более рациональной является схема, представленная на рис. 9.11, г. Здесь в тяговом и тормозном режимах используется одна и та же тиристорная выпрямительная установка, которая в тяговом режиме работает как управляемый выпрямитель, а в тормозном режиме — как ведомый сетью инвертор. При окончании тягового режима путем прекращения подачи управляющих импульсов на тиристоры выпрямителя снижают напряжение и магнитный поток машины до нуля. Переводят двухпозиционный тормозной переключатель ТП в режим торможения, регулятор частоты — в режим вычитания частот и устанавливают требуемое значение абсолютного скольжения.
Затем по каналам управления тиристорами переводят выпрямительную установку в режим ведомого сетью инвертора ВСИ.
Для возбуждения магнитного потока в обмотки статора асинхронного генератора должна поступать реактивная составляющая фазного тока через тиристоры АИН. Поскольку полярность выпрямленного напряжения ВСИ является обратной по отношению к тиристорам АИН, ВСИ не может обеспечить первоначальное возбуждение асинхронного генератора после выбега. Поэтому включением контактора К на АИН следует кратковременно подать прямое для тиристоров АИН напряжение от маломощного вспомогательного диодного выпрямителя ВВ. После возбуждения асинхронного генератора контактор К выключают. Реактивная составляющая тока машины продолжает поступать через тиристоры АИН от обратных диодов других фаз, так как в АИН происходит обмен реактивной энергией между фазами асинхронной машины. Так, на интервале от φ1 до 180° ток в тиристор VS1 и далее в обмотку фазы А поступает или от фазы В через диод VD3, или от фазы С через диод VD5 (см. рис. 9.10).
На последней стадии перевода асинхронной машины в генераторный режим постепенно повышают выпрямленное напряжение ВСИ и соответственно ток Id до требуемых значений.
Осциллограмма процесса входа тягового двигателя НБ-602 в режим рекуперативного торможения при возбуждении от вспомогательного выпрямителя ВВ дана на рис. 9.12, а. Из осциллограммы следует, что вход в режим рекуперативного торможения завершается примерно за 0,3 с после включения выпрямителя ВВ и за это время происходит плавное возрастание напряжения и тока генератора uф и ίΦ.

Рис. 9.12. Осциллограммы процесса входа асинхронного тягового двигателя в режим рекуперативного торможения (а) и кривой фазного тока двигателя при подключении к входу инвертора источника переменного напряжения (б)
При этом ведомый сетью инвертор из режима прерывистых токов плавно переходит в режим непрерывного тока, о чем свидетельствуют кривые напряжения u/вси и тока вторичной обмотки трансформатора iτρ.

Читать еще:  Электрогенераторы из асинхронных двигателей своими руками

Таким образом, экспериментально подтверждено, что и в случае подачи на фильтровый конденсатор переменного напряжения с частотой принадлежащей согласно уравнениям (9.23) области самовозбуждения, неконтролируемый переход асинхронных тяговых двигателей в генераторный режим не имеет места. Следовательно, при питании от АИН входной индуктивно-емкостный фильтр не создает условий для самовозбуждения и неконтролируемого перехода двигателя в тормозной режим.
Перевод асинхронной машины в генераторный режим возможен только при изменении знака абсолютного скольжения в регуляторе частоты. Результаты данных исследований также подтвердили, что фильтровый конденсатор Сф, установленный на входе АИН, благодаря преобразованию частот в инверторе не способен осуществить самовозбуждение асинхронной машины при переводе ее в режим электрического торможения без подачи напряжения в прямом для основных тиристоров направлении.
При реализации электрического торможения тяговой асинхронной машины определенные преимущества дает автономный инвертор напряжения, в цепях обратного тока которого вместо диодов используются тиристоры.

Как указывалось в главе 9, такой режим целесообразно использовать для торможения поезда на спусках с постоянной скоростью.
Кроме того, в схеме должен присутствовать реверсивный переключатель РП, который воздействует на систему управления преобразователем СУ и производит реверсирование асинхронной машины путем изменения чередования импульсов управления тиристорами двух фаз инвертора.

Работа асинхронного двигателя в генераторном режиме

В промышленном производстве и в быту широкое применение получили трехфазные асинхронные двигатели. Они отличаются простотой конструкции, надежностью в работе и высокими эксплуатационными качествами. Одним из преимуществ данных устройств, является работа асинхронного двигателя в генераторном режиме.

  1. Устройство асинхронного двигателя
  2. Генераторный режим асинхронных двигателей
  3. Асинхронный двигатель в режиме генератора

Устройство асинхронного двигателя

В зависимости от конструкции, все асинхронные двигатели могут иметь короткозамкнутый или фазный ротор. В первом случае, основными составными частями двигателя являются статор, в виде неподвижной части и ротор, который вращается вокруг вала, установленного в подшипники. Их сердечники включают в себя листы электротехнической стали, изолированные между собой. Обмотка ротора коротко замыкается с помощью перемычек в виде колец, из-за чего и получил свое наименование данный тип двигателей.

Фазный ротор отличается от первого варианта обмоткой, укладываемой в его пазах. Этот тип обмотки выполняется так же, как и на статоре. Ее концы соединяются с контактными кольцами, закрепленными на валу. По этим кольцам происходит скольжение щеток, соединяющих обмотку и реостат регулировки или пуска. Устройства с фазным ротором, более дорогие и требуют квалифицированного обслуживания. Поэтому, они применяются намного реже, по сравнению с обычными конструкциями электродвигателей.

Генераторный режим асинхронных двигателей

Основной функцией автономных трехфазных асинхронных генераторов, является преобразование механической энергии, поступающей от первоначального двигателя, в электричество. Благодаря своим преимуществам, работа асинхронного двигателя в генераторном режиме имеет большое значение при выработке электроэнергии в определенных условиях.

В сравнении с другими типами генераторов, здесь отсутствует коллекторно-щеточный механизм, из-за чего, устройство может работать более надежно и долговечно. Для асинхронного двигателя, отключенного от сети, используются различные первичные двигатели, обеспечивающие вращение. В данном случае, в действие вступает принцип обратимости, наблюдаемый в электрических машинах. Когда частота вращения становится синхронной, то остаточное магнитное поле, воздействуя на зажимы обмотки статора, образует определенную электродвижущую силу.

При подключении к зажимам обмотки батареи конденсаторов, начнется протекание емкостного опережающего тока. Благодаря влиянию конденсаторов, генератор самовозбуждается. В результате, происходит установка симметричной трехфазной системы напряжений во всех обмотках статора. Значение получаемого напряжения находится в зависимости от емкости каждого конденсатора и технических параметров машины. Таким образом, происходит превращение асинхронного электродвигателя в асинхронный генератор.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector