Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

КПД асинхронного двигателя

КПД асинхронного двигателя

При рассмотрении способов регулирования скорости на рис. 10-29 была приведена энергетическая диаграмма асинхронного двигателя. Подводимая к двигателю мощность

Если из Р1 вычесть все потери в двигателе, то полезная мощность на валу

где Р01 — потери в обмотке статора;

Рст1 — потери в стали статора; Р02 — потери в обмотке ротора; Р мех — потери на трение. Потерями в стали ротора можно пренебречь, так как частота f2 близка к нулю.

Рис. 10-37. Рабочие, характеристики асинхронного двигателя.

Рабочие характеристики асинхронного двигателя, приведенные на рис. 10-37, сходны с характеристиками двигателя постоянного тока параллельного возбуждения. Электрические машины строятся так, что максимум к. п. д. наступает при номинальной нагрузке или близкой к ней.

УЛУЧШЕНИЕ КОЭФФИЦИЕНТА МОЩНОСТИ СЕТЕЙ, ПИТАЮЩИХ АСИНХРОННЫЕ ДВИГАТЕЛИ

Все установки, использующие электрическую энергию переменного тока, должны, по возможности, работать при cos φ, близком к единице. На рис; 10-38 показана однолинейная схема электропередачи энергии от пункта питания 1 к асинхронным двигателям 3 через трансформатор 2.

Рис. 10-38. Схема улучшения cos φ в сети.

Известно, что в проводах электропередачи 4 протекает ток I = √(I 2 a + I 2 р), показанный на рис. 10-39. Слагающая тока Iа пропорциональна активной мощности Р, а реактивная слагающая Iр необходима для поддержания электромагнитных полей трансформатора и двигателей. Ток Iр со вершенно необходимей остается практически неизменным независимо от того, какая активная мощность Р передается по проводам. Если эта мощность, а следовательно, и ток Iа велики, то угол φ х мал, a cos φ 2 велик и использование электропередачи хорошее. Когда двигатели недогружены, Iасильно уменьшен и падает почти до величины Iа х, угол φ возрастает, a cos φ становится близким к cos φ х. Ток холостого хода IхIр достигает 10% Iн в трансформаторах и 40% Iн в асинхронных двигателях, поэтому использование передачи будет плохим. Таким образом, полная нагрузка асинхронных двигателей является необходимым условием их эксплуатации.

Рис. 10-39. Векторная диаграмма улучшения cos φ в сети.

Иногда при тяжелых пусках асинхронный двигатель приходится выбирать завышенной мощности и он работаете не догрузкой. Тогда, еслиР2 ≤ (40—45)% Р и статор нормально соединен в треугольник, его возможно пересоединить в звезду. Активная мощность, а значит и активный ток остаются неизменными, а реактивный ток уменьшается примерно в 3 раза и cos φ возрастает.

Ранее было указано, что увеличение cos φ возможно путем включения конденсаторов в точке 5 или лучше 6 сети (рис. 10-38). Однако при больших реактивных тока больший эффект дают синхронные компенсаторы.

Статья на тему КПД асинхронного двигателя

Энергетические соотношения

Активная мощность и потери. Напомним, что потребляемая двигателем электрическая мощность преобразуется в механическую. Эта мощность представляет собой активную мощность. Как и в любой другой машине, мощность, потребляемая двигателем из сети Р1, отличается от мощности на валу двигателя Р2 на значение мощности потерь в самом двигателе ∆ Р, т. е. P1 = P2 + ∆P.

Естественно, что чем меньше потери ∆ Р , тем больше КПД двигателя. Мощность потерь, нагревающих машину, складывается из мощности электрических, магнитных и механических потерь. Электрические потери ∆ РЭ возникают в обмотках статора и ротора, т. е. ∆ РЭ = ∆ РЭ1 + ∆ РЭ2 (здесь ∆ РЭ1 — потери в обмотке статора и ∆ РЭ2 — потери в обмотке ротора). Магнитные потери в магнитопроводе ∆ РМ1 возникают за счет явлений гистерезиса и вихревых токов в статоре ∆ РМ1 и в роторе ∆ РМ2 , т. е. ∆РМ = ∆РМ1 + ∆РМ2.

Потери механические вызваны силами трения в подшипниках, в скользящем контакте (щетка – кольцо), и ротора о воздушную среду ∆РМЕХ . На основе изложенного

Выражение (3.29) можно упростить, если пренебречь магнитными потерями в пакете ротора из-за их малости в сравнении с другими слагаемыми. Действительно, частота тока ротора в пределах до номинальной нагрузки составляет 1—4 Гц. При такой частоте тока, а значит, и поля потери из-за гистерезиса и вихревых токов в роторе весьма малы. Поэтому практически можно считать, что

Электромагнитная мощность и мощность на валу. Мощность, передаваемая магнитным полем от статора к ротору РЭМ, есть мощность, потребляемая из сети за вычетом потерь в статоре, т. е.

Читать еще:  Я поставил двигатель от опель на ваз

Мощность может быть представлена как произведение момента на угловую скорость Ω1 , т. е.

Механическая мощность ротора РМЕХ , вращающегося с угловой скоростью Ω, может быть представлена как

Потери в роторе составляют ∆РЭ2 , поэтому

Мощность на валу двигателя Р2 отличается от механической на значение механических потерь ∆РМЕХ , т. е.

Исходя из введенных понятий и формул (3.30)-(3.35), можно для лучшей наглядности показать при помощи энергетической диаграммы, представленной на рис. 3.20, распределение мощностей и потерь в асинхронном двигателе. Если подставить в формулу (3.34) значения мощностей через моменты (3.32) и (3.33), то можно показать, что электрические потери ротора пропорциональны скольжению.

Чем ближе частота вращения ротора к частоте вращения поля, тем электрические потери меньше. Следует отметить, что магнитные потери ∆РМ при изменении нагрузки двигателя от холостого хода до номинальной, так же как и в трансформаторе, являются постоянной величиной, т. е. не зависят от нагрузки.

Механические потери ∆РМЕХ также практически не зависят от нагрузки.

КПД двигателя. КПД двигателя есть отношение полезной мощности, т. е. мощности на валу двигателя (паспортной_мощности) Р2 , к потребляемой мощности из сети , т. е. .

Если постоянные потери обозначать через ∆Рс(Рс=∆Рм+∆Рмех), а переменные потери ∆Рэ, то

КПД двигателя изменяется в зависимости от нагрузки двигателя, поэтому в формуле КПД следует учесть коэффициент загрузки . Так как переменные электрические потери ∆Рэпропорциональны квадрату тока, формула КПД аналогична формуле КПД для трансформатора, т. е.

. (3.36)

Обычно КПД асинхронного двигателя составляет 0,75 — 0,95.

Большее значение КПД имеет двигатель большей мощности. График ,построенный согласно (3.36) изображен на рис. 3.21.

Коэффициент мощности. Кроме активной мощности P1, двигатель потребляет реактивную мощность Q1, в основном необходимую для образования вращающегося магнитного поля. Коэффициент мощности при синусоидальном токе

При холостом ходе cosφ1 имеет малое значение (примерно 0,1), так как активная мощность расходуется только на относительно небольшие потери в статоре и небольшие механические потери, а реактивная мощность имеет постоянное значение, так как магнитный поток постоянен.

С увеличением нагрузки активная мощность увеличивается, а реактивная мощность в пределах до номинальной нагрузки имеет неизменное значение. В результате cosφ1 увеличивается, однако при дальнейшем увеличении нагрузки сказывается увеличение потока рассеяния, т. е. реактивная мощность увеличивается и cosφ1 начинает уменьшаться. Кривая зависимости коэффициента мощности от загрузки двигателя показана на рис. 3.21.

Учитывая изложенное, следует сделать вывод, что необходимо стремиться к тому, чтобы двигатель работал при нагрузке, близкой к номинальной (β = 1).

Формула КПД электродвигателя

Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.

Характеристики КПД в электродвигателях

Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.

Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 – полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической – Р = А/t, как отношение работы к единице времени.

Коэффициент полезного действия обязательно учитывается при выборе электродвигателя. Большое значение имеют потери КПД, связанные с реактивными токами, снижением мощности, нагревом двигателя и другими негативными факторами.

Превращение электрической энергии в механическую сопровождается постепенной потерей мощности. Потеря КПД чаще всего связана с выделением тепла, когда происходит нагрев электродвигателя в процессе работы. Причины потерь могут быть магнитными, электрическими и механическими, возникающими под действием силы трения. Поэтому в качестве примера лучше всего подходит ситуация, когда электрической энергии было потреблено на 1000 рублей, а полезной работы произведено всего лишь на 700-800 рублей. Таким образом, коэффициент полезного действия в данном случае составит 70-80%, а вся разница превращается в тепловую энергию, которая и нагревает двигатель.

Для охлаждения электродвигателей используются вентиляторы, прогоняющие воздух через специальные зазоры. В соответствии с установленными нормами, двигатели А-класса могут нагреваться до 85-90 С, В-класса – до 110 С. Если температура двигателя превышает установленные нормы, это свидетельствует о возможном скором межвитковом замыкании статора.

Читать еще:  Где находится датчик температуры двигателя фольксвагене поло

В зависимости от нагрузки КПД электродвигателя может изменять свое значение:

  • Для холостого хода – 0;
  • При 25% нагрузке – 0,83;
  • При 50% нагрузке – 0,87;
  • При 75% нагрузке – 0,88;
  • При полной 100% нагрузке КПД составляет 0,87.

Одной из причин снижения КПД электродвигателя может стать асимметрия токов, когда на каждой из трех фаз появляется разное напряжение. Например, если в 1-й фазе имеется 410 В, во 2-й – 402 В, в 3-й – 288 В, то среднее значение напряжения составит (410+402+388)/3 = 400 В. Асимметрия напряжения будет иметь значение: 410 – 388 = 22 вольта. Таким образом, потери КПД по этой причине составят 22/400 х 100 = 5%.

Падение КПД и общие потери в электродвигателе

Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее – на ротор.

Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с вихревыми токами и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.

Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.

Коэффициент мощности косинус фи — наглядное объяснение простыми словами.

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

Читать еще:  Шелл хеликс hx8 5w30 для каких двигателей

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

В качестве примера можно взять импульсные блоки питания.

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

    во-первых, это повышенное потребление электроэнергии

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

    величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

    для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector