Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Крутящий момент редуктора

Крутящий момент редуктора

Принцип мотор-редуктора заключается в одновременном уменьшении количества оборотов, передаваемых на быстроходный вал и наращивании (контроле) силы, получаемой выходным валом. Обе величины – снижение оборотов и увеличение крутящего момента – являются ключевыми техническими характеристиками. Первую определяет передаточное число, а что собой представляет вторая величина?

Суть показателя

Согласно технической терминологии, крутящий момент редуктора – это расчетный показатель, вычисляемый произведением прилагаемой силы и длины плеча ее приложения (рычага) в метрах. Измеряется в Ньютон-метрах (1 Н*м означает, что при присоединении рычага длиной 1 м усилие, прилагаемое на его конце, не должно превышать 1 Ньютона, иначе привод не будет работать).

Тяга тем выше, чем ближе точка приложения усилия к оси выходного вала. Для иллюстрации этой характеристики удобнее рассматривать Ньютоны – единицы измерения силы – в более удобных для практики применения оборудования килограммах. Для примера можно взять цилиндрический 2-ступенчатый РМ-650, вводные условия следующие:

  • 1 кг = 9,81 Н;
  • передаточное число – 31,5;
  • количество оборотов на входе – 1,5 тыс. оборотов/минуту (максимальная величина для всех типов мотор-редукторов, кроме цилиндрических, для которых показатель может увеличиваться до 3 тыс. оборотов/минуту);
  • заложенный конструктивно крутящий момент редуктора на валу (тихоходном) при заявленных условиях – 5116 Ньютон*метр.

При «переходе» на килограммы получаем, что при метровой длине рычага (радиусе барабана, например, на тихоходном выходном валу) механизм сможет поднять максимальный груз весом 0,522 т (5116/9,81 = 521,5 кг). Приближение точки приложенного усилия – укорочение рычага вдвое до 50 см – даст увеличение показателя до 10232 Н*м. То есть максимальный вес груза на конце рычага увеличится до 1,043 т.

Максимально допустимый крутящий момент редуктора

Допустимый крутящий момент мотор-редуктора определяет условия, при которых последний сможет выдерживать усилие, чтобы обеспечить нормальную работу пары «электродвигатель – рабочий механизм», промежуточным звеном которой и выступает мотор-редуктор. При этом ключевым условием является нагнетаемая тяга, а она зависит от передаточного числа.

Крутящий момент мотор-редуктора в зависимости от его исполнения

Расчет начинается с типа устройства – для червячного редуктора и цилиндрического применяются разные подходы. Это связано со спецификой исполнения червячной и цилиндрической передачи.

Так, в червячном редукторе показатель, который отвечает за длину плеча прилагаемого усилия, с изменением модели, практически не меняется. Итоговый крутящий момент мотор-редуктора в большей степени зависит от прилагаемого усилия, которое меняется с увеличением количества зубьев на вращающемся колесе, а радиус рычага – колеса и червяка – становятся условной константой.

Пример – редуктор серии Ч-80. При любом количестве оборотов допустимый крутящий момент червячного редуктора фиксируется при передаточном числе 31,5, и вот почему:

  • червяк является многозаходным при малых передаточный числах, червячное колесо в этом случае имеет больше 31 зуба;
  • при большом передаточном числе червяк будет однозаходным, но количество задействованных зубьев от этого не поменяется (больше 31).

На выходе при всех условиях наибольшая толщина колесного зуба в червячном редукторе (мотор-редукторе) фиксируется при одном передаточном числе – 31,5. Поскольку нагрузка на него определяется толщиной зубьев (чем она больше, тем выше допустимый крутящий момент мотор-редуктора), такой принцип задает условия технического расчета. Правда, при расчетах крутящего момента редуктора следует учитывать и другие его конструктивные особенности – потери из-за трения по сравнению с цилиндрическими устройствами и сниженный КПД.

С механизмами на цилиндрической передаче ситуация обстоит иначе. Здесь нагнетаемая тяга создается за счет разницы диаметров шестерен. Диаметр/радиус шестерни цилиндрического модуля, таким образом, выступает ключевым фактором при расчете. А прилагаемое усилие одинаковое (в пределах серии) – зубья цилиндрической передачи нарезаются в одном размере для всех передаточных чисел.

Расчет крутящего момента мотор-редуктора

Расчет крутящего момента редуктора на валу производится с учетом условий его установки:

  • типа механизмов, с которыми будет работать мотор-редуктор (подъемники, смешивающие механизмы, транспортеры);
  • характера работы;
  • графика запуска;
  • места монтажа.

Для подъемных установок обычно используют червячный редуктор, здесь хорошо себя зарекомендовала серия редукторов МЧ или 2 МЧ. Их конструкция исключает прокручивание выходного вала под нагрузкой (позволяет отказаться от колодочного тормоза).

В мешалках разного типа или бурах хорошо себя показали 3МП и 4МП. Они «заточены» на равномерное распределение радиальной нагрузки, что важно при обслуживании механизмов такого принципа действия.

Для машин, занятых перемещением тяжелых грузов, на первое место выходит выносливость. Здесь подходят мотор-редукторы 1МЦ2С/4МЦ2С (крутящий момент редуктора на выходном валу увеличен).

Выбор мотор-редуктора по крутящему моменту

При выборе редуктора по крутящему моменту используют несколько показателей:

  • Крутящий момент редуктора. Обозначается как М2. Определяется с учетом паспортной мощности (Рn), коэффициента безопасности (S), КПД и срока эксплуатации (тоже расчетная величина, обычно принимается как 10 000 часов).
  • Номинальный крутящий момент редуктора Mn Указывается в паспорте, определяет предельную нагрузку, при которой устройство способно безопасно работать с учетом коэффициента безопасности и жизненного цикла.
  • Требуемый крутящий момент мотор-редуктора. Обозначается Mr Не может превышать Mn2.
  • Максимальному крутящему моменту редуктора присваивается индекс M2max, может рассматриваться как предельная пиковая нагрузка при заданных условиях (постоянные, изменяющиеся, с перерывами, частыми пусками/остановками).
  • Расчетный крутящий момент мотор-редуктора обозначается Mc2 и определяется индивидуально.
Читать еще:  Hyundai terracan сколько масла в двигателе

Расчет крутящего момента мотор-редуктора на выходном валу Mc2 производят по формуле:

где Mr2 – это необходимый (требуемый) показательдля мотор-редуктора, а Sf – эксплуатационный коэффициент мотор-редуктора (Service Factor). Результирующий показатель крутящего момента редуктора по формуле не может превышать номинального Mn2.

Профессиональный расчет и заказ мотор-редуктора

Если вы хотите получить качественную помощь в выборе изделий, наши специалисты помогут вам рассчитать крутящий момент редуктора (мотор-редуктора) на выходном валу и подобрать наиболее подходящую модель под конкретные условия его эксплуатации. ООО ПТЦ «Привод» занимается производством данных механизмов и поставляет свою продукцию по всей России, в страны ближнего зарубежья (СНГ).

Получить квалифицированную консультацию можно по телефону 8–800–2000–200 или онлайн, написав нам по адресу Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. . Здесь же опытные менеджеры, которые владеют всей актуальной информацией по каталогу предлагаемых червячных редукторов и цилиндрических, мотор-редукторов предоставят полную информацию о действующих ценах. Для удобства клиентов у нас на сайте есть функция обратной связи – просто заполните короткую форму, и мы сами вам позвоним.

cnc-club.ru

Статьи, обзоры, цены на станки и комплектующие.

Как измерить крутящий момент двигателя?

  • Отправить тему по email
  • Версия для печати

Как измерить крутящий момент двигателя?

Сообщение Nick » 19 сен 2011, 12:44

Как можно измерить крутящий момент двигателя? Статический момент измерить просто, приделываем к валу рычаг, тянем за него динамометром и запоминаем при каком усилии двигатель сдвинулся. Но что делать с крутящим моментом, да еще и при определенных оборотах?

Как построить график зависимости крутящего момента от оборотов в секунду для шагового электродвигателя? Может есть специальный прибор, которым его можно измерить (желательно для широкого диапазона двигателей)?

Use the Console, Luke.

Re: Как измерить крутящий момент двигателя?

Сообщение aftaev » 19 сен 2011, 14:44

Re: Как измерить крутящий момент двигателя?

Сообщение Nick » 19 сен 2011, 15:06

Как зачем для контроля качества входящей (исходящей) продукции. Кстати, а вот тот момент на графике, он отражает максимальный момент на валу или момент стабильной работы. Т.е. при такой нагрузке двигатель будет работать штатно или нет?

А не помнишь как назывался тот динамометр, без названия шибко тяжело искать?

Use the Console, Luke.

Re: Как измерить крутящий момент двигателя?

Сообщение aftaev » 20 сен 2011, 17:24

Заводы могут позволить себе купить такие приборы.
При желнии можно сделать макетик который будет измерять момент удржания. Тензодатчик подключаем к компу. Включаем редуктор который тянет медленно. На омпе рисуется график в кг. Как только сорвали все.
Другой например макетик: подключается, двиг к маслянному насосу и замеряется создаваемое давление на определенных оборотах. Поддерживать всегда опредленную вязкость масл(температуру), и измерять давление цифровыми датчиками давления. Подключитьэто к компу и смотри обороты=давление(момент) Вот тебе и график.
Другое дело, хотят они этого делать, и есть у них на заводе отдел ОТК.

Порой складывается впечетление продавцы и производители ШД не проверяют даже на холостое вращение. Там же ажно 4 провда нужно прикрутить
Знакомая фирма занимается разработкой щитов управления для нефтяных качалок. Вот свои шкафы перед отправкой они тестируют. Есть них для этого 30квт двиг. со спец. приспособой которая тормозит двиг, проверяется разная защита. Самое интересное это вибро стол. Ставят щит, и трясут несколько часов. Вот если после этого он работает и ничего не отвалилось значит сборка хорошая. Это дешевле обходитя им чем потом оплачивать самолет + машину в степь к тушанчикам где стоят нефтяные качалки.

Что важнее: крутящий момент или мощность двигателя?

Так уж повелось, что любого автолюбителя при оценке способностей машины в первую очередь интересует такой показатель, как мощность. Но не менее важной характеристикой является крутящий момент. И вот почему.

«Лошадиная» единица измерения мощности продолжает пользоваться спросом, причем не только у простого люда, но и на государственном уровне. Для этого достаточно взглянуть на квитанцию об уплате транспортного налога.

Между тем, появившаяся в период промышленной революции «л. с.» весьма условна. А все потому, что она определяет относительный уровень производительности среднестатистической лошади путем определения усилий, необходимых для подъема 75-килограммового груза на один метр за одну секунду. Новая единица измерения, взятая на вооружение фабрикантами для оценки превосходства стационарных механизмов над животными, со временем перекочевала в мир подвижного состава.

Позже шотландский инженер Джеймс Уатт ввел в обращение официальную единицу измерения мощности своего имени – «Вт», которую для удобства использования укрупнили до «кВт». Ватт, синхронизированный с л. с. в соотношении 1 кВт = 1,36 л. с., так и не добился всеобщей любви, оставив пальму первенства конской силе. Однако мощность мощностью, но, как говорится, двигает машину не она, а крутящий момент, измеряемый в ньютон-метрах (Н∙м).

Что такое крутящий момент?

У многих автомобилистов нет адекватного представления о том, что это за «зверь». О нем, впрочем, как и о мощности, бытует расхожее мнение: чем больше, тем лучше. По сути, это тесно связанные характеристики. Мощность в ваттах не что иное, как крутящий момент в ньютон-метрах, умноженный на число оборотов и на 0,1047. Другими словами, мощность демонстрирует количество работы, выполняемой двигателем за определенный промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Если, скажем, автомобиль завяз в глинистом грунте и обездвижился, то производимая им мощность будет равняться нулю. Ведь работа не совершается. А вот момент, хотя его и не хватает для движения, присутствует. Крутящий момент без мощности существовать может, а мощность без момента — нет.

Читать еще:  В какую сторону откручивать сливную пробку на двигателе в логане

Главным достижением работающего мотора при превращении тепловой энергии в механическую является момент, или тяга. Высокие моментные значения характерны для дизельных двигателей, конструктивная особенность которых – большой (больше диаметра цилиндра) ход поршня. Большой крутящий момент у дизеля нивелируется относительно низким допустимым числом оборотов, которые ограничивают для увеличения ресурса. Высокооборотистым бензиновым моторам свойствен «крен» в сторону мощности, ведь их детали отличаются меньшим весом. И степень сжатия тоже ниже. Правда, современные силовые агрегаты – и дизельные, и бензиновые – совершенствуясь, становятся ближе и конструктивно, и по показателям. Но пока банальное правило рычага сохраняется: выигрывая в силе, проигрываешь в скорости. И, соответственно, в расстоянии.

Лучшие черты двигателя определяются совокупностью оптимальных значений мощности и тяги. Чем раньше наступает максимум крутящего момента и чем позже пик мощности, тем шире диапазон возможностей силового агрегата. Близкие к оптимальным характеристики имеют электрические двигатели. Они располагают тягой, близкой к максимальной, практически с начала движения. В то же время значение мощности прогрессивно возрастает. Существенным фактором в вопросах определения мощности и крутящего момента являются обороты двигателя. Чем они выше, тем большую мощность можно снять.

В этом контексте уместно упомянуть о гоночных моторах. Из-за относительно скромных объемов они не блещут умопомрачительным крутящим моментом. Однако способны раскручиваться до 15–20 тыс. оборотов в минуту (мин -1 ), что позволяет им выдавать супермощность. Так, если рядовой силовой агрегат при 4000 об/мин генерирует 250 Н∙м и порядка 140 л. с., то при 18 000 мин-1 он мог бы выдать в районе 640 л. с.

К сожалению, повышать частоту вращения довольно сложно. Мешают силы инерции, нагрузки, трение. Скажем, если раскрутить мотор от 6000 до 12 000 мин-1, то силы инерции возрастут вчетверо, что потенциально грозит опасностью перекрутить мотор. Повысить величину крутящего момента можно с помощью турбонаддува, но в этом случае негативную роль начинают играть тепловые нагрузки.

Принцип максимальной отдачи мощности красноречиво иллюстрируют моторы болидов «Формулы-1», имеющие весьма скромный объем (1,6 литра) и относительно невысокий показатель тяги. Но за счет наддува и способности раскручиваться до высоких оборотов выдают порядка 600 л. с. Плюс к тому, конструкция у «Ф1» – гибридная, и электродвигатель, дополняющий основной мотор, при необходимости добавляет еще 160 «лошадей».

Важной характеристикой, отражающей возможности мотора, является диапазон оборотов, при котором доступна максимальная тяга. Но еще важнее эластичность двигателя, то есть способность набирать обороты под нагрузкой. Другими словами, это соотношение между числами оборотов для максимальной мощности и оборотов для максимального крутящего момента. Оно определяет возможность снижения и увеличения скорости за счет работы педалью газа без переключения передач. Или возможность езды на высоких передачах с малой скоростью. Эластичность, к примеру, выражается способностью автомобиля разгоняться на пятой передаче с 80 до 120 км/ч на пятой. Чем меньше времени займет этот разгон, тем эластичнее двигатель. Из двух двигателей одинакового объема и мощности предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также облегчит работу трансмиссии.

А если все-таки задаться вопросом о том, что важнее – крутящий момент или мощность, деля мир на черное и белое, ответ будет предельно прост: так как это зависимые величины, важно и то и другое.

Индикаторный крутящий момент

Крутящий момент — это произведение силы, вращающей кривошип, на радиус кривошипа. Крутящий момент выражается в ньютонометрах (Н • м). Развивая определенный крутящий момент, двигатель совершает работу.

При работе двигателя на его коленчатом вале развивается крутящий момент, который через механизмы трансмиссии передаётся на ведущие колёса автомобиля и приводит автомобиль в движение. Крутящий момент (Mk) равен произведению силы (F) на плечо её действия (r) и измеряется в ньютонах, умноженных на метр (H x m) или в килограмм силах, умноженных на метр (кгс x м).

В двигателе силой действия является давление газов. Плечом действия силы является кривошип коленчатого вала. Чем выше давление газов, действующее на поршень, и больше радиус кривошипа, тем больший крутящий момент развивает двигатель. Величина давления рабочих газов зависит от ряда условий, рассмотренных в предыдущем подразделе (Мощность двигателя). Радиус кривошипа определяется конструкцией двигателя.

Крутящий момент двигателя растёт с увеличением оборотов коленчатого вала и достигает максимального значения на т.н. «оборотах максимального крутящего момента». Обороты коленчатого вала, соответствующие оборотам максимального крутящего момента, для разных типов двигателей лежат в пределах 1500 – 3000 об/мин (дизели) и 3000 – 4500 об/мин (бензиновые моторы). «Привязка» максимального крутящего момента к оборотам коленчатого вала, как и в случае с мощностью, обусловлена настройкой газораспределительного механизма мотора его впускного и выпускного тракта, а также системы питания и управления двигателем.

Читать еще:  Шум при запуске двигателя лансер 9

Мощность и крутящий момент двигателя связаны формулой: Mk = 716,2 Pef/n (кгс м);

Крутящий момент передаётся трансмиссией на ведущие колёса автомобиля и определяет силу тяги ведущих колёс: Ft = Mk x c x η/r, где Ft – сила тяги; Mk – момент крутящий; c – суммарное передаточное число трансмиссии; η – КПД трансмиссии (0,88 – 0,95); r – радиус ведущих колёс.

С точки зрения потребительского интереса к продукции автопрома, упрощённо, но можно говорить о том, что крутящий момент определяет тяговые характеристики автомобиля. Чем больший крутящий момент развивает двигатель, тем выше тяговые усилия на ведущих колёсах. Быстрый рост крутящего момента двигателя указывает на хорошую разгонную динамику автомобиля благодаря интенсивному увеличению силы тяги ведущих колесах.

Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше двигатель приспособлен к изменению дорожных условий (тем реже придется переключать передачи).

Большими крутящими моментами обладают малооборотистые моторы.

Построение индикаторной диаграммы

Тепловой расчет двигателя завершается построением индикаторной диаграммы рабочего процесса в координатных осях p-V. Индикаторная диаграмма, изображенная в этих осях, представляет собой зависимость давления газов в цилиндре от его объема. При построении индикаторной диаграммы следует помнить, что рабочий процесс в 4-татных двигателях происходит за два оборота коленчатого вала, т.е. за четыре хода поршня двигателя, а в 2-тактных за один оборот коленчатого вала, т. е. за два хода поршня.

Расчетная индикаторная диаграмма строится по значениям давлений и объемов в характерных точках расчетного цикла (1, 2, 3, 4, 5, 6, 7, 8) и значениям показателей политроп сжатия и расширения (n1, n2). В качестве примера на рис. 1.2 представлены индикаторные диаграммы 4- и 2-тактных двигателей.

А б
Рис. 1.2. Примерный вид расчетных индикаторных диаграмм 4-тактного (а) и 2-тактного (б) двигателей

1.9.1. Порядок построения индикаторной диаграммы 4-тактного двигателя

Построение индикаторной диаграммы начинается с процесса наполнения, который представляет собой изобару 8–1 и строится по значениям давления и объема двух ранее найденных точек р8, р1, V8, V1.

Процесс политропного сжатия 1–2 описывается уравнением

. (1.30)

Поэтому давление в любой точке политропного сжатия будет находиться как

, (1.31)

где рi, Vi – давление и объем на i-ом промежуточном участке политропного сжатия.

Процессы изохорного (2–3) и изобарного (3–4) горения также описываются двумя точками и соответствующими в них значениями давления и объема р2, р3, р4, V2, V3, V4.

Процесс политропного расширения 4 – 5 описывается уравнением

. (1.32)

Давление в любой точке процесса расширения на участке 4 – 5

, (1.33)

где рi, Vi – давление и объем на i-ом промежуточном участке политропного расширения.

Процесс выпуска отработавших газов (участок 5–6–7) описывается точками, рассчитанными ранее: р5, р7, V5, V6, V7. А значение величины давления р6, оно же давление на выходе из турбины рг, определяется следующим образом

. (1.34)

После чего необходимо замкнуть полученную индикаторную диаграмму, вернувшись в точку начала построения 8.

3. Среднее эффективное давление, эффективный КПД двигателя и удельный эффективный расход топлива.

Среднее эффективное

Среднее эффективное давление ре — условное постоянное давление в цилиндрах двигателя, при котором работа, производимая в них за один такт, равна эффективной работе за цикл. Оно, так же как и среднее индикаторное давление, — мера удельной работы. Единица измерения: МПа или Дж/л.

Среднее эффективное давление можно представить как отношение эффективной работы Le двигателя за один цикл к рабочему объему цилиндра Vh:

Это давление можно также представить как разность между средним индикаторным давлением рi— и средним давлением механических потерь рм, т. е.

При работе автомобильных двигателей на номинальном режиме значения ре находятся в следующих пределах: для четырехтактных карбюраторных двигателей 0,6. 1,1 МПа; для четырехтактных дизелей без наддува 0,55. 0,85 МПа; с наддувом до 2 МПа; для газовых двигателей 0,5. 0,75 МПа; для двухтактных высокооборотных дизелей 0,4. 0,75 МПа.

Эффективный КПД

Важным показателем является коэффициент полезного действия (КПД) двигателя, показывающий, какое количество энергии топлива преобразуется в механическую работу.

Характеристика двигателя, отражающая степень использования теплоты с учетом всех видов потерь как тепловых, так и механических. Представляет собой отношение полезной механической работы ко всей затраченной теплоте.

По определению выше:

где Ae – полезная механическая работа; Q1 – затраченная теплота.

Также можно выразить эффективный КПД, используя другие коэффициенты полезного действия двигателя:

ηe = ηi·ηm = ηt·ηg·ηm,

где ηi – индикаторный КПД; ηm – механический КПД; ηt – термический КПД; ηg – относительный КПД.

Например, при работе двигателя внутреннего сгорания 1/3 энергии топлива преобразуется в механическую работу, 1/3 путем охлаждения передается в окружающую среду и 1/3 отводится в виде теплоты, содержащейся в отработавших газах. Любое использование тепловых потерь двух последних видов означает экономию энергии, более рациональное использование мощности двигателя и улучшение теплового, баланса автомобиля.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector