Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ конструкций двигателей внутреннего сгорания

Анализ конструкций двигателей внутреннего сгорания

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе по дисциплине «Теплотехника»

Тема: «Анализ конструкции и расчет элементов теплового двигателя (ДВС)»

________________Москаленко Александр Владимирович_________________

(дата, подпись, фамилия, имя, отчество)

Группа _302____ № зачетной книжки _____07-3.050_______________

Специальность__190603 «Сервис автомобильного транспорта»____________

Руководитель проекта Шилин Б.И.______

(подпись, фамилия, инициалы)

Члены комиссии ________________

(подпись, уч. степ., уч. зв., фамилия, инициалы)

(подпись, уч. степ., уч. зв., фамилия, инициалы)

БРЯНСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО- ТЕХНОЛОГИЧЕСКАЯ

Кафедра энергетики и автоматизации производственных процессов

Москаленко Александр Владимирович_____________________________

Группа__САТ-302___№ зачетной книжки__05-3.050_____________________

1. Тема:_____Анализ конструкции и расчет элементов теплового__________

2. Срок представления к защите_______

3. Содержание пояснительной записки

3.2._ Анализ конструкций двигателей внутреннего сгорания ______________

3.3._ Анализ системы охлаждения двигателя автомобиля ВАЗ 2107_________

3.4._ Расчет теплопроводности через многослойную цилиндрическую стенку

3.5._ Расчет теплообмена при естественной конвекции ___________________

3.6._ Расчет характеристик цикла теплового двигателя ___________________

3.7._ Конструктивный тепловой расчет рекуперативного теплообменного___

3.8._ Список используемой литературы ________________________________

4. Перечень графических материалов

Рекуперативный теплообменный аппарат (ф. А1)____________________

Задание принял к исполнению _____________________________

Содержание

2. Анализ конструкций двигателей внутреннего сгорания……5 стр.

3. Анализ системы охлаждения двигателя автомобиля ВАЗ 2107………………………………………………………….…9 стр.

4. Расчет теплопроводности через многослойную цилиндрическую стенку…………………………………………………………16 стр.

5. Расчет теплообмена при естественной конвекции…………23 стр.

6. Расчет характеристик цикла теплового двигателя…………26 стр.

7. Конструктивный тепловой расчет рекуперативного теплообменного аппарата……………………………………33 стр.

8. Список используемой литературы…………………………..40 стр.

Введение

В данной курсовой работе был произведен тепловой расчет элементов теплового двигателя, который включает в себя:

· Теплопроводность через многослойную цилиндрическую стенку

· Теплообмен при естественной конвекции

· Расчет характеристик цикла теплового двигателя

· Конструктивный тепловой расчет рекуперативного теплообменного аппарата

Расчет теплопроводности через многослойную цилиндрическую стенку помогает нам выяснить роль образования дополнительных слоев и их воздействие на процесс теплопередачи.

Расчет теплообмена при естественной конвекции состоит в анализе характера взаимодействия стенки двигателя с окружающей средой.

Расчет характеристик цикла теплового двигателя позволяет нам просмотреть реальную картину, происходящую в двигателе, что необходимо при расчете технологических особенностей цилиндра.

При конструктивном тепловом расчете рекуперативного теплообменного аппарата мы находим количество трубок, размеры и материал трубок аппарата.

Анализ конструкций двигателей внутреннего сгорания.

Рис. 1. Двигатель ВАЗ 2105, четырехцилиндровый, четырехтактный, карбюраторный, с жидкостным охлаждением.

Блок цилиндров двигателя – алюминиевый сплав, с неразборными гильзами .Уплотнение блока цилиндров с головкой цилиндров осуществляется асбестальной прокладкой.

Головки цилиндров— из алюминиевого сплава, вставными седлами и направляющими клапанов. Каж­дая головка прикреплена к блоку цилиндров семнад­цатью болтами. Болты крепления головок к блоку необходимо затя­гивать специальным, динамометрическим ключом на хо­лодном двигателе. Момент затяжки должен составлять 90. 11О Н·м (9. 11 кгс·м) Запрещается подтягивать болты крепления головок цилиндров при температуре двигате­ля ниже 0 0 С. В этом случае следует предварительно прогреть двигатель, а затем подтягивать болты.

Для улучшения топливной экономичности двигателя применяются головки блока цилиндров с винтовыми впускными каналами и уменьшенным объемом камер сгорания. Степень сжатия повышается до 7,1.

Поршневые пальцы — плавающее, фиксируется в поршне двумя стопорными кольцами. Пальцы изготов­ляют с высокой точностью и подбирают к поршням и шатунам, сортируя на четыре группы наружному диаметру. Обозначение группы, наносят краской на поршне — на внутренней поверхности (на одной из бобышек), на шатуне — на наружной цилиндрической поверхности малой головки, на пальце — на внутренней поверхности.

При сборке палец, поршень и шатун комплектуют из деталей только одной группы. Во избежание задиров на сопряженных поверхностях сборка пальца с поршнем должна проводиться при нагреве поршня до температуре 55 0 С. Нельзя нагревать поршни открытым пламенем.

Шатуны — стальные, двутаврового сечения. В нижней головке шатуна установлены сталеалюминевые тонкостенные вкладыши толщиной мм. В верхнюю головку шатуна запрессована бронзовая втулка.

Вкладышиизготовлены с высокой точностью. Операции шабрения, подпиливания стыков или применение прокладок при установке тонкостенных вкладышей не допускаются.

При установке на двигатель поршня в сборе с ша­туном канавка или метка на днище должна быть всегда обращена в сторону переднего конца коленчатого вала. В комплекте поршень- шатун в сборе, предназначенном­ для левой группы цилиндров, метки на стержне шатуна и на днище поршня должны быть обращены в одну сторону, а в комплекте для правой группы цилиндров- разные стороны.

3атягивать гайки болтов шатуна необходимо дина­мометрическим ключом; момент затяжки paвен 51 Н·м (5,6…6,2 кгс·м). Проверять и в случае необхо­димости подтягивать гайки болтов шатуна необходимо каждый раз при снятии поддона картера.

Коленчатый вал— стальной, с закаленными шейками, пятиопорный, с каналами для смазывания шатунных шеек и полостями в шатунных шейках для очистки масла. Полости закрыты пробками с внут­ренним шестигранником под ключ. Момент затяжки пробок не должен превышать 30 Н·м (3 кгс·м). Пробка может выступать из вала не более чем на высоту фаски. Полости следует очищать при ремонте двигателя, связанным с демонтажом коленчатого вала.

У коренной шейки диаметр 50-0,020 мм, а у шатунной 49-0,020мм. Вкладыши коренных подшипников — ­сталеалюминевые, толщиной мм, взаимозаменяемые на всех опорах, кроме задней.

Болты крышек коренных подшипников нужно затя­гивать динамометрическим ключом. Момент затяжки, должен быть равен 51 Н·м. Про­верять и в случае необходимости затягивать болты крышек кopeнных подшипников каждый раз при снятии масляного поддона. При износе вкладышей шатунных или коренных подшипников надо обязательно одновре­менно заменять обе половины вкладышей. На передней коренной шейке в проточке блока цилиндров устанавли­вают две сталеалюминевые упорные шайбы в виде двух полуколец каждая, предохраняющие вал от осевых перемещений. Коленчатый вал динамически сбалансирован в сборе с маховиком и сцеплением.

Маховик — чугунный, со стальным зубчатым венцом для пуска двигателя от стартера, прикреплен к фланцу заднего конца коленчатого вала шестью болтами. При сборке маховика с коленчатым валом надо иметь в виду, что одно из отверстий крепления маховика смещено на 2 0 . При креплении маховика к фланцу коленчатого вала затягивать гайки равномерно, момент затяжки должен быть равен 140. 150 Н·м. Необходимо следить за тщательностью шплинтовки болтов крепления маховика. Шплинт должен плотно облегать торец болта.

Клапаны — верхние, расположены в головке ци­линдров в один ряд, наклонно к оси цилиндров, приво­дятся в движение от распределительного вала через штанги, толкатели и коромысла. Клапаны изготовлены из жаростойкой стали; угол рабочей фаски седла впускного клапана 45 0 , выпускного 45 0 ; стержень выпускного клапана имеет отверстие, заполненное натрием и закры­тое заглушкой.

Выпускные клапаны для повышения срока их служ­бы принудительно поворачиваются во время работы двигателя специальным механизмом. При появлении стуков в клапанном механизме необходимо проверить и, если требуется, отрегулировать зазоры между клапанами, коромыслами, которые должны составлять 0,025…0,062 мм (для впускных и выпускных клапанов). Регулирование зазоров в клапанном механизме осуществляется на холодном двигателе регулировочным винтом с контргайкой, расположенным в коротком пле­че коромысла.

Толкатели клапанов — стальные, пустотелые. Для повышения надежности пары кулачок-толкатель на торец толкателя наплавлен специальный чугун. В нижней части толкателя просверлены отверстия для смазывания.

Что такое лаборатория двигателей внутреннего сгорания

Автомобильный транспорт занимает лидирующее место в структуре перевозки грузов (69 %) и пассажирообороте (71 %), доля которых неуклонно растет пропорционально динамике роста числа мобильных энергетических средств.

Актуальность темы. В Российской Федерации, как и в других развитых странах, транспорт является одной из крупнейших базовых отраслей хозяйства, важнейшей составной частью производственной и социальной инфраструктуры [1, 2]. Качественные характеристики уровня транспортного обслуживания связаны со скоростью, своевременностью, предсказуемостью, ритмичностью, безопасностью и экологичностью функционирования транспортной системы [3]. В настоящее время экологичность при эксплуатации мобильных энергетических средств ставится на первое место. В развитых странах Америки и Европы уже в 2014 году будут введены нормы ЕВРО-6.

Читать еще:  Что такое контрактный двигатель на ниссане

В Российской Федерации с введением норм наблюдается значительное отставание, которое эксперты оценивают в 10 лет, а это в свою очередь замедляет обновление парка мобильных энергетических средств (МЭС).

Наибольшая сложность ситуации состоит в том, что 78 % всего состава автомобильного парка РФ соответствует нормам ЕВРО-0/ЕВРО-1. Вместе с нормами ЕВРО-2 это составляет 86,6 %. Аналогичная ситуация с еще худшей динамикой развития обстоит для мобильных энергетических средств [1].

Целью настоящей работы является исследование процесса выбега ДВС легковых автомобилей при искусственном формировании сопротивления.

Для повышения эксплуатационных свойств ДВС на сегодня используются [1, 2]:

  1. Измерение тока ионизации.
  2. Определение пропусков воспламенения смеси и детонационного сгорания измерением силы ионного тока.
  3. Применение систем зажигания с двумя свечами на один цилиндр.
  4. Смещение фазы (от 10° поворота коленчатого вала при средней и большой нагрузке до 0° поворота коленчатого вала при малой нагрузке, а также при снижении нагрузки).
  5. Управление фазами.

Мероприятия по снижению токсичности [1, 2]:

  1. Рециркуляция отработавших газов (система EGR).
  2. Изменение фаз газораспределения.
  3. Создание вихревого движения смеси во впускном канале и оптимизация формы камеры сгорания (работа на переобедненных рабочих смесях λ = 1,4…1,6.
  4. Конструкция свечи зажигания, ее положение в камере сгорания, а также энергия и продолжительность искрового разряда.
  5. Вентиляция картера ДВС.
  6. Очистка отработавших газов. Термическое дожигание.
  7. Каталитическое дожигание.
  8. Использование систем с обратной связью с применением кислородных датчиков.
  9. Точные таблицы изменения угла опережения зажигания (УОЗ).

Эффективным мероприятием для повышения эксплуатационных свойств автомобилей является использование монитора пропусков в системе зажигания (для исключения отказа каталитического нейтрализатора и снижения уровня токсичности) [1].

Совершенствование двигателей с впрыском бензина направлено на обеспечение высоких экологических показателей. Обеспечение последних возможно за счет точного дозирования подачи топлива на всех режимах работы двигателя [1].

Теоретические исследования

Момент сопротивления вращающихся деталей ДВС Mт постоянен и практически не зависит от угловой скорости [4, 5, 6]. С учётом этого угловое ускорение (замедление) ε коленчатого вала

(1)

где ω – угловая скорость вращения, рад/с; τ – временной интервал, с; j – момент инерции вращающихся деталей ДВС; k – степень влияния ω на коэффициент трения.

Решение дифференциального уравнения (1) при начальных условиях ω = ω и τ = 0 даёт зависимость ω от τ:

(2)

где ε – ускорение (замедление) в начальный момент времени (τ = 0).

Ускорение (замедление) в начальный момент времени (τ = 0):

(3)

Время (продолжительность) выбега τв определяется из выражения (2) при условии ω = 0. После логарифмирования и преобразований получим

(4)

При измерении выбега угловую скорость коленчатого вала можно записать в виде

(5)

где ωп – снижение угловой скорости вала ротора из-за установки дополнительного сопротивления на выхлопе, рад/с; a – конструктивный параметр.

Время выбега τв можно определить из выражения (5) при ω = 0:

(6)

Методика диагностирования системы выпуска

Исследования проводились с применением следующих диагностических средств: отключатель электромагнитных форсунок, осциллограф Постоловского, имитатор сопротивления выпускной системы [1, 7, 8, 9, 10].

При проведении экспериментальных исследований устанавливалась постоянная частота вращения ДВС на уровне 4000 мин–1, запускалась развертка осциллограммы осциллографа Постоловского (рис. 1).

Рис. 1. Развертка осциллограммы осциллографа Постоловского: 1 – сигнал давления в первом цилиндре ДВС; 2 – импульс системы зажигания

Включалась запись осциллограммы. Производилось отключение замка зажигания (рис. 1), после чего исчезали импульсы системы зажигания. И осуществлялся подсчет числа оборотов коленчатого вала, совершенных до полной остановки ДВС. Исследования проводились:

1) при штатном режиме выбега ДВС и закрытой заслонке;

2) при штатном режиме выбега ДВС и 100 % открытой заслонке;

3) при установке искусственного сопротивления в выпускную систему и 100 % открытой заслонке.

Рис. 2. Диаграмма затрат на выпуск: а – до установления повышенного сопротивления на выпуске; б – после установления повышенного сопротивления на выпуске

Результаты экспериментальных исследований

В результате проведенных исследований получены следующие данные:

1) при штатном режиме выбега ДВС и закрытой заслонке – 61 оборот до полной остановки;

2) при штатном режиме выбега ДВС и 100 % открытой заслонке – 88 оборотов до полной остановки;

3) при установке искусственного сопротивления в выпускную систему и 100 % открытой заслонке – 51 оборот до полной остановки.

Испытания проводились на тестовых режимах, при которых сравнивались изменения участков осциллограмм на выпуске до установления сопротивления в выпускном тракте и после установления сопротивления в выпускном тракте.

Кроме того, выполнялся расчет скрипта в виде диаграммы затрат на выпуск до установления повышенного сопротивления на выпуске и после установления сопротивления (рис. 2, а, б).

Также проводилось измерение времени выбега автомобиля в двух режимах:

1) от 4000 до 900 мин–1;

2) от 5500 до 900 мин–1.

а б

Рис. 4. Динамика изменения времени выбега в зависимости от сопротивления в выпускном тракте: а – без сопротивления; б – с сопротивлением

Расчет времени осуществлялся автоматически при помощи скрипта программы.

Результаты проведенных измерений представлены на рис. 3 и 4.

Выводы

В результате проведенных исследований установлено, что систему выпуска можно диагностировать при использовании трех диагностических параметров: числа оборотов коленчатого вала ДВС до полной остановки, диаграммы затрат на выпуск и времени выбега. Экспериментально получено:

1) при штатном режиме выбега ДВС и закрытой заслонке – 61 оборот до полной остановки;

2) при штатном режиме выбега ДВС и 100 % открытой заслонке – 88 оборотов до полной остановки;

3) при установке искусственного сопротивления в выпускную систему и 100 % открытой заслонке – 51 оборот до полной остановки. В результате исследований установлена большая чувствительность времени выбега при частоте вращения 5500 мин–1 по отношению к 4000 мин–1.

Рецензенты:

Машрабов Н.М., д.т.н., профессор кафедры «Технология и организация технического сервиса», Челябинская государственная агроинженерная академия, г. Челябинск;

Ерофеев В.В., д.т.н., профессор, заведующий кафедрой «Технология и организация технического сервиса», Челябинская государственная агроинженерная академия, г. Челябинск.

Совершенствование двигателей внутреннего сгорания

В настоящее время исследовательские и практические работы по совершенствованию существующих двигателей проводятся по следующим основным направлениям:

  • улучшение системы зажигания,
  • изменение процессов подачи топлива в цилиндры двигателей,
  • установка дополнительных приборов,
  • уменьшающих содержание вредных компонентов в отработавших газах.

Система зажигания оказывает существенное влияние на процессы сгорания топлива. Известно, что система искрового зажигания рабочей смеси с помощью традиционного распределителя-прерывателя не всегда удовлетворяет современным требованиям, связанным с полнотой сгорания топливу. Этот прибор достаточно «капризен». В условиях эксплуатации он не всегда надежно осуществляет зажигание смеси, а это сопровождается повышением в выхлопе продуктов неполного сгорания: окиси углерода и несгоревшего топлива.

Существенное улучшение в этом отношении дает применение бесконтактного электронного зажигания, которое обеспечивает более мощный разряд на свечах зажигания и отличается большей стабильностью работы. В последнее время система электронного зажигания получает все большее распространение. На некоторых новейших моделях зарубежных автомобилей эта система дополняется микро-ЭВМ, которая автоматически изменяет момент опережения, зажигания смеси в зависимости от нагрузки на двигатель и скорости движения, оптимизирует расход топлива и состав отработавших газов.

Для улучшения процесса сгорания топлива в цилиндре широкое применение находит так называемое форкамерное, или факельное, зажигание. Сущность форкамерного зажигания состоим в том, что в малой форкамере богатая смесь поджигается как обычно электрической искрой, а образующийся при этом мощный факел пламени зажигает основную часть более бедной рабочей смеси в цилиндре, что сопровождается улучшением сгорания топлива. Такие двигатели позволяют уменьшить выброс всех токсичных компонентов, включая и окислы азота, и при этом экономить до 10% топлива. Названная система применяется, в частности, на двигателях новой модели автомобиля «Волга-3102».

Изменение процессов подачи топлива в цилиндры достигается рядом приемов. Первый из них — это попытка установки на двигателе двух карбюраторов вместо одного. Выше отмечалось, что при работе двигателя на холостом ходу содержание в выхлопе ряда токсичных веществ увеличивается. Чтобы сократить количество этих веществ при работе двигателя на холостом режиме, нужно отрегулировать карбюратор на обедненную или бедную смесь (1 ч. бензина примерно на 20 ч. воздуха), но тогда двигатель не будет развивать необходимой мощности при работе с нагрузкой и не обеспечит надлежащей тяги и скорости. Выход из этого положения дает установка второго карбюратора, который регулируется на нормальную смесь (1 ч. топлива на 15 ч. воздуха) и питает двигатель на рабочих режимах.

Читать еще:  Двигатель ваз 2114 почему не заводиться сразу

Позднее были разработаны новые, более сложные конструкции карбюраторов, способных в одном блоке совмещать указанные функции и готовить необходимый состав рабочей смеси на любой режим работы двигателя.

Второй прием состоит в изменении клапанного механизма с целью более тонкого распыления и лучшего перемешивания смеси при поступлении ее в цилиндры. В ряде новых конструкций предусматривается регулирование высоты подъема впускных клапанов в зависимости от нагрузки, что улучшает процесс заполнения цилиндров смесью и сгорания ее.

Третий прием состоит в отказе от традиционного карбюратора и замене его приборами (форсунками) для непосредственного впрыска топлива во впускной трубопровод или в цилиндры. Эта система, впервые примененная в 1934 г.-на спортивных автомобилях, обеспечивает наилучшее распыление топлива и перемешивание его с воздухом, а также равномерное распределение смеси по отдельным цилиндрам. При этом способе не наблюдается оседания топлива в виде капель на стенках впускного трубопровода.

Система непосредственного впрыска особенно эффективна в сочетании с электронным управлением, которое автоматически дозирует топливо в зависимости от режима работы двигателя. Установлено не только снижение токсичности газов и экономия топлива, но и повышение мощности двигателей на 10—20%.

Некоторые устройства впрыска позволяют образовывать в зоне свечи обогащенную смесь (легко воспламеняемую от искры), а в остальной полости камеры сгорания — бедную. Такое послойное смесеобразование обеспечивает надежную работу двигателя при результирующей обедненной смеси. Указанное послойное разделение заряда получают различными конструкционными решениями, но чаше всего это направленный впрыск топлива в камеру сгорания. Система широко применяется на новых автомобилях за рубежом.

Разрабатываются и другие приемы для снижения токсичности отработавших газов на существующих типах двигателей. Однако многие разработки не полечили пока не только распространения, но и общего признания.

Отмечая положительные качества упомянутых выше конструкционных изменений, следует все же признать, что они не дают кардинального решения задачи. Кроме того, нужно иметь в виду, что подобные предложения можно осуществить на вновь выпускаемых автомобилях. Переделка же двигателей на действующих автомобилях практически не реальна. Поэтому важным направлением признается разработка различных типов нейтрализаторов токсичности отработавших газов, которые можно устанавливать не только на новых, но и на эксплуатируемых автомобилях с небольшими переделками.

Методы обезвреживания отработавших газов начали разрабатывать в СССР и за рубежом еще в 30-х годах, но практическое применение нейтрализаторы получили лишь 30 лет спустя.

Нейтрализатор — это небольшой прибор, предназначенный для снижения токсичности отработавших газов путем дожигания продуктов неполного сгорания (СО, СН, С) и разложения окислов азота на составные элементы — азот и кислород.

Первоначально полагали, что такие приборы будут просты в изготовлении, эксплуатации и дешевы. В Калифорнии (США) в 1959 г. был принят штатный закон, устанавливающий сроки оборудования всех действующих автомобилей этими приборами. Подобные предложения позднее были разработаны и в ряде других штатов США, а также в некоторых странах Европы. Однако реализация этих предложений оказалась не простой и существенно повысила стоимость автомобилей и расходы по эксплуатации.

Различают два типа нейтрализаторов: термические и каталитические.

В термореакторе, устанавливаемом за выпускным трубопроводом, осуществляется процесс пламенного дожигания окиси углерода СО и превращения ее в углекислый газ СО2, а также сжигание несгоревших в цилиндре углеводородов и альдегидов. Для интенсификации процесса дожигания в камеру термореактора подается дополнительный воздух. Реакция окисления проходит при температуре 500—600°С и снижает наличие углеводородов примерно в 2 раза, а окиси углерода — в 2—3 раза.

На новых автомобилях термореакторы стали делать встроенными в выпускную систему двигателя с соответствующими изменениями в этой части конструкции двигателя. Каталитические нейтрализаторы, помимо окисления СО и СН, могут осуществлять еще и разложение окислов азота NOx.

В Советском Союзе в основном разрабатывается семейство каталитических нейтрализаторов. В Центральной научно-исследовательской лаборатории токсичности двигателей (ЦНИИЛТД) Министерства тракторного и сельскохозяйственного машиностроения СССР — одном из ведущих исследовательских учреждений страны в этой области спроектированы и испытаны нейтрализаторы марок Н-13 для автомобилей «Волга», ГАЗ-24 и Н-32 для автобусов ЛИАЗ-677. Расширенные испытания, проведенные на базе одного из московских таксопарков, показали, что разработанная система снижает уровень СО в отработавших газах на 80%, СН — на 70%, а NO — на 50%. В целом токсичность выхлопа уменьшается в 10 раз. Сконструированы подобные системы для грузовых автомобилей ЗИЛ и ГАЗ, а также для автопогрузчиков. Нейтрализаторы, разработанные в ЦНИИЛТД, позволяют достичь уровня токсичности отработавших газов, удовлетворяющего самым строгим требованиям. Процесс окисления СО и СН по существу беспламенный и протекает при прохождении отработавших газов через слой носителя (например, керамических гранул) катализатора.

Лучшим катализатором оказалась платина, но этот дорогой и дефицитный материал не может широко применяться. Предприняты поиски других, более дешевых и доступных катализаторов. Исследования показали, что в известной степени платину могут заменить палладий, радий, рутений, а также окись меди, окись хрома, окись никеля, двуокись марганца и др.

В нейтрализаторах советского производства используется окись алюминия.

Как и в термореакторе, процесс окисления СО и СН требует подачи дополнительного воздуха, а процесс восстановления окиси азота NOx не требует подачи воздуха. Современные каталитические нейтрализаторы выполняются в виде двухкамерного реактора. В одной из них осуществляется окисление СО и СН, а во второй — восстановление NOx.

Схема двухкамерного каталитического нейтрализатора

Эти нейтрализаторы применяются на автомобилях с бензиновыми и дизельными двигателями. Одна из трудностей состоит в том, что в отработавших газах дизелей содержится 10% и более кислорода, в присутствии которого реакция восстановления окиси азота не происходит, а для окисления СО этого кислорода недостаточно. Поэтому обычные каталитические реакторы без дополнительных устройств обеспечивают у дизелей нейтрализацию несгоревших углеводородов и альдегидов, а также небольшую долю окиси углерода.

По мере эксплуатации созданных приборов обнаружились и другие неблагоприятные факторы. Так, при наличии бензинового двигателя с высокой степенью сжатия и поэтому работающего на этилированном бензине, поверхность катализатора быстро обволакивается свинцом. У дизелей на катализаторе осаждается сажа и сера, что существенно ослабляет действие катализатора и после определенного пробега он практически выходит из строя. Эффективность действия каталитического нейтрализатора существенно зависит от температуры в реакторе. Низкотемпературные реакторы работают при 100—300°С, а высокотемпературные — при 300—600°С и более. На первых моделях из-за высокой температуры корпус реактора достаточно быстро прогорал и требовал замены. Позднее этот дефект был устранен, для чего потребовалось усложнение и удорожание реактора.

Работы по созданию новых типов и конструкций нейтрализаторов продолжают во многих странах, но требования надежности и долговечности привели пока лишь к усложнению подобных приборов.

Одно из направлений состоит в снижении токсичности отработавших газов в результате их рециркуляции, т. е. повторного засасывания в цилиндры (вместе с порцией новой горючей смеси) с целью дожигания СО и СН и снижения количества окислов азота непосредственно в цилиндрах двигателя. Однако это ведет к некоторому ухудшению характеристик двигателя, не говоря уже об усложнении конструкции двигателя.

Источник: И.Я. Аксенов, В.И. Аксенов. Транспорт и охрана окружающей среды. Изд-во «Транспорт». Москва. 1986

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

О влиянии сажи на работу двигателя внутреннего сгорания

Таким образом, современные требования к работе дизельных двигателей и их надежности ставят задачу измерения как концентрации сажи, так и ее дисперсности.

Читать еще:  Kia sorento 2 какое масло в бензиновый двигатель

Установлено, что сажа в дизельном масле содержит от 80 до 95 мас.% углерода. Исследования с помощью электронного микроскопа частиц сажи, выделенных из дизельного масла, показали, что исходный (до агломерации) размер частиц составляет 30–50 нм. Содержание сажи в дизельных двигателях может доходить до 7%.

Вследствие малого размера частиц сажи в масле дизельное работавшее масло можно рассматривать как коллоидную систему. Коагуляция частиц сажи происходит под действием ван-дер-ваальсовых сил притяжения между частицами при достаточном их сближении. При высоких концентрациях сажи в моторном масле двигателю наносится огромный вред. Для создания адсорбционного слоя ограничивающего силы взаимного притяжения между частицами сажи в моторном масле используются моюще-диспергирующие присадки, молекулы которых состоят из короткой реакционноспособной группы атомов и длинной углеводородной цепочки.

Для того чтобы при сгорании дизельного топлива не образовывалась сажа, необходимо обеспечить такие условия и температуру в двигателе, чтобы сажа не образовывалась при сгорании топлива. Но при высокой температуре в камере сгорания окисляется азот, содержащийся в воздухе. Образовавшиеся окислы азота, взаимодействуя с водой, образуют азотную кислоту, выбрасываемую в атмосферу, которая наносит не меньший вред окружающей среде. Исследователи нашли, казалось бы, очень хорошее решение – окислы азота нейтрализовывать непосредственно в системе выхлопа автомобиля мочевиной, а сажу улавливать сажевыми фильтрами. Но при этом моторное масло стало насыщаться сажей. На рис. 1 и 2 показаны зависимость износа в узле трения «обойма – ролик» от содержания сажи в моторном масле при различных температурах. Установлено, что износ узла трения возрастает в 7 раз при подъеме температуры с 25 до 100° С в присутствии 5% сажи в моторном масле.

Рис.1 Рис.2

Учитывая актуальность проблемы с сажей, исследователями и инженерами выполнены различные тесты, включая реальные двигатели внутреннего сгорания, чтобы понять, при каком содержании частиц сажи увеличивается износ деталей, и что более важно – сами механизмы этого износа. Доминирующими механизмами износа были абразивное истирание и масляное голодание, которое происходит при очень высоких уровнях загрязнения сажей и может привести к отказу двигателя, так как узлы трения в конечном итоге окажутся без смазки. Установлено, что наиболее уязвимы клапанный механизм и турбина, ввиду тонкой масляной пленки и интенсивного движения в зоне контакта, так как масляная пленка тоньше, чем диаметр частиц сажи, содержащихся в масле. Компания Lubrizol (США) оценила влияние различных концентраций сажи на износ деталей. Исследования износа роликового толкателя двигателя показали, что увеличение содержания сажи незначительно влияет на интенсивность изнашивания, пока сохраняется высокая дисперсность частиц. Установлено, что интенсивность изнашивания толкателя в большей степени определяется дисперсностью сажи.

Установлено также, что в богатой топливом смеси при высоких нагрузках в условиях работающего двигателя резко возрастает содержание частиц сажи размером примерно 40 нм, которая попадает в моторное масло. Циркулирующие в масляной системе частицы сажи слипаются, образуя сгустки, увеличиваясь до 200 нм. Рециркулирующие отработавшие газы также способствуют увеличению размеров частиц сажи в масле. Установлено, что повышенное образование сажи вызвано следующими причинами: неполным сгоранием топлива из-за низкой компрессии и плохого распыла топлива из-за неисправных форсунок; высокого соотношения «топливо : воздух» из-за неправильной регулировки и закупорка воздушного фильтра; холодного воздуха зимой; перегрузки двигателя; длительной работы двигателя на холостом ходу и при малой нагрузке.

Выявлены проблемы, связанные с загрязнением моторного масла сажей, а именно: у дизельных двигателей с низким уровнем выбросов более высокое давление впрыска, поэтому они чувствительны к абразивному износу частицами сажи из-за трения между клапаном, валом и опорой оси, которое может привести к заклиниванию клапана. Новые устройства рециркуляции отработавших газов на дизельных двигателях увеличивают количество образования сажи и ее абразивность.

Из-за наличия моющих и диспергирующих присадок моторное масло загустевает быстро, что осложняет запуск двигателя в зимнее время, а узлы трения при этом испытывают масляное голодание. Кроме того:

– сажа и шлам в двигателях оседают и накапливаются в определенных зонах, которые являются зонами риска с точки зрения надежности двигателя, включая клапанные коробки, крышки клапанов, маслосборники и головки блока цилиндров;

– отложения на поверхностях двигателя снижают коэффициент полноты сгорания и экономию топлива и масла; сажа стирает защитные износоустойчивые масляные пленки в пограничных зонах, таких как зоны кулачкового упора и толкателя клапана;

– выброс сажи и шлама за кольцами поршней в бороздках может вызывать быстрый износ колец и стенок цилиндров, из-за чего могут быть сломаны или значительно повреждены кольца в условиях холодного запуска двигателя.

Особенно уязвимы сажей турбины двигателя с изменяемой геометрией, чувствительные к высоким температурам [2]. Несгоревшее топливо, сажа, прочие несгоревшие частицы, а также пары моторного масла при попадании в турбину откладываются на ее поверхностях, что негативно влияет на балансировку турбины, а также ухудшает аэродинамические параметры крыльчаток. На рис. 4 показаны детали тубины, покрытые сажей и нагаром. Проблемы усугубляются в дизельных двигателях, оснащеных сажевым фильтром. Когда забит сажевый фильтр, то это может увеличить давление выхлопных газов, поступающих в турбину. В результате вал турбины получает повышенную нагрузку, что в итоге может привести к повреждению турбины. Что касается забитого катализатора и, конечно, сажевого фильтра, то их действие сказывается не столько на механизме изменения «геометрии», сколько на самой турбине. Из-за затруднений со свободным выходом из турбины в выхлопную систему отработавшие газы оказывают давление на турбинное колесо, что ведет к появлению продольного люфта ротора турбины.

Рис.3 Рис.4

Необходимо отметить, что на турбину большое влияние оказывает стиль вождения, условия эксплуатации автомобиля, качество моторного масла и дизельного топлива. Например, если вы используете дизельный автомобиль преимущественно в городе, то сажевый фильтр может быстро выйти из строя из-за недостаточной температуры выхлопных газов. Также не рекомендуется эксплуатировать дизельные автомобили без нагрузки.

В силу того что ротор турбокомпрессора вращается с частотой, в 30 раз превышающей скорость двигателя, и достигает 240 тыс. оборотов за одну минуту при температуре в 950° C, подшипники турбинного колеса испытывают на себе колоссальную нагрузку. Неравномерная подача моторного масла в турбину приводит к повреждениям подшипников, поэтому крайне важно следить за уровнем масла и состоянием масляных каналов, периодически проверяя их на наличие засоров. Чистые каналы и масло соответствующего качества – залог долгой службы турбины. На практике определить возникшие проб­лемы можно по изменению динамики, дыму в выхлопных газах или повышенному расходу масла и топлива. В настоящее время в исследовательских лабораториях для измерения концентрации частиц сажи используются термогравиметрический и инфракрасный анализ, метод осаждения, бумажная хроматография, фотонная корреляционная спектроскопия, электрические методы [3]. Присутствие сажи в масле в большой степени изменяет его электрические свойства (проводимость и ди­электрическую проницаемость). На этом принципе построен анализатор нефтепродуктов. Влияние содержания сажи на диэлектрическую проницаемость моторного масла показано на рис. 3. На рис. 5 приведена фотография анализатора нефтепродуктов, который определяет содержание сажи в моторном масле. С увеличением содержания сажи диэлектрическая проницаемость моторного масла увеличивается (рис. 3).

Загрязнение сажей моторного масла можно уменьшить, устранив причины ее поступления, связанные с неполнотой сгорания топлива, прорывом отработавших газов в картер. Если сажа попала в моторное масло, то удалить ее невозможно. Из зарубежной печати известно, что сажу удаляют использованием перепускных фильтров малого расхода и центрифуг-сепараторов.

Литература

1. Фитч Дж., Тройер Д. Анализ масел. Основы и применение. СПб.: ООО «ИПК БИОНТ», 2015. 166 с.

3. Нигматуллин В. Р., Ниг­матул­лин И. Р. Диагностика ДВС по анализу моторного масла. УФА: Уфимский полиграфкомбинат, 2011. 300 с.

Виль Нигматуллин, заведующий кафедрой УГНТУ, канд. техн. наук, доцент

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector