Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Линейные асинхронные двигатели

Линейные асинхронные двигатели

Подвижная часть линейного двигателя совершает поступательное движение, поэтому применение этих двигателей для привода рабочих машин с поступательным движением рабочего органа позволяет упростить кинематику механизмов, уменьшим потери в передачах и повысить надежность механизма в целом.

Возможны линейные двигатели четырех видов: электромагнитные (соленоидные), магнитоэлектрические (с применением постоянного магнита), электродинамические и асинхронных. Асинхронные (индукционные) линейные двигатели благодаря простоте конструкции и высокой надежности получили наибольшее применение.

Для объяснения принципа работы линейного асинхронного двигателя обратимся к асинхронному двигателю с вращательным движением ротора. Если статор этого двигателя (рис. 17.10, а) мысленно «разрезать» и «развернуть» так, чтобы он образовал дугу с углом α (рис. 17.10, б), то диаметр ротора увеличится. При этом мы получим асинхронный двигатель с дуговым статором Частота вращения (об/мин) магнитного поля статора этого двигателя (синхронная частота)

где n 0 1 — синхронная частота вращения обычного (до «разрезания») асинхронного двигателя, об/мин; α — угол дуги статора, рад.

Из (17.6) следует, что, изменяя угол α, можно получить дуговой асинхронный двигатель на любую синхронную частоту меньше частоты вращения n 0 1. Дуговые двигатели применяют для безредукторного привода устройств, требующих небольших частот вращения, исключив применение сложного и трудоемкого редуктора.

Рис. 17.10. К понятиям о дуговом и ли­нейном двигателях

Если же «разрезанный» статор развернуть в плоскость, то получим асинхронный линейный двигатель (рис. 17.10, в). Принципиальное конструктивное отличие линейного асинхронного двигателя от асинхронного двигателя с вращательным движением ротора

состоит в том, что первичный элемент линейного двигателя (индуктор) создает не вращающееся, а бегущее магнитное поле и нижняя часть двигателя с короткозамкнутой обмоткой (или без нее) называемая вторичным элементом, перемещается вдоль своей оси. Скорость бегущего поля в линейном двигателе (м/с)

где f1 — частота тока в обмотке статора, Гц; τ — полюсное деление; Lc — длина статора (индуктора), м.

Принцип действия линейного асинхронного двигателя основан на том, что бегущее поле индуктора, сцепляясь с короткозамкнутой обмоткой вторичного элемента двигателя, наводит в ней ЭДС. Возникающие в стержнях этой обмотки токи взаимодействуют с бегущим полем индуктора и создают на индукторе и вторичном элементе электромагнитные силы, стремящиеся линейно переместить подвижную часть двигателя относительно неподвижной. В некоторых конструкциях линейных двигателей подвижной частью является индуктор, а в некоторых — вторичный элемент, называемый в этом случае бегунком. Если вторичный элемент линейного двигателя невозможно изготовить с короткозамкнутой обмоткой, то применяют вторичные элементы в виде полосы из меди, алюминия или ферромагнитной стали. Наиболее удовлетворительными получаются характеристики линейного двигателя при составном вторичном элементе, например выполненном в виде полосы из ферромагнитной стали, покрытой слоем меди.

Основной недостаток асинхронных двигателей с разомкнутым статором — дуговых и линейных — явление краевого эффекта, представляющего собой комплекс электромагнитных процессов, обусловленных разомкнутой конструкцией статора. К нежела­тельным последствиям краевого эффекта в первую очередь следу­ет отнести появление «паразитных» тормозных усилий, направ­ленных против движения подвижной части двигателя, и возникновение поперечных сил, стремящихся сместить подвиж­ную часть двигателя в поперечном направ­лении. Кроме того, краевой эффект вызывает ряд других нежелательных явлений, ухуд­шающих рабочие характеристики линейных двигателей.

Линейные асинхронные двигатели при­меняют для привода заслонок, ленточных конвейеров, подъемно-транспортных меха­низмов. На рис. 17.11 показано устройство линейного асинхронного двигателя привода тележки подъемного крана. На тележке 3 расположен индуктор линейного двигателя, состоящий из шихтованного сердечника 6, в пазах которого расположена обмотка 5. На­правляющая для колес 2 представляет собой стальную балку 7, к нижней части которой прикреплена стальная полоса 4. Бегущее магнитное поле индуктора наводит в стальной полосе 4 вихревые токи. Электромаг­нитные силы, возникающие в результате взаимодействия этих токов с магнитным полем индуктора, перемещают индуктор (тележку) вдоль стальной полосы 4.

Рис. 17.11. Линей­ный асинхронный двигатель

привода тележки подъемного крана

Линейные асинхронные двигатели значительной мощности применяют на транспорте в качестве тяговых двигателей. Один из вариантов такого двигателя показан на рис. 17.12. Здесь индуктор 2 двигателя подвешен к транспортному средству 1, а стальная полоса 3 установлена вертикально на основании пути между рельсами. Из этой конструкции поперечная сила Fп вызванная краевым эффектом используется полезно, так как она уменьшает силу давления на несущие оси и колеса и, как следствие, уменьшает трение качения.

Рис 17.12. Линейный асинхронный двигатель

привода железнодорожного транспортного средства

Контрольные вопросы

1.В чем различие между схемами соединения индукционного регулятора на­пряжения и фазорегулятора?

2.Сколько раз напряжение на выходе ИР достигнет наибольшего значения за один оборот ротора, если обмотка имеет 2р = 6?

3.В каком направлении следует вращать ротор АПЧ, чтобы на выходе полу­чить ЭДС частотой, большей частоты тока в сети?

4.Какую долю мощности на выходе АПЧ составит мощность приводного дви­гателя, если частота тока на входе АПЧ равна 50 Гц, а на выходе — 100 Гц?

5.Объясните работу сельсинов в индикаторной системе передачи. Чем вызвана ошибка в воспроизведении угла поворота?

6.Чем обеспечивается отсутствие самохода в асинхронном исполнительном двигателе?

7.Объясните принцип работы асинхронного линейного двигателя.

8.Что такое краевой эффект и каковы его нежелательные действия в линейном асинхронном двигателе?

ГЛАВА 18

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Практические основы синхронных двигателей, которые должен знать каждый инженер-электрик

Видео: Things Mr. Welch is No Longer Allowed to do in a RPG #1-2450 Reading Compilation 2021, Август

строительство

Как и асинхронный двигатель, синхронный двигатель состоит из статора и ротора, разделенных воздушным зазором . Он отличается от асинхронного двигателя тем, что поток в воздушном зазоре не обусловлен компонентом тока статора.

Пара древних компрессоров для кондиционирования воздуха с углекислым газом, оснащенная двумя антивибрационными синхронными двигателями с открытой рамой мощностью 150 лошадиных сил. Этот тип системы кондиционирования относится к 1930-м годам. (фото кредит: Jeffs4653 через Flickr)

Он создается магнитами или током катушки поля, обеспечиваемым внешним источником постоянного тока, питающим обмотку, размещенную в роторе.

Давайте рассмотрим темы, которые мы обсудим.

  • статор
  • ротор

  • С постоянными магнитами
  • С раневой катушкой
  • Рабочие характеристики
  • Другие типы синхронных двигателей

    • Практическая реализация (ВИДЕО)
  • Синхронные асинхронные двигатели
  • Шаговые двигатели
    • Практическая реализация (ВИДЕО)
  • Читать еще:  Что становится с двигателем после капиталки

    статор

    Статор состоит из корпуса и магнитной цепи, обычно включающих слои кремниевой стали, и трехфазной катушки, аналогичной асинхронному двигателю, снабженному трехфазным переменным током для создания вращающегося поля.

    РИСУНОК 1 — Магнитный скелет (верхняя половина) и структурные части (нижняя половина) десятиполюсного (720 об / мин при 60 циклах) синхронного двигателя.

    Вернуться к содержанию ↑

    ротор

    Ротор несет магниты поля или катушки, через которые протекает постоянный ток, и которые создают расположенные северные и южные полюса. В отличие от асинхронных машин ротор вращается без скольжения со скоростью вращающегося поля.

    Поэтому существуют два разных типа синхронных двигателей: магнитные двигатели и двигатели с ротационным ротором.

    С постоянными магнитами

    При использовании электродвигателей с магнитом ротор двигателя оснащен постоянными магнитами (см. Рис. 2) (обычно редкоземельными магнитами), чтобы добиться увеличения напряженности поля в небольшом объеме. Статор имеет трехфазные обмотки.

    Эти двигатели могут выдерживать значительные перегрузочные токи для достижения ускорения ускорения.

    Они всегда используются с приводом с переменной скоростью, и эти узлы моторного привода предназначены для конкретных рынков, таких как роботы или станки, для которых необходимы более мелкие двигатели, ускорение и полоса пропускания.

    Рисунок 2 — Поперечное сечение двигателя с постоянными магнитами

    Вернуться к содержанию ↑

    С раневой катушкой

    Второй тип синхронной машины имеет раневую катушку и является реверсивной машиной, которая может работать как генератор (генератор), так и двигатель. На протяжении многих лет эти машины в основном используются в качестве генераторов.

    Их использование в качестве двигателей практически сводилось к приложениям, где необходимо было набирать нагрузки с фиксированной скоростью, несмотря на относительно большие колебания их резистивного крутящего момента .

    Разработка прямых (циклопереключателей) или непрямых преобразователей частоты, работающих с естественным переключением из-за способности синхронных машин обеспечивать реактивную мощность, позволила создать высокопроизводительные и надежные электроприводы с переменной скоростью.

    Эти диски особенно конкурентоспособны по сравнению с решениями конкурентов для номиналов мощности более одного мегаватта.

    Несмотря на то, что можно найти синхронные двигатели, используемые в промышленности в диапазоне мощности от 150 кВт до 5 МВт, он превышает 5 МВт, что электроприводы, использующие синхронные двигатели, становятся практически существенными, в основном в сочетании с приводами с переменной скоростью.

    Вернуться к содержанию ↑

    Рабочие характеристики

    Крутящий момент двигателя синхронной машины пропорционален напряжению на его клеммах, тогда как асинхронная машина пропорциональна квадрату этого напряжения. В отличие от асинхронного двигателя, он может работать с коэффициентом мощности, равным одному или очень близко к нему .

    Таким образом, синхронный двигатель имеет ряд преимуществ перед асинхронным двигателем в отношении его способности питаться от сети постоянного напряжения / частоты:

    1. Скорость двигателя постоянна, независимо от нагрузки.
    2. Он может обеспечивать реактивную мощность и увеличивать коэффициент мощности установки.
    3. Он может выдерживать относительно большие падения напряжения (около 50% из-за его сверхвозбуждающих свойств) без остановки.

    Тем не менее, синхронный двигатель, подаваемый напрямую постоянным напряжением / частотой, имеет два недостатка:

    1. У него возникают трудности. Если двигатель не комбинируется с приводом с переменной скоростью, запуск должен выполняться при холостом ходу, либо путем запуска DOL для небольших двигателей, либо с помощью пускового двигателя, который приводит его в движение на скорости, близкой к синхронной, до прямого подключения к линии поставка.
    2. Он может заглохнуть, если резистивный крутящий момент превышает максимальный электромагнитный момент. В этом случае весь процесс запуска должен быть повторен.

    Вернуться к содержанию ↑

    Другие типы синхронных двигателей

    В заключение этого обзора промышленных двигателей мы также должны упомянуть линейные двигатели, синхронные асинхронные двигатели и шаговые двигатели.

    Линейные двигатели

    Их конструкция идентична структуре синхронных роторных двигателей: они состоят из статора (пластины) и ротора (форкера), которые находятся в линии . В общем, пластина движется вдоль форкера на направляющей. Этот тип двигателя устраняет всю промежуточную кинематику для преобразования движения, что означает, что на этом приводе нет никакого механического износа или механического износа.

    Линейные электродвигатели могут управлять линейной нагрузкой без промежуточных шестеренок, винтов или коленчатых валов .

    Линейный синхронный двигатель (LSM) представляет собой линейный двигатель, в котором механическое движение синхронно с магнитным полем, т. Е. Механическая скорость совпадает с скоростью движущегося магнитного поля (рис. 3).

    Рисунок 3 — линейные шаговые двигатели с постоянным магнитом (PM)

    Тяга (силовая сила) может генерироваться как действие:

      Движущееся магнитное поле, создаваемое полифазной обмоткой, и массив магнитных полюсов N, S,

    , N, S или ферромагнитная направляющая с переменным сопротивлением (LSM с обмотками якоря переменного тока);
    Магнитное поле, создаваемое обмотками постоянного тока с электронным управлением и массив магнитных полюсов N, S,

    , N, S или переменная сопротивляемость ферромагнитной направляющей (линейные ступенчатые или переключаемые двигатели с сопротивлением).

    Часть, создающая движущееся магнитное поле, называется арматурой или форкером . Часть, которая обеспечивает постоянный магнитный поток или переменное сопротивление, называется полевой системой возбуждения (если существует система возбуждения) или рельефным рельсом, реакционной решеткой или плитой с переменным сопротивлением. Следует избегать терминов первичного и вторичного, поскольку они оправданы только для линейных асинхронных двигателей (LIM) или трансформаторов.

    Работа LSM не зависит от того, какая часть подвижна и какая из них неподвижна .

    Вернуться к содержанию ↑

    Как работает линейный двигатель?
    Линейные двигатели Yaskawa в движении

    Вернуться к содержанию ↑

    Синхронные асинхронные двигатели

    Это асинхронные двигатели. Во время начальной фазы двигатель работает в асинхронном режиме, и когда он достиг скорости, близкой к синхронной, он переключается в синхронный режим .

    Если он имеет высокую механическую нагрузку, он больше не может работать в синхронном режиме и возвращается в асинхронный режим. Эта особенность достигается специальной конструкцией ротора и, как правило, для двигателей с малой мощностью.

    Вернуться к содержанию ↑

    Шаговые двигатели

    Шаговый двигатель является двигателем, который работает в соответствии с электрическими импульсами, подающими свои катушки. В зависимости от его электропитания это может быть:

    1. Униполярный, если его катушки всегда подаются в одном направлении одним напряжением, поэтому название однополярное.
    2. Биполярный, когда его катушки поставляются иногда в одном направлении, а иногда и в другом. Они иногда создают Северный полюс, а иногда и Южный полюс, отсюда и название биполярное.
    Читать еще:  Что такое давление в картере двигателя

    Шаговые двигатели могут быть переменного типа сопротивления или магнита или их комбинации (см. Рис. 4).

    Рисунок 4 — Три типа шагового двигателя

    Минимальный угол поворота между двумя модификациями электрических импульсов называется шагом. Мотор характеризуется числом шагов за оборот (т. Е. На 360 °). Наиболее распространенными значениями являются 48, 100 или 200 шагов за оборот.

    Поэтому двигатель вращается прерывисто. Чтобы улучшить разрешение, количество шагов может быть увеличено чисто электронным способом (микрошаговая операция). Изменяя ток в катушках ступенями (см. Рис. 5), создается результирующее поле, которое скользит с одного шага на другой, тем самым эффективно уменьшая шаг.

    Цепи для микрошагов умножают количество шагов двигателя на 500, таким образом изменяя, например, от 200 до 100 000 шагов .

    Рисунок 5 — Токовые шаги, применяемые к катушкам шагового двигателя для уменьшения его шага

    Электроника может использоваться для управления хронологией этих импульсов и подсчета количества импульсов. Таким образом, шаговые двигатели и их цепи управления позволяют валу вращаться с высокой степенью точности с точки зрения скорости и амплитуды.

    Таким образом, их работа аналогична работе синхронного двигателя, когда вал вращается непрерывно, что соответствует заданной частоте, крутящему моменту и значениям инерции рабочей нагрузки (см. Рис. 6). Если эти пределы превышены, двигатель останавливается, следствием чего является останов двигателя.

    Рисунок 6 — Максимальный крутящий момент согласно ступенчатой ​​частоте

    Точное угловое позиционирование возможно без измерительной петли. Небольшие модели этих двигателей, как правило, с номинальной мощностью менее одного кВт, имеют источник питания низкого напряжения.

    В промышленности эти двигатели используются для приложений управления положением, таких как установочные упоры для отрезания по длине, регулирующие клапаны, оптические или измерительные приборы, загрузочные и разгрузочные прессы или станки и т. Д.

    Простота этого решения делает его особенно экономичным (без обратной связи). Магниевые шаговые двигатели также имеют преимущество при остановленном крутящем моменте, когда нет питания . С другой стороны, начальное положение движущейся части должно быть известно и учтено электроникой, чтобы обеспечить эффективный контроль.

    Вернуться к содержанию ↑

    Основы шагового двигателя — демо с помощью кнопок Push!
    Учебное пособие по двигателю Arduino!

    Вернуться к содержанию ↑

    Рекомендации:

    • Электродвигатели Э. Гошерона (Schneider Electric)
    • Линейные синхронные двигатели Яцека Ф. Гираса, Збигнева Дж. Пьеха и Бронислава З. Томчука

    КПД электродвигателей

    Подписка на рассылку

    • ВКонтакте
    • Facebook
    • ok
    • Twitter
    • YouTube
    • Instagram
    • Яндекс.Дзен
    • TikTok

    Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.

    Определение КПД электродвигателя

    Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:

    Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.

    Факторы, влияющие на величину КПД

    Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:

    • электрические;
    • магнитные;
    • механические.

    Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.

    Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.

    Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором. Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.

    Способы повысить КПД двигателя

    Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.

    Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.

    Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.

    Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.

    В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.

    9.5. Задание на проектирование.

    ВЫБОР ГЛАВНЫХ РАЗМЕРОВ И РАСЧЕТ ОБМОТКИ СТАТОРА

    Техническое задание на учебное проектирование асинхронно­го двигателя содержит номинальные данные проектируемой ма­шины и указания о режиме ее работы, исполнении по способу монтажа, степени защиты от воздействия окружающей среды и системе охлаждения. Кроме того, могут быть заданы также до­полнительные требования к проектируемому двигателю, напри­мер наименьшие допустимые значения кратности максимального и минимального моментов, а для двигателей с короткозамкнутыми роторами также предельные значения пускового тока и наи­меньшие значения пусковых моментов. В отношении требований, не оговоренных в задании, спроектированная машина должна удовлетворять соответствующим ГОСТам. Методические указа­ния к курсовому проекту см. в 1.7.

    Читать еще:  Шум при работе двигателя поло седан

    Проектирование новой машины начинают с выбора базовой мо­дели, на которую ориентируются при проведении всех расчетов, на­чиная с выбора главных размеров, и при разработке конструкции отдельных узлов. За базовую обычно выбирается конструкция дви­гателя одной из новых серий, выпускаемых в настоящее время. Например, при проектировании асинхронных двигателей общего назначения малой и средней мощности (до 400 кВт) в качестве базовой модели следует выбирать конструкцию двигателей серии 4А или АИ и исполнения, предусмотренного в техническом задании.

    В начальной стадии проектирования при выборе главных размеров и электромагнитных нагрузок необходимо учесть дополнительные требования технического задания. Если проектируемая машина должна иметь большой максимальный момент, то индуктивное сопротивление ее обмоток не должно быть большим, поэтому в такой машине нецелесообразно выбирать малое значение индукций, большую линейную нагрузку, узкие и глубокие пазы и т.п.

    Требования к пусковым характеристикам с короткозамкнутым ротором следует обязательно учитывать при выборе конфигурации пазов ротора. Так, узкие и глубокие пазы с сужающейся верхней частью обеспечивают большое увеличение расчетного активного сопротивления ротора при пуске и большие пусковые моменты, но при таких пазах возрастает индуктивное сопротивление рассеяния обмотки ротора и уменьшаются перегрузочная способность двигателя и коэффициент мощности при номиналь­ном режиме.

    Полностью учесть все требования технического задания к характеристикам двигателя при выборе размеров магнитопровода и об­мотки машины, не ориентируясь на данные выпущенных машин, невозможно. Поэтому перед началом расчета следует детально и изучить конструкцию базового двигателя, критически оценить при­нятые в ней соотношения размеров, уровни электромагнитных нагрузок и другие данные и лишь после этого приступить к расчету. Расчет асинхронных машин начинают с определения главных разме­ров: внутреннего диаметра статора D и расчетной длины магнитоп­ровода lδ. Размеры D и lδ связаны с мощностью, угловой скоростью и электромагнитными нагрузками выражением машинной постоян­ной:

    (9.1)

    В начале расчета двигателя все величины, входящие в (9.1), кро­ме синхронной угловой скорости, неизвестны. Поэтому расчет проводят, задаваясь на основании имеющихся рекомендаций значения­ми электромагнитных нагрузок (А и Вδ), коэффициентов (αδ, kВ и k), и приближенно определяют расчетную мощность Р’. Остаются два неизвестных (D и lδ), однозначное определение которых без до­полнительных условий невозможно. Таким условием является отно­шение lδ/D или более употребительное в расчетной практике отно­шение λ = lδ /τ. Это отношение в значительной степени определяет экономические данные машин, а также оказывает влияние на харак­теристики и условия охлаждения двигателей.

    У большинства выпускаемых асинхронных двигателей общего назначения отношение λ, изменяется в достаточно узких пределах. Поэтому для определения D и lδ можно предварительно выбрать то или иное отношение λ, характерное для заданного исполнения и числа полюсов машины. Это позволит однозначно определить глав­ные размеры, исходя из (9.1). Однако внутренний диаметр статора непосредственно связан определенными размерными соотношения­ми с внешним диаметром статора Da, в свою очередь, определяю­щим высоту оси вращения h, значение которой при проектировании новых двигателей может быть принято только из стандартного ряда высот, установленных ГОСТом.

    Внешний диаметр статора должен также соответствовать опре­деленным условиям, налагаемым требованиями раскроя листов электротехнической стали с наименьшими отходами при штампов­ке. С учетом этих требований при ручном расчете асинхронного двигателя более целесообразным является выбор главных размеров, основанный на предварительном определении высоты оси враще­ния, увязке этого размера с внешним диаметром статора и последу­ющем расчете внутреннего диаметра статора D.

    В связи с этим выбор главных размеров проводят в следующей последовательности.

    Высоту оси вращения предварительно определяют по рис. 9.18, а или б для заданных Р2 и 2р в зависимости от исполнения двигателя.

    Из ряда высот осей вращения (см. табл. П 6.2) принимают бли­жайшее к предварительно найденному меньшему стандартному зна­чению Л. Следует иметь в виду, что ГОСТ определяет стандартные высоты осей вращения независимо от назначения и конструктивно­го исполнения асинхронных двигателей, поэтому высота оси враще­ния любого проектируемого двигателя должна быть равна одному из этих значений.

    Зависимость (9.1) показывает, что при одной и той же длине l мощность P’ изменяется пропорционально D 2 . Поэтому машину при выбранной высоте оси вращения выгодно выполнять с возможно большим диаметром. Максимально возможный диаметр Dа должен быть Da ≤ 2(h – h1min), где h1min — минимальное расстояние от стали сердечника статора до опорной плоскости машины (рис. 9.19), включающее толщину корпуса bкорп и расстояние от корпуса до опорной плоскости h2. Если машина выполняется со сварной стани­ной, то допустимое расстояние h1min уменьшается. В том случае, когда h1 >> h1min, в нижней части корпуса оребренных двигателей ис­полнения со степенью защиты IP44 размещают несколько охлажда­ющих ребер, высота которых может быть меньше, чем у располо­женных на верхней и боковых частях корпуса.

    Обычно расстояние h1 выбирают равным или несколько боль­шим h1min, значения которого для двигателей с различной высотой оси вращения h приведены на рис. 9.19. При выборе Da должно быть учтено также требование использования для штамповки рулонной или листовой электротехнической стали стандартных размеров с наименьшими отходами.

    Рис. 9.18. Высота оси вращения h двигателей

    различных мощности и частоты вращения:

    а — со степенью защиты IP44;

    б — со степенью защиты IP23

    Внешние диаметры сердечников статоров двигателей серий в зависимости от высоты оси вращения при учебном проектировании могут быть приняты по данным табл. 9.8.

    Рис. 9.19. К выбору наружного диаметра Dc статора (а).

    Минимально допустимое расстояние h1 от сердечника

    статора до опорной поверхности двигателя в зависи­мости

    от высоты оси вращения двигателей со станиной (б):

    1 — литой; 2 — сварной

    Таблица 9.8. Внешние диаметры статоров асинхронных

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector