Avtoargon.ru

АвтоАргон
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механические и электромеханические характеристики двигателей постоянного тока независимого возбуждения

Механические и электромеханические характеристики двигателей постоянного тока независимого возбуждения

Схемы включения двигателя постоянного тока независимого и параллельного возбуждения представлены на рис.2.1. При независимом возбуждении (рис.2.1а) обмотка якоря двигателя М и обмотка возбуждения ОВ питаются от разных, независимых друг от друга источников напряжения U и U в, а при параллельном возбуждении (рис.2.1б) — от одного и того же источника U. На практике чаще всего используется схема с параллельным возбуждением.

Аналитическое выражение механической характеристики двигателя можно получить из уравнения равновесия напряжений, составленного для якорной цепи по схеме рис.2.1а. При установившимся режиме работы двигателя (магнитный поток возбуждения и угловая скорость якоря постоянны) приложенное напряжение U уравновешивается падением напряжения в якорной цепи IЯR и электродвижущей силой(ЭДС) Е, наведенной в якоре в процессе его вращения, т.е.

, (2.1)

где IЯ – ток в якорной цепи двигателя; R=RД+Rя — общее сопротивление якорной цепи, включающее в общем случае внутреннее сопротивление всей якорной цепи двигателя Rя и внешнее добавочное сопротивление RД.

Рис.2.1. Схема включения двигателя постоянного тока: а — независимого возбуждения; б – параллельного возбужденияРис.2.2. Механическая характеристика двигателя постоянного тока независимого возбуждения

Значение ЭДС определяется по выражению

где k – коэффициент, зависящий от конструктивных параметров двигателя, (р — число пар полюсов; N — число активных проводников обмотки якоря; а – число пар параллельных ветвей обмотки якоря); Ф, w – соответственно магнитный поток и угловая скорость двигателя.

Если в (2.1) подставить (2.2) и решить полученное уравнение относительно Iя=I, то получим

. (2.3)

Уравнение (2.3) представляет собой зависимость тока якоря от скорости двигателя I=f(w), которая называется электромеханической характеристикой двигателя. Электромеханическая характеристика (по устаревшей терминологии скоростная характеристика) отражает связь между электрической и механической величинами электродвигателя.

Для получения уравнения механической характеристики воспользуемся известной зависимостью момента двигателя от магнитного потока и тока якоря:

Подставив в (2.4) значение тока I, определяемое по выражению (2.3), получим уравнение механической характеристики:

(2.5)

(2.6)

где С=kФ – коэффициент.

При неизменных параметрах U, Ф и R выражение (2.5) можно записать в виде

где ; — постоянные коэффициенты.

Анализ уравнений (2.5, 2.6, 2.7) показывает, что механическая характеристика двигателя с независимым возбуждением имеет линейную зависимость и представляет собой прямую линию (рис.2.2).

Все электромеханические и механические характеристики электродвигателей разделяют на естественные и искусственные. Характеристики, полученные при номинальных параметрах электродвигателя и отсутствии в его цепях добавочных сопротивлений, называются естественными. Характеристики, полученные при несоблюдении хотя бы одного из этих условий, называются искусственными.

Искусственные механические характеристики двигателя постоянного тока, как видно из уравнения (2.5), можно получить за счет изменения напряжения питающей сети U или магнитного потока возбуждения Ф, или сопротивления якорной цепи R путем включения изменения RД в цепь якоря двигателя. Рассмотрим влияние U, Ф, RД на механические характеристики двигателя более подробно.

Введение добавочного сопротивления в цепь якоря двигателя. На рис.2.3 представлены механические характеристики двигателя постоянного тока независимого возбуждения при изменении добавочного сопротивления в цепи якоря. Анализ уравнения (2.5), показывает, что при М=0 все характеристики проходят через одну точку, лежащую на оси абсцисс. Угловая скорость в этой точке имеет вполне определенное значение, не зависящее от сопротивления якорной цепи; она называется скоростью идеального холостого ходаwо; определяется по выражению (2.8) путем преобразования уравнения (2.5) при М=0:

. (2.8)

Наклон механической характеристики, или ее жесткость, согласно (2.7) зависит от величины добавочного сопротивления в цепи якоря и других параметров. На рис.2.3 показано влияние введенных добавочных сопротивлений в цепь якоря двигателя на его механические характеристики.

Введение добавочного сопротивления в якорную цепь используется на практике для регулирования скорости вращения двигателя и ограничения пусковых токов и моментов при его пуске.

Изменение напряжения питающей сети. Анализ уравнений (2.5) и (2.8) показывает, что при изменении напряжения, приложенного к якорной цепи двигателя, пропорционально меняется скорость идеального холостого хода. Наклон характеристик остается постоянным. Следовательно, механические характеристики, соответствующие различным значениям напряжения сети, будут между собой параллельны (рис.2.4.), т.е. при изменении U изменяются пусковой ток и момент, скорость идеального холостого хода двигателя. Угол наклона характеристик (жесткость) не меняется.

Рис.2.3. Механические характеристики двигателя постоянного тока независимого возбуждения при включении в цепь якоря добавочного сопротивленияРис.2.4. Механические характеристики двигателя постоянного тока при изменении напряжения питающей сети

Изменение магнитного потока возбуждения. Анализ уравнений (2.5) и (2.8) показывает, что изменение магнитного потока двигателя оказывает влияние как на первое, так и на второе слагаемое, т.е. изменяются скорость идеального холостого хода и жесткость характеристики. Чем меньше магнитный поток, тем выше скорость идеального холостого хода и тем меньше жесткость механической характеристики. Искусственные механические характеристики двигателя, соответствующие различным величинам магнитного потока возбуждения, представлены на рис.2.5.

Читать еще:  Двигатель бмв n46 работает как дизель

Рис.2.5. Механические характеристики двигателя постоянного тока независимого возбуждения при изменении магнитного потока возбужденияРис.2.6. Естественная механическая характеристика двигателя постоянного тока, построенная по координатам двух точек 1 и 2

Дата добавления: 2019-02-08 ; просмотров: 1464 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Что такое механическая характеристика двигателя постоянного тока

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
    • Блок-картер и картер шестерен двигателя СМД
    • Кривошипно-шатунный механизм двигателя СМД
    • Распределительный механизм двигателя СМД
    • Масляный насос и масляный фильтр в двигателе СМД
      • Корпус ротора двигателя СМД
      • Ось ротора двигателя СМД
      • Корпус масляного фильтра в двигателе СМД
      • Втулки масляного насоса двигателя СМД
      • Шестерни масляного насоса
      • Валик ведомой шестерни масляного насоса
      • Валик ведущей шестерни масляного насоса
      • Крышка корпуса масляного насоса
      • Корпус масляного насоса
      • Масляный насос в двигателе СМД
    • Водяной насос, вентилятор и радиатор двигателя СМД
    • Топливный насос, фильтра и форсунки двигателя СМД
    • Муфта сцепления в двигателе СМД
    • Привод гидронасоса в двигателе СМД
    • Электрооборудование двигателей СМД
    • Электрофакельный подогреватель двигателя СМД
  • Топливо для двигателей
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

Выведенные в предыдущем параграфе уравнения скорост­ных и механических характеристик справедливы для любого электродвигателя постоянного тока. Однако это не значит, что для всех электродвигателей характеристики одинаковы. Наобо­рот, как будет показано, между характеристиками различных электродвигателей постоянного тока имеются существенные различия.

Анализируя любое из полученных в статье особенности электродвигатели постоянного тока уравнений, нетруд­но заметить, что все они являются уравнениями прямых линий, если U =соnst и Ф = соnst, т.е. механическая и скоростная характеристики электродвигателя по­стоянного тока с параллельным воз­буждением прямолинейны и :при со­ответствующем выборе масштабов они могут быть представлены одной прямой (рис. 9).

Действительно, ко­гда электродвигатель работает вхо­лостую, развиваемый им момент ра­вен нулю, так как нулю равен мо­мент сопротивления на валу двига­теля. При этом, согласно выраже­нию (28), нулю должен быть равен и ток в обмотке якоря. Таким обра­зом, из уравнения (25) или (29) может быть получена скорость идеального холостого хода электродвигателя

Нужно иметь в виду, что фактическая скорость холостого хода электродвигателя всегда несколько ниже скорости идеаль­ного» холостого хода, так как в действительности момент со­противления на валу электродвигателя не может быть равен нулю даже при отсутствии нагрузки на электродвигатель, а следовательно, и ток действительного холостого хода электро­двигателя нулю не равен.

Если нагрузка на электродвигатель возрастает (т. е. воз­растает момент сопротивления на его валу), то возрастает развиваемый электродвигателем вращающий момент и растет ток в его якорной обмотке. Это должно вызывать, согласно уравнениям (25) и (29), снижение скорости вращения электродвигателя. В режиме короткого замыкания электродвигателя (режим стоянки под током) n = 0, а ток короткого замыкания Аналогично, момент короткого замыкания М к = кФІ я . к . Таким образом, скоростная характери­стика электродвигателя постоянного тока с параллельным возбуждением п = f(І я ) и механическая характеристика п = f(М) пересекают оси координат в совершенно определенных точках, соединив которые, можно получить указанные характеристики, представленные одной прямой (см. рис. 9). На рис. 9, помимо естественной характеристики, показан ряд искусственных ха­рактеристик двигателя при различных дополнительных сопро­тивлениях R в якорной цепи. Из уравнений (27) и (30) вытекает, что искусственные характеристики тоже прямолинейны, исходят из общей точки холостого хода и лежат ниже естест­венной характеристики, т. е. чем выше дополнительное сопро­тивление R в якорной цепи, тем круче (или мягче) характерис­тика электродвигателя. На рисунке обозначены: М н (I я . н ) — номинальный момент и ток якоря; М к (I я.к ) — момент и ток якоря при заторможенном якоре.

Как видно из уравнений, скорость электродвигателя парал­лельного возбуждения меняется при различных нагрузках за счет изменения падения напряжения в сопротивлении якоря. Поскольку сопротивления якорей машин постоянного тока невелики, скорость электродвигателей параллельного возбужде­ния меняется незначительно, особенно при работе на естест­венной характеристике. Так, для электродвигателей мощностью от 5 до 100 квт перепад скорости пои номинальной нагрузке

где большие значения соответствуют электродвигателям мень­шей мощности.

Ввиду прямолинейности, практическое построение характе­ристик электродвигателя с параллельным возбуждением вы­полнить нетрудно. Для этого достаточно иметь координаты двух точек. Обычно естественную характеристику электродви­гателя строят по скорости идеального холостого хода, номи­нальной скорости вращения и номинальному моменту (или току). Скорость идеального холостого хода электродвигателя может быть вычислена следующим образом.

Против э. д. с. при работе электродвигателя в номиналь­ном режиме на естественной характеристике

а на холостом ходу

Разделив второе выражение на первое, получим

В выражении (34) все величины, кроме R я могут быть взяты из паспорта электродвигателя. Величина R я может быть взята из формуляра на электродвигатель, определена измерением или приближенно из следующего выражения:

Читать еще:  Влияние форсунок инжектора на работу двигателя

где Р н — номинальная мощность электродвигателя, квт;

? н — к.п.д. электродвигателя при номинальной нагрузке.

Выражение (35) составлено исходя из предположения, что при номинальной нагрузке электродвигателя потери мощности в сопротивлении якоря равны примерно половине общих потерь в электродвигателе. Если величина R определяется измере­нием, то нужно иметь в виду, что сопротивление якоря включает в себя сопротивления обмотки якоря, обмотки дополни­тельных полюсов, щеток и сопротивления компенсационной обмотки (если она имеется), соединенных последовательно.

Выше указывалось, что вращающий момент электродвига­теля автоматически следует за моментом сопротивления меха­низма. Физическая сущность этого процесса состоит в следу­ющем. Если электродвигатель работает с установившейся ско­ростью, то развиваемый им вращающий момент М 1 равен моменту сопротивления на его валу М с . Если же момент сопро­тивления возрастет до M с2 > M 1 , то скорость электродвигателя начнет уменьшаться. При этом уменьшается и против э. д. с., а ток в обмотке якоря, согласно выражению (22), будет воз­растать, что вызовет возрастание вращающего момента. Умень­шение числа оборотов будет происходить до тех пор, пока вра­щающий момент не станет равным моменту сопротивле­ния М с2 .

При уменьшении момента сопротивления происходит обрат­ный процесс. Если момент сопротивления станет меньше вра­щающего момента, развиваемого электродвигателем, то ско­рость вращения последнего начнет возрастать. Это вызовет возрастание противо э. д. с., а значит, уменьшение тока и вра­щающего момента. Процесс прекратится, когда вращающий момент станет равным моменту сопротивления на валу электро­двигателя.

Механические и скоростные характеристики двигателя постоянного тока независимого возбуждения. Естественные и искусственные характеристики

Механическая характеристика двигателя при неизменных параметрах U, R и Ф представляется прямой линией 1 (рис. 4.2).

На холостом ходу (М = 0) двигатель вращается с частотой вращения w0. По мере увеличения момента нагрузки частота вращения снижается, номинальному моменту нагрузки МН соответствует номинальная частота вращения w0. Изменение величины питающего напряжения вызывает пропорциональное уменьшение частот вращения во всех режимах работы. При этом жесткость механической характеристики b сохраняется, так как его величина, согласно (4.5б), определяется сопротивлением якорной цепи, конструктивным коэффициентом и магнитным потоком машины.

Согласно (4.5), путем изменения величины питающего напряжения U от нуля до номинального значения (например, при помощи управляемого тиристорного выпрямителя), можно изменять частоту вращения вала в широких пределах, что подтверждается рис. 4.2 (характеристиками 2). При этом диапазон плавного и экономичного регулирования частоты вращения – глубина регулирования – находится по формуле D= wmax/ wmin

где wmax, wmin – максимально и минимально возможные частоты вращения при данном способе регулирования.

Практически значение глубины регулирования достигает 10…100 тыс. Столь большой диапазон регулирования позволяет исключить или значительно упростить механическую трансмиссию.

Вторым способом регулирования частоты вращения двигателя является изменение сопротивления якорных цепей – путём включения последовательно в цепь якоря регулировочного резистора RР1 (рис. 4.1). В этом случае, согласно (4.5), при увеличении сопротивления жесткость характеристики машины уменьшается (рис. 4.2, линии 3). Как видно из рис. 4.2, частота вращения машины при идеальном холостом ходе: М = 0 не изменяется, а с ростом момента нагрузки частота вращения снижается значительно (β уменьшается). Данный способ регулирования позволяет изменять частоту вращения в значительном диапазоне, однако вследствие значительных потерь мощности в регулировочном резисторе резко снижается кпд привода:

Скоростная характеристика двигателей с независимым и параллельным возбуждением – это зависимость n = f ( Iя ) при U = const и Iе = const, где

Iе — ток возбуждения.

Рис.8.5.4. Скоростная характеристика.

Изменение скорости вращения может происходить за счёт изменения нагрузки и магнитного потока. Увеличение тока нагрузки незначительно изменяет внутреннее падение напряжения из-за малого сопротивления цепи якоря и поэтому лишь незначительно уменьшает скорость вращения двигателя. Что же касается магнитного потока, то вследствие реакции якоря при увеличении тока нагрузки он несколько уменьшается, что приводит к незначительному увеличению скорости двигателя. Таким образом, скорость вращения двигателя с параллельным возбуждением изменяется очень мало. Скорость вращения двигателя определяется формулой:

n = (U – IяRя) / c∙Φ, где

c – коэффициент, зависящий от устройства машины.

Скорость вращения двигателя с независимым возбуждением можно регулировать либо изменением сопротивления в цепи якоря, либо изменением магнитного потока. Следует отметить, что чрезмерное уменьшение тока возбуждения и, особенно, случайный обрыв этой цепи очень опасны для двигателей с параллельным и независимым возбуждением, т.к. ток в якоре может возрасти до недопустимо больших значений. При небольшой нагрузке (или на холостом ходу) скорость может настолько возрасти, что станет опасной для целостности двигателя.

Большая Энциклопедия Нефти и Газа

Механическая характеристика — двигатель — постоянный ток

Механическая характеристика двигателя постоянного тока с параллельным возбуждением приведена на рис. 15.4. Запуск двигателя осуществляется пусковым реостатом /, который имеет несколько секций и позволяет изменять сопротивление ступенчато. [2]

Механические характеристики двигателя постоянного тока с независимым возбуждением при различных значениях напряжения на якоре и потока возбуждения ( и соответственно тока возбуждения) показаны на рис. 27, а. Характеристики двигателя при других условиях называют искусственными. Частота вращения двигателя вниз от номинальной регулируется путем снижения напряжения на якоре ( первая зона регулирования, кривые 2, 3, 4), вверх от номинальной — путем регулирования тока и потока возбуждения. [3]

Читать еще:  Что стучит в двигателе иж планета

Механические характеристики двигателя постоянного тока независимого возбуждения , управляемого тиристор-ным выпрямителем, напоминают характеристики в системе Г — Д ( рис. 4.13), однако они отличаются рядом особенностей. [5]

Рассмотрим механические характеристики двигателей постоянного тока в зависимости от способа возбуждения. [6]

Какие механические характеристики двигателей постоянного тока называют искусственными. [7]

Почему механические характеристики двигателя постоянного тока независимого и параллельного возбуждения прямолинейны, а последовательного возбуждения — криволинейны. [8]

Особенностью механической характеристики двигателей постоянного тока с последовательным возбуждением является нижний предел допустимой нагрузки. Этому соответствует нагрузка около 10 % номинального момента, ниже которой двигатель не должен быть нагружен по условиям его механической прочности. Ограничение скорости может диктоваться и конструкцией самой рабочей машины или технологическими особенностями ее использования. Это требование в некоторых случаях заставляет отказываться от применения двигателей с последовательным возбуждением. [10]

Построить механическую характеристику двигателя постоянного тока с параллельным возбуждением, для которого известны следующие каталожные данные: Рн 5 8 кет; пн 800 об / мин; UH 220 в; 1 34 а; гя 0 22 ом. [11]

На графике изображена механическая характеристика двигателя постоянного тока . Какая величина должна быть отложена по оси ординат. [12]

В отличие от механических характеристик двигателя постоянного тока с независимым возбуждением, механические характеристики асинхронного двухфазного двигателя непрямолинейны. Однако в области невысоких скоростей ( примерно до 55 % синхронной скорости), являющейся рабочей областью для таких двигателей, механические характеристики достаточно точно аппроксимируются отрезками прямых. [13]

На рис. 3.9.3.4 представлены механические характеристики двигателя постоянного тока при двухзонном регулировании скорости. При регулировании потоком возбуждения с увеличением скорости жесткость механических характеристик уменьшается. Следует отметить, что в замкнутых системах регулирования скорости вид механических характеристик можно формировать в зависимости от поставленной задачи. При этом в некотором диапазоне изменения момента нагрузки можно создать практически абсолютно жесткую характеристику, а при определенном моменте практически абсолютно мягкую. [15]

Что такое механическая характеристика ДПТ и какой она имеет для независимого (параллельного) возбуждения вид?

Механическая характеристика, которая представляет зависимость частоты вращения от электромагнитного момента, n =f(M). Механическая характеристика двигателя имеет такой же вид, как и скоростная характеристика.

Может ли механическая характеристика независимого (параллельного) ДПТ стать неустойчивой, если да, то при каких условиях и какой она будет иметь вид?

Механическая характеристика двигателя имеет такой же вид, как и скоростная характеристика. Поэтому скоростная характеристика в другом масштабе является механической характеристикой.

Может ли механическая характеристика независимого (параллельного) ДПТ стать неустойчивой при его работе на ХХ или с малой нагрузкой и почему?

В двигателях независимого возбуждения изменение частоты вращения при переходе от холостого хода (M =M0) к номинальной нагрузке (M =Mном) мало и составляет 2..5 %. Такие слабо падающие механические и скоростные характеристики называются жесткими.

Что такое магнитная характеристика ДПТ, для каких типов двигателей она строится, какой она имеет вид и как на нее влияют насыщение магнитной цепи и реакция якоря?

Моментная характеристика M=f(Ia). Зависимость электромагнитного момента от тока якоря.

Какой имеет вид скоростная характеристика ДПТ последовательного возбуждения с учетом и без учета насыщения и реакции якоря?

скоростная характеристика имеет гиперболический характер. Особенностью скоростной характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря. Реальная скоростная характеристика при учете размагничивающего действия реакции якоря будет отклоняться от гиперболической зависимости вверх.

Какой имеет вид моментная характеристика ДПТ последовательного возбуждения с учетом и без учета насыщения и реакции якоря?

M=c следует, что электромагнитный момент двигателя последовательного возбуждения пропорционален квадрату тока якоря, т.е. моментная характеристика имеет параболическую зависимость. С учетом размагничивающего действия реакции якоря момент в области больших токов будет меньше момента, что вызвано уменьшением магнитного потока из-за размагничивающего действия реакции якоря. Это вызовет соответствующее уменьшение момента при больших токах.

Какой имеет вид механическая характеристика ДПТ последовательного возбуждения с учетом и без учета насыщения и реакции якоря?

следует, что механическая характеристика двигателя последовательного возбуждения при U=const так же как и его скоростная характеристика, имеет практически гиперболический характер. Особенностью механической характеристики двигателя последовательного возбуждения является ее большая крутизна в области малых значений тока якоря.

Дата добавления: 2018-05-12 ; просмотров: 347 ; Мы поможем в написании вашей работы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector