Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механическая характеристика

Механическая характеристика

Определение. Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента нагрузки на валу М, т. е. п (М). От ее характера зависит пригодность асинхронного двигателя для привода различных рабочих механизмов. Так, для многих станков требуется, чтобы частота вращения двигателя оставалась неизменной или почти неизменной при изменении нагрузки. Наряду с этим рабочие механизмы, работающие при резко изменяющихся нагрузках, — прессы, краны, ножницы — требуют быстрого изменения частоты вращения двигателя при таких нагрузках.

Поэтому механическая характеристика двигателя играет существенную роль при выборе приводного двигателя.

Вывод уравнения механической характеристики. Зависимость п(М) может быть получена из формулы M(s) (3.23), если учесть, что s = (n1 n)/n1. График п(М) представлен на рис. 3.18. Все сказанное о характерных точках и участках графика M(s) справедливо и для графика п(М).

Так, на рабочем участке n1 nном зависимость п(М) линейная.

Действительно, n = n1(1s). Так как на этом участке

, то, подставляя значение s в формулу n = n1(1s), получаем:

График этой зависимости представляется прямой линией (рис. 3.19).

Коэффициент b пропорционален тангенсу угла наклона прямой, т. е.
где km масштабный коэффициент.

Полученная характеристика называется жесткой, так как в пределах от идеального холостого хода до номинальной нагрузки частота вращения ротора падает не более чем на 10%.

Что такое механическая характеристика шагового двигателя

Мелкосерийное литье изделий из пластика на термопластавтоматах
Узнать цену!

3.4. Синхронные шаговые двигатели

В системах управления электроприводами с применением уже рассмотренных нами типов двигателей для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя (рис. 3.15).

Рис.3.15. Система отработки угла (положения) выходного вала двигателя с использованием датчика обратной связи.

Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро-аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.

Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.

Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота.

Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.

Шаговые синхронные двигатели активного типа. В отличие от синхронных машин

непрерывного вращения шаговые двигатели имеют на статоре явно выраженные

полюса, на которых расположены катушки обмоток управления.

Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя (рис.3.16).

Рис. 3.16. Принципиальная схема управления шаговым двигателем

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.

При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления (рис. 3.17).

Рис.3.17. Симметричная система коммутации.

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления (рис. 3.18).

Рис.3.18. Несимметричная система коммутации.

Ротор у шагового двигателя активного типа представляет собой постоянный магнит (рис. 3.4.5), при числе пар полюсов больше 1, выполненный в виде «звездочки» (рис. 3.4.6).

Число тактов К Т системы управления называют количеством состояний коммутатора на периоде его работы T. Как видно из рисунков для симметричной системы управления К Т =4, а для несимметричной К Т =8.

В общем случае число тактов К Т зависит от числа обмоток управления (фаз статора) m у и может быть посчитано по формуле:

n 1 =1 при симметричной системе коммутации;

n 1 =2 при несимметричной системе коммутации;

n 2 =1 при однополярной коммутации;

n 2 =2 при двуполярной коммутации.

Рис. 3.19. Схемы, иллюстрирующие положения ротора шагового двигателя с постоянными магнитами при подключении к источнику питания одной (а) и двух обмоток (б)

При однополярной коммутации ток в обмотках управления протекает в одном направлении (рис. 3.19а); при двуполярной — в обеих (рис. 3.19б).

Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают.

Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1).

Для примера приведем двуполюсный трехфазный шаговый двигатель (рис.3.20):

Рис. 3.20. Двуполюсный трехфазный шаговый двигатель

Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р= 4. 6.

Величина шага ротора активных шаговых двигателей составляет десятки градусов.

Реактивные шаговые двигатели. У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора (рис.3.21).

Рис. 3.21. Принцип действия реактивного редукторного шагового двигателя: (а) — исходное положение устойчивого равновесия; (б) — положение устойчивого равновесия. cдвинутое на один шаг ( )

Если зубцы ротора соосны с одной диаметрально расположенной парой полюсов статора, то они сдвинуты относительно каждой из оставшихся трех пар полюсов статора соответственно на ј, Ѕ и ѕ зубцового деления.

При большом числе зубцов ротора Z р его угол поворота значительно меньше угла поворота поля статора.

Величина углового шага редукторного реактивного шагового двигателя определится выражением:

В выражении для К Т величину n 2 следует брать равной 1, т. к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают.

Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики.

Линейные шаговые синхронные двигатели . При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов (рис. 3.22).

Рис. 3.22. Схема, иллюстрирующая работу линейного шагового двигателя

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнитопровода ротора сдвинуты на половину зубцового деления τ/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления τ/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Читать еще:  Шаговый двигатель с тормозом что это

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила F С , которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления τ/4.

K Т — число тактов схемы управления.

Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

Режимы работы синхронного шагового двигателя. Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления

серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода следующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0 (рис. 3.23).

Рис.3.23. Процесс отработки шагов шаговым двигателем

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.

Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

Предельная механическая характеристика — это зависимость максимального синхронизирующего момента от частоты управляющих импульсов (рис. 3.24).

Рис. 3.24. Предельная механическая характеристика шагового двигателя

С увеличением частоты управляющих импульсов величина максимального момента падает, что объясняется действием демпфирующего момента (вызванного перечисленными выше потерями), и ЭДС самоиндукции становится соизмеримой с напряжением источника питания.

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления (рис. 3.25, где по оси абсцисс откладывается момент сопротивления типа трения).

Рис.3.25. Предельная динамическая характеристика шагового двигателя

Приемлемость падает с увеличением нагрузки.

Шаговые двигатели, принцип действия, разновидности, характеристики

ОГЛАВЛЕНИЕ

1.Шаговые двигатели, принцип действия, разновидности, характеристики. — стр.3-13

2.Реакция якоря машины постоянного тока. — стр.14-15

3.Задача №1 — стр.16

4.Задача №2 — стр.17

Шаговые двигатели, принцип действия, разновидности, характеристики

  • Принцип действия шаговых двигателей.
  • Биполярные и униполярные шаговые двигатели.
  • Виды шаговых двигателей.
  • Управление шаговыми двигателями
  • Недостатки и достоинства шаговых двигателей.
  • Характеристики шаговых двигателей.

Шаговый двигатель это бесколлекторный синхронный двигатель, ротор которого совершает дискретные перемещения (шаги) определенной величины с фиксацией положения ротора в конце каждого шага.

Т.е. перемещение ротора происходит шагами известной величины. Подсчитав шаги можно определить, на сколько изменилось положение ротора, вычислить его абсолютную позицию.

Объединяя в себе двигатель и позиционирующее устройство без обратной связи, шаговый двигатель является идеальным приводом в промышленном оборудовании, станках с ЧПУ, робототехнике…

Принцип действия шаговых двигателей

Представьте себе двухполюсный постоянный магнит на валу двигателя – это ротор, окруженный замкнутым магнитопроводом с четырьмя обмотками — статор. Вернее это две обмотки AB и CD с половинками, расположенными на противоположных полюсах статора.

Подключили к источнику напряжения обмотку AB (полярность + -) как показано на рисунке. Ток в этой обмотке вызовет появление магнитного поля статора с полюсами сверху N, снизу S.

Как известно разноименные полюса магнитов притягиваются.

В результате ротор (постоянный магнит) займет положение, в котором оси магнитных полей ротора и работающих полюсов статора совпадают. Механическое положение будет устойчивым. При попытке сдвинуть ротор, возникнет сила, возвращающая его назад.

Теперь снимем напряжение с обмотки AB и подадим на обмотку CD (полярностью + -). Ток в обмотке CD вызовет магнитное поле с горизонтальными полюсами, слева S, справа N.

Магнитное поле делает все, чтобы магнитный поток замкнулся по минимальному пути. Ротор повернется в положение указанное на рисунке. Механическое положение ротора опять устойчивое. Это был первый шаг двигателя. В нашем случае он равен одной четвертой оборота.

Отключаем обмотку CD и подаем напряжение опять на обмотку AB, но уже в другой полярности (- +). Опять магнитное поле статора повернется на 90°, а за ним и ротор.

Еще одна коммутация AB — отключаем, CD — подключаем (полярность — +) и ротор совершает еще один шаг на одну четвертую окружности.

Следующая коммутация (с которой мы начали) вернет ротор в исходное положение. Мы сделали полный поворот за 4 шага.

Если продолжить переключение фаз, ротор будет вращаться с частотой, пропорциональной частоте переключения фазных обмоток.

Если коммутировать фазы в противоположной последовательности – крутиться в обратном направлении, прекратить коммутацию — остановится.

Биполярные и униполярные шаговые двигатели

Это был биполярный шаговый двигатель.

Биполярный двигатель имеет по одной обмотке для каждой фазы. На предыдущих рисунках это обмотки AB и CD. Для изменения магнитного поля должна обеспечиваться сложная коммутация обмоток. Каждая обмотка:

  • отключается от источника напряжения,
  • подключается в прямой полярности
  • подключается с противоположной полярностью.

Для такой коммутации требуется сложный мостовой драйвер. Примером такого устройства является микросхема L298N. Микросхема обеспечивает ток коммутации до 2 А. Если нужны большие токи, то задача управления биполярным двигателем еще усложняется.

Существует другой способ изменения магнитного поля в статоре с гораздо более простой схемой коммутации. Это применение двигателя с униполярными обмотками.

Схема двух фазного шагового двигателя с униполярными обмотками и последовательность коммутаций обмоток выглядит так.

У всех четырех обмоток один вывод подключен к плюсовому выводу источника питания. А другие выводы A,B,C,D последовательно коммутируются к минусовому сигналу. Соответствующие обмотки создают магнитное поле, и ротор поворачивается вслед за ним.

Для коммутации обмоток таким способом достаточно четырех ключей, замыкающих обмотки на землю. Ключи часто управляются непосредственно с выводов микроконтроллеров.

Иногда средние выводы обмоток конструктивно объединены внутри двигателя, иногда выводятся все выводы отдельно. Кстати, это не повод называть двигатель четырехфазным. Все равно он будет двухфазным.

Биполярный двигатель обеспечивает, при тех же размерах, больший крутящий момент, по сравнению с униполярным. Оно и понятно. Одновременно в униполярном двигателе работает только одна обмотка, вместо двух. Выигрыш в моменте у биполярного составляет около 40%.

Зато, если нет необходимости использовать двигатель на полную мощность, униполярным двигателем гораздо проще управлять.

Разновидности шаговых двигателей

Основные виды шаговых двигателей:

  • с переменным магнитным сопротивлением
  • с постоянными магнитами
  • гибридные.

Шаговые двигатели с переменным магнитным сопротивлением

У двигателей с переменным магнитным сопротивлением в роторе нет постоянных магнитов. Их ротор выполнен из магнитомягкого материала и имеет зубчатую форму. Магнитный поток замыкается через ближайшие к полюсам статора зубцы. Зубцы притягиваются к полюсам. Этим и обеспечивается вращение.

При тех же размерах, двигатели с переменным магнитным сопротивлением имеют меньший крутящий момент, чем другие типы шаговых двигателей.

Применяются они довольно редко. Я знаю только одну фирму, которая использовала такие двигатели. Я разрабатывал управление для них. Выбор двигателей именно с переменным магнитным сопротивлением был обусловлен тем, что фирма сама изготавливала все детали двигателя. А сделать ротор для привода такого вида намного проще, потому что в нем не используются постоянные магниты.

Двигатели с постоянными магнитами

У шаговых двигателей этого вида ротор содержит постоянные магниты. Общий принцип действия шагового двигателя я объяснял на двигателе с постоянным магнитом. Только в реальных двигателях магнитов больше. Вот пример двигателя с тремя парами полюсов ротора.

У реальных двигателей с постоянными магнитами число шагов на оборот доходит до 48, что соответствует углу шага 7,5 °.

Гибридные двигатели обеспечивают меньшую величину шага, больший момент и скорость. Число шагов на оборот для такого типа двигателей доходит до 400 (угол шага 0,9°).

При этом они более сложные в изготовлении и более дорогие. Я не хочу забивать читателю голову конструкцией этих двигателей. У них есть и зубчатый ротор, и постоянные магниты. По принципу действия гибридные двигатели эквивалентны двигателям с постоянными магнитами, но с гораздо большим числом полюсов.

Читать еще:  Большое давление в системе охлаждения двигателя пассат

Это самый распространенный тип шаговых двигателей.

Управление шаговым двигателем

Существуют три режима управления шаговым двигателем:

  • полношаговый
  • полушаговый
  • микрошаговый.

Первый способ был описан в примерах выше. Это попеременная коммутация фаз, фазы не перекрываются, в каждый момент времени к источнику напряжения подключена только одна фаза.

Способ называется на английском one phase on full step – одна фаза на полный шаг. Точки равновесия ротора совпадают с полюсами статора.

Недостатком этого режима является то, что в один и тот же момент используется половина обмоток для биполярного двигателя, и только четверть для униполярного.

Есть вариант полношагового режима управления при котором в одно и то же время включены две фазы. Называется two-phase-on full step – две фазы на полный шаг. При таком способе ротор фиксируется между полюсами статора за счет подачи питания на все обмотки..

Это позволяет увеличить крутящий момент двигателя на 40%. Угол шага не меняется, просто ротор в состоянии равновесия смещен на пол шага.

Этот способ позволяет от двигателя получить в два раза больше шагов на оборот ротора. Каждый второй шаг включается одна фаза, а между ними — включаются сразу две.

В результате такой коммутации угловое перемещение шага уменьшается в два раза, или в два раза увеличивается число шагов. Полный момент получить в полушаговом режиме не удается. Не смотря на это, полушаговый режим используется часто. Уж очень простыми методами он удваивает число шагов двигателя.

Надо помнить, что для обоих режимов справедливо то, что при остановке двигателя со снятием напряжения со всех фаз, ротор двигателя находится в свободном состоянии и может смещаться от механических воздействий. Чтобы зафиксировать положение ротора, необходимо формировать в обмотках двигателя ток удержания. Этот ток может быть значительно меньше номинального.

Способность шагового двигателя фиксировать свое положение при остановке позволяет обходиться без механических фиксаторов, тормозных систем и т.п.

Для получения еще большего числа шагов двигателя применяют микрошаговый режим. Включают две фазы, как на полушаговом режиме, но токи обмоток распределяют не равномерно. Магнитное поле статора смещается между полюсов, смещается и положение ротора. Как правило, диспропорция токов между рабочими фазами происходит с определенной дискретностью, микрошагом. Бывают микрошаги с величиной треть от полного шага. Бывают значительно больше. Я разрабатывал систему управления индукторным приводом, так там было больше 1000 микрошагов.

Микрошаговый режим способен значительно повысить точность позиционирования шагового двигателя. Хотя система управления приводом становится намного сложнее.

Недостатки и достоинства шаговых двигателей.

Преимущества шаговых двигателей.

  • Точное позиционирование без обратной связи. Число импульсов определяет угол поворота.
  • Двигатель обеспечивает полный крутящий момент при снижении скорости вращения, вплоть до остановки.
  • Двигатель фиксирует свое положение при остановке за счет тока удержания.
  • Регулировка скорости вращения с высокой точностью без обратной связи.
  • Способность быстрого старта, остановки, реверса.
  • Высокая надежность. Отсутствие коллекторных щеток.

Недостатки шаговых двигателей.

  • Сложная система управления.
  • Невысокие скорости вращения.
  • Возможно явление резонанса.
  • Может произойти потеря позиционирования при механических перегрузках.
  • Низкая удельная мощность.

Как и всему на свете шаговому двигателю присущи определенные достоинства и недостатки. Но есть области в точной механике, в которых он просто незаменим. Там где надо перемещать механические узлы, мгновенно останавливать, двигать назад, регулировать скорость. Попробуйте мгновенно остановить коллекторный двигатель, и вы забудете о недостатках шагового. Попробуйте реализовать изменение скорости коллекторного двигателя в широких пределах. Проще поставить шаговый с его недостатками.

Характеристики шаговых двигателей.

Шаговый двигатель с точки зрения механики и электротехники очень сложное устройство, имеющее много механических и электрических параметров. Приведу расшифровку основных технических параметров, которые используются на практике.

  • Количество полных шагов за один оборот. Основной параметр двигателя, определяющий его точность, разрешающую способность, плавность движения. На двигателях серии FL57 этот параметр составляет 200 и 400 шагов на оборот.
  • Угол полного шага. Представление в другом виде предыдущего параметра. Показывает на какой угол повернется вал при одном полном шаге. Может быть подсчитан как 360° / количество полных шагов за оборот. Для двигателей серии FL57 составляет 1,8 ° и 0,9°.
  • Номинальный ток. Основной электрический параметр. Наибольший допустимый ток, при котором электродвигатель может работать сколь угодно длительное время. Для этого тока указаны механические параметры двигателя.
  • Номинальное напряжение. Допустимое постоянное напряжение на обмотке двигателя в статическом режиме. Часто этот параметр не приводится. Вычисляется по закону Ома через номинальный ток и сопротивление обмотки.
  • Сопротивление обмотки фазы. Сопротивление обмотки двигателя на постоянном токе. Параметр вместе с номинальным током, показывает какое напряжение можно подавать на обмотку двигателя.
  • Индуктивность фазы. Параметр становится важным на значительных скоростях вращения. От него зависит скорость нарастания тока в обмотке. При высоких частотах переключения фаз приходится увеличивать напряжение, чтобы ток нарастал быстрее.
  • Крутящий момент. Основной механический параметр. Показывает максимальный крутящий момент, который способен создать двигатель. Иногда приводится механическая характеристика в виде зависимости крутящего момента от частоты вращения.
  • Момент инерции ротора. Характеризует механическую инерционность ротора двигателя. Чем этот параметр меньше, тем двигатель быстрее разгоняется.
  • Удерживающий момент. Это крутящий момент при остановленном двигателе. При этом у двигателя должны быть запитаны две фазы номинальным током.
  • Стопорный момент. Момент, необходимый чтобы провернуть вал двигателя при отсутствующем напряжении питания.
  • Сопротивление изоляции. Как у всех электрических приборов – сопротивление между корпусом и обмотками.
  • Пробивное напряжение. Минимальное напряжение, при котором происходит пробой изоляции между обмотками и корпусом. Параметр из раздела электробезопасности.

Лекция № 8 — Как работают шаговые двигатели

Использование шаговых двигателей является одним из самых простых, дешевых и легких решений для реализации систем точного позиционирования. Эти двигатели очень часто используются в различных станках ЧПУ и роботах. Сегодня я расскажу о том, как устроены шаговые двигатели и как они работают.

Что такое шаговый двигатель?

Прежде всего, шаговый двигатель — это двигатель. Это означает, что он преобразует электрическую энергию в механическую. Основное отличие между ним и всеми остальными типами двигателей состоит в способе, благодаря которому происходит вращение. В отличие от других моторов, шаговые двигатели вращаются НЕ непрерывно! Вместо этого, они вращаются шагами (отсюда и их название). Каждый шаг представляет собой часть полного оборота. Эта часть зависит, в основном, от механического устройства мотора и от выбранного способа управления им. Шаговые двигатели также различаются способами питания. В отличие от двигателей переменного или постоянного тока, обычно они управляются импульсами. Каждый импульс преобразуется в градус, на который происходит вращение. Например, 1.8º шаговый двигатель, поворачивает свой вал на 1.8° при каждом поступающем импульсе. Часто, из-за этой характеристики, шаговые двигатели еще называют цифровыми.

Основы работы шагового двигателя

Как и все моторы, шаговые двигатели состоят из статора и ротора. На роторе установлены постоянные магниты, а в состав статора входят катушки (обмотки). Шаговый двигатель, в общем случае, выглядит следующим образом:

Здесь мы видим 4 обмотки, расположенные под углом 90° по-отношению друг к другу, размещенные на статоре. Различия в способах подключения обмоток в конечном счете определяют тип подключения шагового двигателя. На рисунке выше, обмотки не соединяются вместе. Мотор по такой схеме имеет шаг поворота равный 90°. Обмотки задействуются по кругу — одна за другой. Направление вращения вала определяется порядком, в котором задействуются обмотки. Ниже показана работа такого мотора. Ток через обмотки протекает с интервалом в 1 секунду. Вал двигателя поворачивается на 90° каждый раз, когда через катушку протекает ток.

Режимы управления

Теперь рассмотрим различные способы подачи тока на обмотки и увидим, как в результате вращается вал мотора.

Волновое управление или полношаговое управление одной обмоткой

Этот способ описан выше и называется волновым управлением одной обмоткой. Это означает, что только через одну обмотку протекает электрический ток. Этот способ используется редко. В основном, к нему прибегают в целях снижения энергопотребления. Такой метод позволяет получить менее половины вращающего момента мотора, следовательно, нагрузка мотора не может быть значительной.

У такого мотора будет 4 шага на оборот, что является номинальным числом шагов.

Полношаговый режим управления

Вторым, и наиболее часто используемым методом, является полношаговый метод. Для реализации этого способа, напряжение на обмотки подается попарно. В зависимости от способа подключения обмоток (последовательно или параллельно), мотору потребуется двойное напряжение или двойной ток для работы по отношению к необходимым при возбуждении одной обмотки. В этом случае мотор будет выдавать 100% номинального вращающего момента.

Такой мотор имеет 4 шага на полный оборот, что и является номинальным числом шагов для него.

Читать еще:  Блок управления двигателем камаз евро 3 схема

Полушаговый режим

Это очень интересный способ получить удвоенную точность системы позиционирования, не меняя при этом ничего в «железе»! Для реализации этого метода, все пары обмоток могут запитываться одновременно, в результате чего, ротор повернется на половину своего нормального шага. Этот метод может быть также реализован с использованием одной или двух обмоток. Ниже показано, как это работает.

Используя этот метод, тот же самый мотор сможет дать удвоенное число шагов на оборот, что означает двойную точность для системы позиционирования. Например, этот мотор даст 8 шагов на оборот!

Режим микрошага

Микрошаговый режим наиболее часто применяемый способ управления шаговыми двигателями на сегодняшний день. Идея микрошага состоит в подаче на обмотки мотора питания не импульсами, а сигнала, по своей форме, напоминающего синусоиду. Такой способ изменения положения при переходе от одного шага к другому позволяет получить более гладкое перемещение, делая шаговые моторы широко используемыми в таких приложениях как системы позиционирования в станках с ЧПУ. Кроме этого, рывки различных деталей, подключенных к мотору, также как и толчки самого мотора значительно снижаются. В режиме микрошага, шаговый мотор может вращаться также плавно как и обычные двигатели постоянного тока.

Форма тока, протекающего через обмотку похожа на синусоиду. Также могут использоваться формы цифровых сигналов. Вот некоторые примеры:

Метод микрошага является в действительности способом питания мотора, а не методом управления обмотками. Следовательно, микрошаг можно использовать и при волновом управлении и в полношаговом режиме управления. Ниже продемонстрирована работа этого метода:

Хотя кажется, что в режиме микрошага шаги становятся больше, но, на самом деле, этого не происходит. Для повышения точности часто используются трапецевидные шестерни. Этот метод используется для обеспечения плавного движения.

Типы шаговых двигателей

Шаговый двигатель с постоянным магнитом

Ротор такого мотора несет постоянный магнит в форме диска с двумя или большим количеством полюсов. Работает точно также как описано выше. Обмотки статора будут притягивать или отталкивать постоянный магнит на роторе и создавать тем самым крутящий момент. Ниже представлена схема шагового двигателя с постоянным магнитом.

Обычно, величина шага таких двигателей лежит в диапазоне 45-90°.

Шаговый двигатель с переменным магнитным сопротивлением

У двигателей этого типа на роторе нет постоянного магнита. Вместо этого, ротор изготавливается из магнитомягкого металла в виде зубчатого диска, типа шестеренки. Статор имеет более четырех обмоток. Обмотки запитываются в противоположных парах и притягивают ротор. Отсутствие постоянного магнита отрицательно влияет на величину крутящего момента, он значительно снижается. Но есть и большой плюс. У этих двигателей нет стопорящего момента. Стопорящий момент — это вращающий момент, создаваемый постоянными магнитами ротора, которые притягиваются к арматуре статора при отсутствии тока в обмотках. Можно легко понять, что это за момент, если попытаться повернуть рукой отключенный шаговый двигатель с постоянным магнитом. Вы почувствуете различимые щелчки на каждом шаге двигателя. В действительности то, что вы ощутите и будет фиксирующим моментом, который притягивает магниты к арматуре статора. Ниже показана работа шагового двигателя с переменным магнитным сопротивлением.

Шаговые двигатели с переменным магнитным сопротивлением обычно имеют шаг, лежащий в диапазоне 5-15°.

Гибридный шаговый двигатель

Данный тип шаговых моторов получил название «гибридный» из-за того, что сочетает в себе характеристики шаговых двигателей и с постоянными магнитами и с переменным магнитным сопротивлением. Они обладают отличными удерживающим и динамическим крутящим моментами, а также очень маленькую величину шага, лежащую в пределах 0.9-5°, обеспечивая великолепную точность. Их механические части могут вращаться с большими скоростями, чем другие типы шаговых моторов. Этот тип двигателей используется в станках ЧПУ high-end класса и в роботах. Главный их недостаток — высокая стоимость.

Обычный мотор с 200 шагами на оборот будет иметь 50 положительных и 50 отрицательных полюсов с 8-ю обмотками (4-мя парами). Из-за того, что такой магнит нельзя произвести, было найдено элегантное решение. Берется два отдельных 50-зубых диска. Также используется цилиндрический постоянный магнит. Диски привариваются один с положительному, другой к отрицательному полюсам постоянного магнита. Таким образом, один диск имеет положительный полюс на своих зубьях, другой — отрицательный.

Два 50-зубых диска помещены сверху и снизу постоянного магнита

Фокус в том, что диски размещаются таким образом, что если посмотреть на них сверху, то они выглядят как один 100-зубый диск! Возвышения на одном диске совмещаются со впадинами на другом.

Впадины на одном диске выровнены с возвышениями на другом

Ниже показана работа гибридного шагового двигателя, имеющего 75 шагов на оборот (1.5° на шаг). Стоит заметить, что 6 обмоток спарены, каждая имеет обмотку с противоположной стороны. Вы наверняка ожидали, что катушки расположены под углом в 60° следом друг за другом, но, на самом деле, это не так. Если предположить, что первая пара — это самая верхняя и самая нижняя катушки, тогда вторая пара смещена под углом 60+5° по отношению к первой, и третья смещена на 60+5° по отношению ко второй. Угловая разница и является причиной вращения мотора. Режимы управления с полным и половинным шагом могут использоваться, впрочем как и волновое управление для снижения энергопотребления. Ниже продемонстрировано полношаговое управление. В полушаговом режиме, число шагов увеличится до 150!

Не пытайтесь следовать за обмотками, чтобы понаблюдать, как это работает. Просто сфокусируйтесь на одной обмотке и ждите. Вы заметите, что всякий раз, когда обмотка задействована, есть 3 положительных полюса (красный) в 5° позади, которые притягиваются по направлению вращения и другие 3 отрицательных полюса (синий) в 5° впереди, которые толкаются в направлении вращения. Задействованная обмотка всегда находится между положительным и отрицательным полюсами.

Подключение обмоток

Шаговые двигатели относятся к многофазным моторам. Больше обмоток, значит, больше фаз. Больше фаз, более гладкая работа мотора и более выокая стоимость. Крутящий момент не связан с числом фаз. Наибольшее распространение получили двухфазные двигатели. Это минимальное количество необходимых для того, чтобы шаговый мотор функционировал. Здесь необходимо понять, что число фаз не обязательно определяет число обмоток. Например, если каждая фаза имеет 2 пары обмоток и мотор является двухфазным, то количество обмоток будет равно 8. Это определяет только механические характеристики мотора. Для упрощения, я рассмотрю простейший двухфазный двигатель с одной парой обмоток на фазу.

Существует три различных типа подключения для двухфазных шаговых двигателей. Обмотки соединяются между собой, и, в зависимости от подключения, используется различное число проводов для подключения мотора к контроллеру.

Биполярный двигатель

Это наиболее простая конфигурация. Используются 4 провода для подключения мотора к контроллеру. Обмотки соединяются внутри последовательно или параллельно. Пример биполярного двигателя:

Мотор имеет 4 клеммы. Два желтых терминала (цвета не соответствуют стандартным!) питают вертикальную обмотку, два розовых — горизонтальную обмотку. Проблема такой конфигурации состоит в том, что если кто-то захочет изменить магнитную полярность, то единственным способом будет изменение направления электрического тока. Это означает, что схема драйвера усложнится, например это будет H-мост.

Униполярный двигатель

В униполярном двигателе общий провод подключен к точке, где две обмотки соединены вместе:

Используя этот общий провод, можно легко изменить магнитные полюса. Предположим, например, что мы подключили общий провод к земле. Запитав сначала один вывод обмотки, а затем другой — мы изменяем магнитные полюса. Это означает, что схема для использования биполярного двигателя очень простая, как правило, состоит только из двух транзисторов на фазу. Основным недостатком является то, что каждый раз, используется только половина доступных катушечных обмоток. Это как при волновом управлении двигателем с возбуждением одной обмотки. Таким образом, крутящий момент всегда составляет около половины крутящего момента, который мог быть получен, если бы обе катушки были задействованы. Другими словами, униполярные электродвигатели должны быть в два раза более габаритными, по сравнению с биполярным двигателем, чтобы обеспечить такой же крутящий момент. Однополярный двигатель может использоваться как биполярный двигатель. Для этого нужно оставить общий провод неподключенным.

Униполярные двигатели могут иметь 5 или 6 выводов для подключения. На рисунке выше продемонстрирован униполярный мотор с 6 выводами. Существуют двигатели, в которых два общих провода соединены внутри. В этом случае, мотор имеет 5 клемм для подключения.

8-выводной шаговый двигатель

Это наиболее гибкий шаговый мотор в плане подключения. Все обмотки имеют выводы с двух сторон:

Этот двигатель может быть подключен любым из возможных способов. Он может быть подключен как:

  • 5 или 6-выводной униполярный,
  • биполярный с последовательно соединенными обмотками,
  • биполярный с параллельно соединенными обмотками,
  • биполярный с одним подключением на фазу для приложений с малым потреблением тока
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector