Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое наддув двигателя и для чего он осуществляется

Наддув

Наддув — увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске.

Также наддув — любого рода создание повышенного давления. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.

Наддув ДВС обычно применяют с целью повышения мощности (на 20-45 %) без увеличения массы и габаритов двигателя, а также для компенсации падения мощности в условиях высокогорья. Наддув с «качественным регулированием» может применяться для снижения токсичности и дымности отработавших газов. Агрегатный наддув осуществляется с помощью компрессора, турбокомпрессора или комбинированно. Наибольшее распространение получил наддув с помощью турбокомпрессора, для привода которого используется энергия отработавших газов.

Агрегатный наддув применяют почти на всех видах транспортных дизелей (судовых, тепловозных, тракторных). Наддув на карбюраторных двигателях ограничивается возникновением детонации. К основным недостаткам агрегатного наддува относят:

  • повышение механической и тепловой напряжённости двигателя вследствие увеличения давления и температуры газов;
  • усложнение конструкции.

К безагрегатному наддуву относят:

  • динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений в трубопроводах;
  • скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;
  • рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до hv=0,92-0,96 в широком диапазоне изменения частоты вращения двигателя. Увеличение hv при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

См. также

  • Турбонаддув
  • Нагнетатель
  • Компрессор

Напишите отзыв о статье «Наддув»

Ссылки

  • [www.avsim.su/f/dokumentaciya-obshego-znacheniya-16/tekhopisanie-tu-22r-58960.html?action=download&hl= Техописание Ту-22Р. Планер (крыло), шасси, гидросистема, управление, электрооборудование]
  • [icarbio.ru/articles/nadduv_istory.html Статья «Наддув, нагнетатели и немного истории»]
  • [www.autotechnic.su/technology/boost/boost.html Турбонагнетатель и его сравнение с механическим компрессором]
  • [www.turbocenter.com.ua/articles/art-turbo/63-art-tc-variants-of-charging Виды наддува]

Отрывок, характеризующий Наддув

«Адъютант князя Кутузова привез мне письмо, в коем он требует от меня полицейских офицеров для сопровождения армии на Рязанскую дорогу. Он говорит, что с сожалением оставляет Москву. Государь! поступок Кутузова решает жребий столицы и Вашей империи. Россия содрогнется, узнав об уступлении города, где сосредоточивается величие России, где прах Ваших предков. Я последую за армией. Я все вывез, мне остается плакать об участи моего отечества».
Получив это донесение, государь послал с князем Волконским следующий рескрипт Кутузову:
«Князь Михаил Иларионович! С 29 августа не имею я никаких донесений от вас. Между тем от 1 го сентября получил я через Ярославль, от московского главнокомандующего, печальное известие, что вы решились с армиею оставить Москву. Вы сами можете вообразить действие, какое произвело на меня это известие, а молчание ваше усугубляет мое удивление. Я отправляю с сим генерал адъютанта князя Волконского, дабы узнать от вас о положении армии и о побудивших вас причинах к столь печальной решимости».

Девять дней после оставления Москвы в Петербург приехал посланный от Кутузова с официальным известием об оставлении Москвы. Посланный этот был француз Мишо, не знавший по русски, но quoique etranger, Busse de c?ur et d’ame, [впрочем, хотя иностранец, но русский в глубине души,] как он сам говорил про себя.
Государь тотчас же принял посланного в своем кабинете, во дворце Каменного острова. Мишо, который никогда не видал Москвы до кампании и который не знал по русски, чувствовал себя все таки растроганным, когда он явился перед notre tres gracieux souverain [нашим всемилостивейшим повелителем] (как он писал) с известием о пожаре Москвы, dont les flammes eclairaient sa route [пламя которой освещало его путь].
Хотя источник chagrin [горя] г на Мишо и должен был быть другой, чем тот, из которого вытекало горе русских людей, Мишо имел такое печальное лицо, когда он был введен в кабинет государя, что государь тотчас же спросил у него:
– M’apportez vous de tristes nouvelles, colonel? [Какие известия привезли вы мне? Дурные, полковник?]
– Bien tristes, sire, – отвечал Мишо, со вздохом опуская глаза, – l’abandon de Moscou. [Очень дурные, ваше величество, оставление Москвы.]
– Aurait on livre mon ancienne capitale sans se battre? [Неужели предали мою древнюю столицу без битвы?] – вдруг вспыхнув, быстро проговорил государь.
Мишо почтительно передал то, что ему приказано было передать от Кутузова, – именно то, что под Москвою драться не было возможности и что, так как оставался один выбор – потерять армию и Москву или одну Москву, то фельдмаршал должен был выбрать последнее.
Государь выслушал молча, не глядя на Мишо.
– L’ennemi est il en ville? [Неприятель вошел в город?] – спросил он.
– Oui, sire, et elle est en cendres a l’heure qu’il est. Je l’ai laissee toute en flammes, [Да, ваше величество, и он обращен в пожарище в настоящее время. Я оставил его в пламени.] – решительно сказал Мишо; но, взглянув на государя, Мишо ужаснулся тому, что он сделал. Государь тяжело и часто стал дышать, нижняя губа его задрожала, и прекрасные голубые глаза мгновенно увлажились слезами.

Читать еще:  Шевроле авео на каких двигателях цепь

Наддув дизелей, способы и схемы наддува

Наддувом называется способ повышения мощности дизелей, основанный на повышении плотности заряда цилиндра и соответствующем увеличении цикловой подачи топлива. Повышение плотности заряда цилиндра в современных дизелях осуществляется путем принудительной подачи воздуха в цилиндр и его охлаждением до температуры, незначительно превышающей температуру точки росы водяных паров охладителей надувочного воздуха.

Способы наддува: механический, газотурбинный, комбинированный.

Механический наддув требует больших затрат мощности на привод навесных компрессоров. Для осуществления газотурбинного наддува в двухтактных дизелях требуется больше энергии, т.к. отсутствуют насосные ходы поршня и температура выпускных газов существенно меньше.

При пуске на малых нагрузках мощности турбины не хватает для осуществления наддува, приходится идти на раннее открытие выпу4скного клапана ( в двигателях серии KGF за 95° до Н.М.Т.). Поэтому в старых судовых двухтактных дизелях использованы разнообразные схемы комбинированного наддува. В качестве первой ступени используется турбокомпрессор, в качестве второй – подпоршневой компрессор или подпоршневая полость. Реже применялись последовательно-ппаралле6льные параллельные соединения компрессоров.

При газотурбинном наддуве применяют наддув при постоянном давлении и импульсный (при переменном давлении перед турбиной), использующий энергию импульсов давления. Турбокомпрессор располагается вблизи группы цилиндров. Подвод газов к турбине осуществляется через короткие выпускные трубопроводы небольшого сечения.

Чтобы импульсы не накладывались друг на друга выпускную систему разделяют на несколько отдельных выпускных систем, замыкающихся за турбину (не более трех цилиндров к одной турбине).

При давлениях надувочного воздуха более »0,2 МПа турбина с импульсным подводом газа имеет КПД ниже, чем турбина с постоянным давлением выпускных газов на входе, в связи с дополнительными потерями из-за переменного давления на входе и перетекания газов в сопловом аппарате.

Поэтому при повышенном давлении наддува применяют преимущественно газотурбинный наддув с постоянным давлением газов перед турбиной.

При повышенных давлениях наддува и мощности турбокомпрессоров в изобарных системах достигается существенное повышение КПД турбокомпрессоров с 55 % до 70 % [15], поэтому в современных МОД выхлопные клапаны открываются позже и полезный ход поршня увеличивается.

В МОД с импульсной системой наддува двигателей типа KGF, VT2BF выпускные клапаны открывались при 95° и 92° поворота коленчатого вала до Н.М.Т. В более современных двигателях MAN & B.W. типа LMC, SMC-C открытие клапана происходит при 66…74° п.к.в. до Н.М.Т. Таким образом, турбонаддув является и средством повышения экономичности СДВС.

Разработаны разные схемы наддува (см. рисунок 2.2) [8]. Самой распространенной в МОД является прямоточно-клапанная схема с включением на малых нагрузках электроприводных воздуходувок, так как на режимах малых мощностей ГТН не обеспечивает надежное воздухоснабжение.

В старых МОД для обеспечения работоспособности на режимах частичных мощностей использовались подпоршневые полости (рисунок 2.2д,е,ж,з) или приводные поршневые насосы ( рисунок 2.2б,г) и, как уже указывалось, системы импульсного наддува с ранним открытием выпускного клапана (рисунок 2.2а). Аварийная электроприводная воздуходувка 9 обеспечивает воздухоснабжение до мощности N=0,2Nном и оборотов n=0,5nном.

В современных двигателях с электронным управлением (MAN & B.W. типа МЕ, Sulzer RT-flex, Mitsubishi UEC-LSE) при работе на частичных нагрузках осуществляется более раннее закрытие выпускного клапана, а на переходных режимах увеличения мощности предусматривается более раннее открытие выхлопного клапана для увеличения располагаемого теплоперепада на турбину.

В двигателях Sulzer RTA имеется две автоматически включающиеся воздуходувки, обеспечивающих пусковой режим и работу на частичных нагрузках вплоть до нагрузок выше 50 % Nном. Продольная перегородка в ресивере обеспечивает более высокие давления наддува на режимах частичных нагрузок [13].

Ответ на этот вопрос изложен также в [4, стр. 6]

1 – дизель; 2 – ресивер; 3 – охладитель воздуха; 4 – центробежный нагнетатель; 5 – газовая турбина; 6 – выпускной коллектор; 7 – поршневой нагнетатель; 8 – заслонка;

9 – аварийная воздуходувка (воздуходувка для пуска и работы на малых ходах)

Рисунок 2.2 – Схемы газотурбинного наддува мощных двухтактных

Дата добавления: 2015-04-21 ; просмотров: 113 ; Нарушение авторских прав

Наддув, назначение и способы наддува

Наддув цилиндров двигателей может быть либо динамическим, либо осуществляться при помощи специального нагне­тателя (компрессора).

Различают три системы наддува при помощи нагнетателей: с приводным компрессором, с газотурбокомпрессором и комбиниро­ванную.

Рис. 32. Системы наддува двигателей

Приводной компрессор 1 (рис. 32, а) через повышающую пе­редачу 2 сое-диняют с коленчатым валом 3 двигателя. Для привода газотурбокомпрессора (рис. 32, б) используют энергию отрабо­тавших газов, поступающих в газовую турбину 4. Компрессор 1 ус­танавливают на одном валу с газовой турбиной 4. В случае комби­нированной системы (рис. 32,в) первой ступенью является при­водной компрессор, а второй — газотурбокомпрессор.

На тракторных и автомобильных дизелях, устанавливаемых на строитель-ные и дорожные машины, чаще всего применяют газо­турбинный наддув.

При этом возможны два основных варианта использования энергии:

1. Энергия, потребляемая компрессором, равна энергии, выраба­тываемой газовой турбиной. В этом случае газотурбокомпрессор имеет лишь газовую связь с двигателем (рис. 32, б). Такая схема обеспечивает высокие экономические показатели при максималь­ном упрощении конструкции и поэтому наиболее распространена.

2. Энергия, вырабатываемая газовой турбиной, не равна энер­гии, потреб-ляемой компрессором. Разница энергии передается от двигателя к газотур-бокомпрессору (или наоборот) за счет примене­ния механической связи рото-ра газотурбокомпрессора с коленча­тым валом двигателя, что усложняет кон-струкцию последнего. Та­кую схему применяют при наддуве двухтактных ди-зелей в тех слу­чаях, когда не удается обеспечить баланса энергий газовой турби­ны и компрессора, не ухудшая существенно продувку и наполнение цилиндров. Иногда в этих случаях вместо механической связи ро­тора газотурбокомпрессора с коленчатым валом применяют комби­нированную систему наддува (рис. 32,в).

Читать еще:  Что нужно сделать с двигателем мопеда

Возможны два варианта подвода газов к газовой турбине: 1) из общего выпускного трубопровода; 2) отдельно от каждого цилинд­ра или от группы цилиндров, в которой в соответствии с порядком их работы, время между двумя последовательными импульсами давления, образующимися при выпуске газов из цилиндров, оказы­вается достаточно большим (импульсный наддув).

В первом случае, особенно в двигателях с большим числом ци­линдров и высокой частотой вращения, давление газов в выпускном трубопроводе выравнивается, амплитуда колебания давления перед турбиной невелика и процесс подвода газов к турбине можно рас­сматривать, как происходящий при постоянном давлении. Во вто­ром случае отработавшие газы поступают к газовой турбине с пе­ременным давлением, что позволяет повысить эффективность над­дува.

Подвод газов к турбине при постоянном давлении создает повышенные сопротивления в выпускном тракте двигателя по сравне­нию с выпуском в атмосферу. Это ухудшает очистку цилиндров и уменьшает наполнение их свежим зарядом. При импульсном над­дуве после периода выпуска газов из одного цилиндра к началу перекрытия клапанов давление в выпускном тракте резко снижает­ся. В результате этого увеличивается перепад давления между впускным и выпускным трактами, и очистка камер сгорания стано­вится более эффективной. Уменьшается работа, затрачиваемая на выталкивание газов.

По мере увеличения давления наддува рк и роста среднего дав­ления газов в выпускном тракте положительный эффект от приме­нения импульсного наддува снижается, так как импульсы давления сглаживаются. Максимальный эффект в импульсной системе надду­ва достигают при рк 0,4 МПа применение им­пульсного наддува уже не дает эффекта.

Следует подчеркнуть, что при определенном сочетании числа и располо-жения цилиндров двигателя для одной объединенной группы цилиндров дав-ление перед турбиной может соответствовать условиям импульсного наддува, а для другой — условиям наддува при постоянном давлении.

В двигателях, устанавливаемых на строительные и дорожные машины, в большинстве случаев применяют импульсные системы наддува. Для дости-жения наибольшего эффекта при импульсном наддуве следует выпускные трубопроводы делать по возможности короткими и меньшего объема.

Основные параметры, характеризующие газотурбокомпрессор: степень повышения давления в компрессоре пк=р’к/р. Применением низкого наддува (до пк= 1,5) можно повысить но­минальную мощность двигателя на 20—30% по сравнению с базо­вой моделью без наддува. Средний наддув (пк=1,5-:-2,2) может обеспечить прирост мощности на 30—45%. Для дальнейшего увели­чения мощности применяют высокий наддув (пк>2,2), что сопряже­но со значительным ростом тепловой и механической напряженнос­ти деталей двигателя.

Частота вращения ротора современных газотурбокомпрессоров составляет 40 000—80 000 об/мин и лимитируется допускаемой ве­личиной окружной скорости диска турбины, которая по условиям прочности не должна превы-шать 250—350 м/с. Кроме этого, по ус­ловиям прочности лимитируется и тем-пература газов перед турби­ной, которая не должна превышать 600—700° С.

Дата добавления: 2015-10-26 ; просмотров: 1900 ;

ГАЗОДИНАМИЧЕСКИЙ НАДДУВ

К газодинамическому наддуву относят способы повышения плотности заряда на впуске за счёт использования:

· кинетической энергии воздуха, движущегося относительно приемного устройства, в котором она при торможении потока преобразуется в потенциальную энергию давления – скоростной наддув;

· волновых процессов во впускных трубопроводах – Инерционный или динамический наддув.

В термодинамическом цикле двигателя без наддува начало процесса сжатия происходит при давлении p, (равному атмосферному). В термодинамическом цикле поршневого двигателя с газодинамическим наддувом начало процесса сжатия происходит при давлении pk , вследствие повышения давления рабочего тела вне цилиндра от p до pk. Это связано с преобразованием кинетической энергии и энергии волновых процессов вне цилиндра в потенциальную энергию давления.

Одним из источников энергии для повышения давления в начале сжатия может быть энергия набегающего потока воздуха, что имеет место при движении самолета, автомобиля и др. средств. Соответственно наддув в этих случаях называют скоростным.

Скоростной наддув основан на аэродинамических закономерностях преобразования скоростного напора потока воздуха в статическое давление. Конструктивно он реализуется в виде диффузорного воздухозаборного патрубка, направленного навстречу потоку воздуха при движении транспортного средства. Теоретически повышение давления Δpk=pkp зависит от скорости cн и плотности ρ набегающего (двигающегося) потока воздуха

(2.1)

Скоростной наддув находит применение в основном на самолетах с поршневыми двигателями и спортивных автомобилях, где скорости движения больше 200 км/ч (56 м/с).

Следующие разновидности газодинамического наддува двигателей основаны на использовании инерционных и волновых процессов во впускной системе двигателя.

Инерционный или динамический наддув имеет место при относительно большой скорости движения свежего заряда в трубопроводе cтр. В этом случае уравнение (2.1) принимает вид

, (2.2)

где ξт – коэффициент, учитывающий сопротивления движению газа по длине и местные.

Реальная скорость cтр потока газа во впускных трубопроводах, во избежание повышенных аэродинамических потери и ухудшения наполнения цилиндров свежим зарядом, не должна превышать 30…50 м/с.

Периодичность процессов в цилиндрах поршневых двигателей является причиной колебательных динамических явлений в газовоздушных трактах. Эти явления могут быть использованы для существенного улучшения основных показателей двигателей (литровой мощности и экономичности.

Инерционные процессы всегда сопровождаются волновыми процессами (колебаниями давления), возникающими в результате периодического открытия и закрытия впускных клапанов системы газообмена, а также возвратно-поступательного движения поршней.

Читать еще:  Визг стартера при запуске двигателя на холодную

На начальном этапе впуска во впускном патрубке перед клапаном создается разрежение, и соответствующая волна разрежения, достигая противоположного конца индивидуального впускного трубопровода, отражается волной сжатия. Путем подбора длины и проходного сечения индивидуального трубопровода можно добиться прихода этой волны к цилиндру в наиболее благоприятный момент перед закрытием клапана, что позволит существенно увеличить коэффициент наполнения , а следовательно, крутящий момент Me двигателя.

На рис. 2.1. приведена схема настроенной впускной системы. Через впускной трубопровод, минуя дроссельную заслонку, воздух поступает в приемный ресивер, а из него– впускные трубопроводы настроенной длины к каждому из четырех цилиндров.

На практике это явление использовано в зарубежных двигателях (рис. 2.2), а также отечественных двигателях для легковых автомобилей с настроенными индивидуальными впускными трубопроводами (например, двигатели ЗМЗ), а также на дизеле 2Ч8,5/11 стационарного электрогенератора, имеющего один настроенный трубопровод на два цилиндра.

Рис. 2.1. Схема настроенной впускной системы поршневого двигателяРис.2.2. Четырехцилиндровый рядный двигатель автомобиля Форд (объем цилиндров Vh = 1,6 л, настроенные впускные трубопроводы фиксированной длины)

Наибольшая эффективность газодинамического наддува имеет место при длинных индивидуальных трубопроводах. Давление наддува зависит от согласования частоты вращения двигателя n, длины трубопровода Lтр и угла

запаздывания закрытия впускного клапана (органа) φa. Эти параметры связаны зависимостью

, (2.3)

где – местная скорость звука; k =1,4 – показатель адиабаты; R = 0,287 кДж/(кг∙град.); T – средняя температура газа за период наддува.

Волновые и инерционные процессы могут обеспечивать заметное увеличение заряда в цилиндр при больших открытиях клапана или в виде повышения дозарядки в такте сжатия. Реализация эффективного газодинамического наддува возможна только для узкого диапазона частоты вращения двигателя. Сочетание фаз газораспределения и длины впускного трубопровода должно обеспечивать наибольший коэффициент наполнения. Такой подбор параметров называют настройкой впускной системы.Она позволяет увеличить мощность двигателя на 25…30%. Для сохранения эффективности газодинамического наддува в более широком диапазоне частот вращения коленчатого вала могут быть использованы различные способы, в частности:

· применение трубопровода с изменяемой длиной lтр (например, телескопического);

· переключение с короткого трубопровода на длинный;

· автоматическое регулирование фаз газораспределения и др.

Однако применение газодинамического наддува для форсирования двигателя связано с определенными проблемами. Во-первых, не всегда имеется возможность рационально скомпоновать достаточно протяженные настроенные впускные трубопроводы. Особенно это трудно сделать для низкооборотных двигателей, поскольку с уменьшением частоты вращения длина настроенных трубопроводов увеличивается. Во-вторых, фиксированная геометрия трубопроводов дает динамическую настройку лишь в некотором, вполне определенном диапазоне скоростного режима работы.

Для обеспечения эффекта в широком диапазоне применяют плавную или ступенчатую регулировку длины настроенного тракта при переходе с одного скоростного режима на другой. Ступенчатое регулирование с помощью специальных клапанов или поворотных заслонок считается более надежным и успешно применяется в автомобильных двигателях многих зарубежных фирм. Чаще всего используют регулирование с переключением на две настроенные длины трубопровода (рис. 2.3).

Рис.2.3. Система ступенчатого регулирования длины настроенного тракта V-образного шестицилиндрового двигателя: а – при низкой частоте вращения; б – при высокой частоте

В положении закрытой заслонки соответствующему режиму до 4000 мин -1 , подача воздуха из впускного ресивера системы осуществляется по длинному пути (см. рис. 2.3). В результате (по сравнению с базовым вариантом двигателя без газодинамического наддува) улучшается протекание кривой крутящего момента по внешней скоростной характеристике (на некоторых частотах от 2500 до 3500 мин -1 крутящий момент возрастает в среднем на 10…12 %). С повышением частоты вращения n > 4000 мин -1 подача переключается на короткий путь и это позволяет увеличить мощность Ne на номинальном режиме на 10 %.

Существуют и более сложные всережимные системы. Например, конструкции с трубопроводами, охватывающими цилиндрический ресивер с поворотным барабаном, имеющим окна для сообщения с трубопроводами (рис. 2.4). При повороте цилиндрического ресивера 1 против хода часовой стрелки длина трубопровода увеличивается и наоборот, при повороте по часовой стрелке – уменьшается. Однако реализация этих способов значительно усложняет конструкцию двигателя и снижает его надежность.

В многоцилиндровых двигателях с обычными трубопроводами эффективность газодинамического наддува снижается, что обусловлено взаимным влиянием процессов впуска в различные цилиндры. На автомобильных двигателях впускные системы «настраивают» обычно на режим максимального крутящего момента для повышения его запаса.

Эффект газодинамического наддува можно также получить соответствующей «настройкой» выпускной системы. Этот способ находит применение на двухтактных двигателях.

Для определения длины Lтр и внутреннего диаметра d (или проходного сечения) настраиваемого трубопровода необходимо проводить расчеты с использованием численных методов газовой динамики, описывающих нестационарное течение, совместно с расчетом рабочего процесса в цилиндре. Критерием при этом является прирост мощности,

Рис. 2.4. Схема трубопроводов, охватывающих цилиндрический ресивер с поворотным барабаном при плавном регулировании длины настроенных индивидуальных трубопроводов: 1 – цилиндрический ресивер; 2 – впускной трубопровод

крутящего момента или снижение удельного расхода топлива. Эти расчеты весьма сложны. Более простые методы определения Lтр и d основаны на результатах экспериментальных исследований.

В результате обработки большого числа экспериментальных данных для выбора внутреннего диаметра d настраиваемого трубопровода предлагается следующая зависимость:

(2.4)

где (μFщ)max – наибольшее значение эффективной площади проходного сечения щели впускного клапана. Длина Lтр настраиваемого трубопровода может быть определена по формуле:

(2.5)

Заметим, что применение разветвленных настроенных систем типа общая труба – ресивер — индивидуальные трубы оказалось весьма эффективным в сочетании с турбонаддувом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector