Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Номинальная мощность электродвигателя

номинальная мощность электродвигателя

3.13 номинальная мощность электродвигателя : Полезная механическая мощность на валу, выраженная в ваттах (Вт) или киловаттах (кВт).

Смотри также родственные термины:

Номинальная мощность электродвигателя (электродвигателей)

Номинальная мощность электродвигателя (электродвигателей)

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

  • Номинальная мощность электроагрегата (электростанции)
  • Номинальная мощность электродвигателя (электродвигателей)

Смотреть что такое «номинальная мощность электродвигателя» в других словарях:

Номинальная мощность электродвигателя (электродвигателей) — 1.7 По ГОСТ 10512 78 Источник … Словарь-справочник терминов нормативно-технической документации

Номинальная мощность — 4а. Номинальный ток светового прибора Ток, указанный изготовителем на световом приборе Источник: ГОСТ 16703 79: Приборы и комплексы световые. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

Электрическая мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность … Википедия

СТО 70238424.29.160.30.002-2009: Электродвигатели. Организация эксплуатации и технического обслуживания. Нормы и требования — Терминология СТО 70238424.29.160.30.002 2009: Электродвигатели. Организация эксплуатации и технического обслуживания. Нормы и требования: 3.1 асинхронный пуск вращающегося электродвигателя переменного тока : Пуск вращающегося электродвигателя… … Словарь-справочник терминов нормативно-технической документации

1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 4.303-85: Система показателей качества продукции. Сепараторы магнитные и электромагнитные. Номенклатура показателей — Терминология ГОСТ 4.303 85: Система показателей качества продукции. Сепараторы магнитные и электромагнитные. Номенклатура показателей оригинал документа: Диаметр рабочей части барабана 1.3 Наружный диаметр цилиндрической части барабана,… … Словарь-справочник терминов нормативно-технической документации

Вырубной ползун — 2. Вырубной ползун 2.1. Номинальное усилие, кН (тс) 700 (70) 2.3. Регулировка расстояния между столом и ползуном (штамподержателем) h1 30 60 12 48; 60* 10 8 8 55 6. Наибольшая ширина ленты 500 220 8. Расстояние между грейферными линейками в… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 8260-88: Автоматы листоштамповочные многопозиционные. Параметры и размеры. Нормы точности — Терминология ГОСТ 8260 88: Автоматы листоштамповочные многопозиционные. Параметры и размеры. Нормы точности оригинал документа: 2. Вырубной ползун 2.1. Номинальное усилие, кН (тс) 700 (70) 2.3. Регулировка расстояния между столом и ползуном… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 20375-83: Электроагрегаты и передвижные электростанции с двигателями внутреннего сгорания. Термины и определения — Терминология ГОСТ 20375 83: Электроагрегаты и передвижные электростанции с двигателями внутреннего сгорания. Термины и определения оригинал документа: 38. Аварийная защита электроагрегата (электростанции) Аварийная защита D. Notschutz E.… … Словарь-справочник терминов нормативно-технической документации

максимальная — максимальная: Максимально возможная длина ЗО, в пределах которой выполняются требования настоящего стандарта и технических условий (ТУ) на извещатели конкретных типов, Источник: ГОСТ Р 52651 2006: И … Словарь-справочник терминов нормативно-технической документации

Что такое номинальная мощность асинхронного двигателя

Термины и определения.

Большое разнообразие типов и конструкций электрических машин и потребность в объективной оценке и сравнении их данных привели к необходимости стандартизации основных понятий в области характеристик, расчетных параметров и режимов работы машин. Термины и определения этих величин установлены несколькими ГОСТ и являются обязательными для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе. Стандарты содержат более 200 терминов и определений. В настоящем параграфе приводятся основные из них, относящиеся ко всем или ко многим типам вращающихся электрических машин независимо от их назначения и конструктивного исполнения. Асинхронный электродвигатель Асинхронный электродвигатель – электрическая асинхронная машина для преобразования электрической энергии в механическую. Принцип работы асинхронного электродвигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трёхфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля. Синхронный электродвигатель Синхронной называется электрическая машина, скорость вращения n (об/мин) которой связана постоянным отношением с частотой n = 60 * f / p (где р — число пар полюсов машины) сети переменного тока, в которую эта машина включена. Синхронный машины служат генераторами переменного тока; синхронные электродвигателя применяются во всех тех случаях, когда нужен двигатель, работающий при постоянной скорости; для получения регулируемого реактивного тока устанавливают синхронные компенсаторы. Электродвигатель постоянного тока Хотя система своременного электроснабжения основана на применении переменного тока, тем не менее машины постоянного тока находят широкое использование в самых различных отраслях промышленности и в быту.

Номинальными данными электрической машины называют данные, характеризующие ее работу в режиме, для которого она предназначена заводом-изготовителем. К номинальным данным относятся мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и ряд других данных в зависимости от типа и назначения машины.

Номинальные данные характеризуют работу машины, установленной на высоте до 1000 м над уровнем моря, при температуре окружающей среды 40 °С и охлаждающей воды 30 °С, если в стандартах или технических условиях на данный конкретный тип машины не установлена другая температура охлаждающих сред. Если машина работает в условиях, отличающихся от указанных, ее номинальные данные должны быть изменены так, чтобы нагрев машины соответствовал требованиям ГОСТ 183-74.

Режим работы электрической машины — установленный порядок чередования и продолжительности нагрузки, холостого хода, торможения, пуска и реверса машины во время ее работы. Номинальным режимом работы называется режим, для работы в котором электрическая машина предназначена заводом-изготовителем.

Номинальная мощность — мощность, для работы с которой в номинальном режиме машина предназначена заводом-изготовителем. Для различных типов машин номинальной мощностью является:

  • для генераторов переменного тока — полная электрическая мощность на выводах при номинальном коэффициенте мощности, ВА;
  • для генераторов постоянного тока — электрическая мощность на выводах машины, Вт;
  • для двигателей переменного и постоянного тока — механическая мощность на валу, Вт;
  • для синхронных и асинхронных компенсаторов — реактивная мощность на выводах компенсатора, вар.

Номинальное напряжение — напряжение, на которое машина рассчитана заводом-изготовителем для работы в номинальном режиме с номинальной мощностью. Номинальным напряжением трехфазных машин называют линейное напряжение, т. е. напряжение между фазами подключенной к машине сети. Номинальным напряжением ротора асинхронного двигателя с трехфазной обмоткой называют напряжение на выводах разомкнутой обмотки ротора (напряжение на контактных кольцах) при неподвижном роторе и включенной на номинальное напряжение обмотке статора. Номинальным напряжением двухфазной обмотки ротора называют наибольшее из напряжений между контактными кольцами. Номинальным напряжением возбудительной системы машины с независимым возбуждением называют номинальное напряжение того независимого источника, от которого получается возбуждение.

Номинальный ток — ток, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении.

Читать еще:  Что означает номер двигателя на бмв

Номинальное напряжение возбуждения — напряжение на выводах (или контактных кольцах) обмотки возбуждения с учетом падения напряжения под щетками при питании ее номинальным током возбуждения, когда активное сопротивление приведено к расчетной рабочей температуре, при работе машины в номинальном режиме с номинальными мощностью, напряжением и частотой вращения.

Номинальный ток возбуждения — ток возбуждения, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении.

Номинальная частота вращения — частота вращения, соответствующая работе машины при номинальных напряжении, мощности и частоте тока и номинальных условиях применения.

Номинальные условия применения — условия, установленные в стандарте или технических условиях на данный конкретный тип машины, при которых эта машина должна иметь номинальную частоту вращения.

Коэффициент полезного действия — отношение полезной (отдаваемой) мощности к затрачиваемой (подводимой); для генераторов — отношение активной электрической мощности, отдаваемой в сеть, к затрачиваемой механической мощности; для двигателей — отношение полезной механической мощности на валу к активной подводимой электрической мощности. Номинальным КПД называют указанное отношение мощностей при работе машины с номинальными мощностью, напряжением, частотой тока и частотой вращения.

Коэффициент мощности машин переменного тока:

  • для генераторов — отношение отдаваемой активной электрической мощности, Вт, к полной отдаваемой электрической мощности, В-А;
  • для двигателей — отношение активной потребляемой электрической мощности, Вт, к полной потребляемой электрической мощности, В А.

Номинальным коэффициентом мощности электрической машины называют указанное отношение мощностей при работе машины в номинальном режиме, с номинальными мощностью, напряжением, частотой тока и частотой вращения.

Помимо перечисленных определений номинальных данных стандартами установлены основные определения, относящиеся к условиям работы машины и ее характеристикам.

Нагрузка — мощность, которую развивает электрическая машина в данный момент времени. Нагрузка может быть выражена в единицах активной или полной мощности (Вт, или В • А) либо в долях номинальной мощности. Она также выражается током, потребляемым или отдаваемым электрической машиной, А, либо в процентах или долях номинального тока.

Номинальная нагрузка — нагрузка, равная номинальной мощности машины.

Практически неизменная нагрузка — нагрузка, при которой отклонение тока и напряжения якоря и мощности машины от значений, соответствующих заданному режиму, составляет не более 3%, тока возбуждения и частоты — не более 1 %.

Практически симметричная трехфазная система напряжений — трехфазная система напряжений, в которой напряжение обратной последовательности не превышает 1 % напряжения прямой последовательности при разложении данной трехфазной системы на системы прямой и обратной последовательностей.

Практически симметричная система токов — трехфазная система, для которой ток обратной последовательности не превышает 5% тока прямой последовательности.

Начальный пусковой ток электродвигателя — установившийся ток в обмотке электродвигателя при неподвижном роторе, номинальном подведенном напряжении и номинальной частоте, при соединении обмоток машины, соответствующем номинальным условиям работы двигателя.

Начальный пусковой момент электродвигателя — вращающий момент электродвигателя, развиваемый при неподвижном роторе, установившемся токе, номинальном подведенном напряжении, номинальной частоте и соединении обмоток, соответствующем номинальным условиям работы двигателя.

Максимальный вращающий момент электродвигателя переменного тока — наибольший момент вращения, развиваемый двигателем в установившемся режиме при номинальных напряжении и частоте, при соединении обмоток, соответствующем номинальным условиям работы, и (для синхронных двигателей) при номинальном токе возбуждения.

Минимальный вращающий момент асинхронного двигателя — наименьший вращающий момент, развиваемый асинхронным двигателем с короткозамкнутым ротором в процессе разгона от неподвижного состояния до частоты вращения, соответствующей максимальному моменту при номинальных напряжении и частоте, при соединении обмоток, соответствующем номинальным условиям работы двигателя или пусковому режиму (для однофазных двигателей с пусковой обмоткой).

Критическое скольжение асинхронной машины — скольжение, при котором асинхронная машина развивает максимальный вращающий момент.

Номинальное изменение напряжения электрических генераторов — изменение напряжения на выводах генератора, работающего на автономную сеть с неизменной и равной номинальной частотой вращения при изменении его нагрузки от номинальной до холостого хода. Для генераторов с независимым возбуждением, кроме того, — при сохранении номинального тока возбуждения, а для генераторов с самовозбуждением — при неизменном сопротивлении всей цепи обмотки возбуждения. Номинальное изменение напряжения выражают в процентах или в долях номинального напряжения генератора.

Номинальное изменение частоты вращения электродвигателя — изменение частоты вращения двигателя, работающего при номинальном напряжении на его выводах и номинальной частоте тока, при изменении нагрузки от номинальной до нулевой, а для двигателей, не допускающих нулевой нагрузки,— от номинальной до 1/ 4 номинальной. Номинальное изменение частоты вращения выражают в процентах или в долях номинальной частоты вращения.’;

Асинхронные двигатели — стандартизация параметров

Асинхронные двигатели являются основными преобразователями электрической энергии в механическую и составляют основу привода большинства механизмов, используемых во всех областях человеческой деятельности. В асинхронных электродвигателях чрезвычайно удачно сочетается комплекс эксплуатационных и конструктивных характеристик приводящих к высокой энергетической эффективности при относительной простоте и высокой надежности.

Значение асинхронных электродвигателей

Асинхронные двигатели общего назначения (общепромышленные электродвигатели) мощностью от 1 до 400 кВт на напряжение до 1000В — наиболее широко применяемые электрические машины. Парк этих электродвигателей в промышленно развитых странах достигает 90% по количеству, а потребление ими электроэнергии составляет более 50% общего потребления.

Однако достоинства асинхронных эл двигателей могут быть реализованы в полной мере лишь при условии правильного их выбора и применения, основанных на знании основных характеристик, базовых стандартов и умении пользоваться информацией изложенной в технических каталогах.

Наша компания имеет большой опыт подбора электродвигателей под индивидуальные потребности заказчка.

Стандартизация параметров асинхронных двигателей

Широкое и разнообразное применение, а также развитие международной торговли вызвало необходимость стандартизации асинхронных двигателей, как национальной, так и международной. Международная стандартизация асинхронных двигателей осуществляется Международной электротехнической комиссией — МЭК (International Electrotechnical Comission — IEC).

В связи с этим во всех промышленно развитых странах низковольтные асинхронные двигатели общего назначения называются стандартными асинхронными двигателями. При этом стандартизация охватывает практически все характеристики двигателей и, в первую очередь определяющие параметры и размеры.

Номинальные мощности электродвигателей

Номинальной мощностью двигателя называют механическую мощность на валу в режиме работы, для которого он предназначен предприятием-изготовителем. Ряд номинальных мощностей электрических машин установлен ГОСТ 12139: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.

Мы предлагаем широкую общепромышленных асинхронных электродвигателей АИР мощностью от 0,12 кВт до 315 кВт.

Синхронная частота вращения

Ряд синхронных частот вращения асинхронных электродвигателей установлен ГОСТ 10683-73 и при частоте сети 50 Гц имеет следующие значения: 500, 600, 750, 1000, 1500 и 3000 об/мин.

Установочные размеры

Крепление электрических машин на объекте производится посредством лап, фланцев или лап и фланцев одновременно.
Электрические машины на лапах имеют четыре главных установочных размера (см. справочник установочных размеров электродвигателей), обозначение по ГОСТ 4541, обозначения в скобках даны по публикации 60072 МЭК.

  • h (H) — расстояние от оси вала до опорной поверхности лап (основной размер);
  • b10 (А) — расстояние между осями крепительных отверстий;
  • l10 (В) — расстояние между осями крепительных отверстий (боковой вид);
  • l31 (С) — расстояние от опорного торца свободного конца вала до оси ближайших крепительных отверстий в лапах.
Читать еще:  Волга 3102 какой двигатель можно поставить

Высота оси вращения регламентирована ГОСТ 13267 — 50; 56; 63; 71; 80; 90; 100; 112; 132; 160; 180; 200; 225; 250; 280; 315; 355 мм.

Электрические машины с фланцами имеют четыре главных установочных размера:

  • d20 (M) — диаметр окружности центров крепительных отверстий;
  • d25 (N) — диаметр центрирующей заточки;
  • d24 (P) — внешний диаметр фланца;
  • l39 (R) — расстояние от опорной поверхности фланца до опорной поверхности свободного конца вала.

Наша компания предлагает широкую гамму асинхронных электродвигателей общепромышленного и взрывозащищенных исполнений.

Общепромышленные электродвигатели АИР

Электродвигатели асинхронные трехфазные закрытого обдуваемого общепромышленного исполнения с короткозамкнутым ротором предназначены для привода различных механизмов: станков, насосов, компрессоров, вентиляторов, мельниц и т.п.

Электродвигатели для обдува трансформаторов

Электродвигатели АБ63 предназначены для работы от трехфазной сети переменного тока частотой 50 Гц, для привода осевого вентилятора системы охлаждения трансформаторов при значении климатических факторов согласно ГОСТ15150-69 (исполнения У1, УХЛ1).

Консультации и подбор электродвигателей

Консультируем по вопросам конструкции и применения асинхронных двигателей.

Проводим подбор аналогов для замены двигателей снятых с производства.

Номинальная мощность на валу электродвигателя. Выбор электродвигателя

Электродвигатель главная движущая сила электропривода. О том, какой электродвигатель выбрать для прямоходных механизмов рассказывается в этой статье

с тормозом и без

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

с тормозом и без

АС 1-фазный, АС 3-х фазный, DS 24/12 B

с тормозом и без

Основные технических характеристики

Перед выбором электродвигателя важно понимать следующие физические характеристики:

Номинальная мощность — механическая мощность, измеряемая на валу, выражается в единицах измерения Ватт или КилоВатт. Однако в некоторой продукции мощность исчисляют лошадинными силами.
Номинальное напряжение — напряжение, которое должно подаваться на клеммы электродвигателя, в соответсвии со спецификациями.

Статический крутящий момент (пусковой крутящий момент) — минимальный крутящий момент, который двигатель может обеспечить, с ротором при холостом ходе и при номинальной подаче напряжения частоты.

Промежуточный крутящий момент — минимальное значение крутящего момента, который развивается от питания двигателя с номинальным напряжением и частотой, от 0 об/мин до скорости, соответствующей максимальному крутящему моменту.

Максимальный крутящий момент — максимальный момент, который двигатель может развить во время эксплуатации с номинальной подачей напряжения и частоты.

Номинальный крутящий момент — крутящий момент соответствует номинальной мощности и номинальному количеству оборотов.

Номинальный крутящий момент рассчитывается по формуле:

Pn — номинальная мощность, кВт

n- номинальное количество оборотов, об/мин

Синхронная частота вращения, вычисляется по след. формуле:

f — подача частоты, Гц
р — количество пар полюсов

Диаграмма крутящих моментов

Влажность — электрооборудование должно эксплуатироваться при относительной влажности от 30% до 90% (без конденсации)

Необходимо исключить негативные последствия от случайного конденсата с помощью защищенного корпуса электрооборудования или, если необходимо, посредством дополнительных мер (например, встроенного нагревательного оборудования или системы кондицинирования, дренажных отверстий).

Высота и температура указаные в каталоге мощности предназначены для регулярного использования на высоте ниже 1000 м. над уровнем моря и при комнатной температуре от +5 оС до +40оС для двигателей с номинальной мощностью ниже 0,6 кВт, или при температуре от -15 оС до 40 оС для двигателей с номинальной мощностью, равной или превышающей 0,6 кВт. При других условиях эксплуатации (большей высоте и или температуре) значения изменяются в соответсвии с коэффициентом, указанным на графике.

Двигатели трехфазные или однофазные имеют направление движения по часовой стрелке. Против часовой — по запросу.

Напряжение — Частота: максимальное изменение подачи напряжения +/-10%. С этим допуском двигатели подают номинальную мощность. При долгосрочной эксплуатации с данными ограничениями возможно повышение температуры на 10 градусов С. Стандартная обмотка рассчитана на напряжение 230/400В и частоту 50 Гц. По запросу возможны другие значения напряжения частоты.
Частота вращения — крутящий момент: за исключением исполнения с четырьмя полюсами, двигатели имеют стандартное исполнение. Не рекомендуется использовать крутящие моменты выше номинального.

Обмотка статора выполняется из эмалированного медного провода (класс Н, 200 градусов), с измененными полиамидоэфирами полиамидами.
Класс изоляции F имеет пропитку полимерами, что обеспечивает высокую степень защиты от электростатического напряжения и механических нагрузок. Обмотка плотная, без воздушных мешков и с высокой степенью теплопередачи. Другие материалы из которых делается массовое производство обмоток имеют класс изоляции В, но по запросу мы ставим класс Н.

Двигатели тропического и морского исполнения: высокая степень защиты, которая используется для моторов, эксплуатирующихся в условиях тропического климата с высокой степенью влажности и неблагоприятных условиях эксплуатации обмотка покрывается слоем высококачественого глицерофталика, который имеет превосходные защитные характеристики.

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Габарит, мм: 50-160

Мощность, кВт: 0,02-18,7

Размеры 71-160 адаптированы для использования

с регулятором частоты. Вентилятор на валу, класс защиты IP 55F

3000/1000, 3000/750, 1000/750, 3000/750

Габарит, мм: 63-160

Мощность, кВт: 0,06-18,7

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Габарит, мм: 63-90

Мощность, кВт: 0,18-1,5

Размеры 80-90 адаптированны для использования с регулятором частоты.

Вентилятор на валу, класс защиты IP55F

Габарит, мм: 50-100

Мощность, кВт: 0,045 — 2,2

Вентилятор на валу. Класс защиты IP55F. Поставка с встроенным

или пристыкованным конденсатором.

с реле выключения подачи напряжения

Габарит, мм: 63-100

Мощность, кВт: 0,187 — 2,2

Принудительная вентиляция. Класс защиты IP55F. Поставка с встроенным или

пристыкованным конденсатором. Центробежный выключатель. Встроенное реле подачи/отключения напряжения

Габарит, мм: 63-100

Мощность, кВт: 0,187 — 2,2

Вентилятор на валу. Класс защиты IP55F. Поставка с встроенным или пристыкованным конденсатором.

Снабжены электронным пусковым реле.

В/Гц: 230/400/50 +/- 10%В

В/Гц: 266/460/60 +/- 10%В

Габарит, мм: 55-160

Мощность, кВт: 0,02 — 18,7

Вентилятор на валу. Класс защиты IP55F. Класс защиты тормоза IP44, по запросу IP55. Возможна

Об./мин.: 3000/1500, 1500/1000, 1500/750,

3000/1000, 3000/750, 1000/750, 3000/500

Габарит, мм: 63-160

Мощность, кВт: 0,06 — 18,7

поставка с двойным тормозом и с ручным растормаживанием.

Габарит, мм: 50-100

Мощность, кВт: 0,09 — 2,2

поставка с двойным тормозом и с ручным растормаживанием.

Асинхронные однофазные электродвигатели с центробежным выключателем

с реле выключения подачи напряжения с тормозом

Читать еще:  Высокая температура двигателя а печка не греет

Габарит, мм: 63-100

Мощность, кВт: 0,187 — 2,2

поставка с двойным тормозом и с ручным растормаживанием.

Ассинхронные однофазные электродвигатели с встроенным электронным реле

Габарит, мм: 63-122

Мощность, кВт: 0,187 — 2,2

поставка с двойным тормозом и с ручным растормаживанием.

Электродвигатели с векторным управлением (Серводвигатели)

В/Гц: 230/50-60 +/-10% В

В/Гц: 400/50-60 +/-10% В

Габарит, мм: 63 — 160

Момент, Н*м: 2,6 — 42

Программирование через пульт или компьютер

Электродвигатели с встроенными энкодерами

В/Гц: 230/50-60 +/-10% В

В/Гц: 400/50-60 +/-10% В

Габарит, мм: 63 — 160

Момент, Н*м: 2,6 — 160

Сохранение момента при частоте вращения от 0 до максимальной. Высокая точность позиционирования.

Электродвигатели с встроенными регуляторами частоты вращения

В/Гц: 230/50-60 +/- 10% В

В/Гц: 400/50-60 +/-10% В

Количество полюсов: 2/4/6

Габарит, мм: 71 — 112

Момент, кВт: 0,12 — 4

Недорогой вариант электродвигателя с частотным управлением. Принудительная вентиляция Встроенный тормоз,

устройство тепловой защиты. Дистанционное управление.

По всем категориям Бренды Датчики давления, энкодер Конденсаторные установки Устройство плавного пуска Частотные преобразователи Насосы Автоматические выключатели Термостаты Трансформаторные подстанции Трансформаторы силовые Мотор-редукторы Станции управления Электротехнические шкафы Термины Электродвигатели

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

В этом разделе мы разместили подборку статей посвященных такому важному в теории асинхронного привода понятию как момент. Здесь читатели найдут материалы раскрывающие значения отдельных терминов так или иначе связанных с понятием момента. Дополнительно мы организовали подборку статей с формулами по которым можно рассчитать конкретные значения моментов или построить их зависимости. Для большей наглядности сдесь же можно найти примеры иллюстирующие использование формул для рассчета того или иного показателя.

Момент нагрузки – момент, создаваемый вращающейся механической системой присоединенной к валу асинхронного двигателя. В качестве синонимов в литературе встречается термин момент сопротивления. Момент нагрузки зависит от геометрических и физических параметров тел входящих в кинематическую цепь, присоединенную к валу двигателя. Как правило, при расчете момент сопротивления принято приводить к валу двигателя.

Тормозной момент – момент, развиваемый асинхронной машиной, в режиме торможения. В литературе встречается термин синоним: тормозящий момент. В рамках теории асинхронных электродвигателей рассматривают 3 режима торможения: генераторное, динамическое и торможение противовключением.

Критический момент асинхронного двигателя – наибольшее значение момента развиваемое электродвигателем. Этого значения момент достигает при критическом скольжении. Если момент нагрузки на валу двигателя будет больше критического момента, то двигатель остановится.

Номинальный момент асинхронного двигателя – момент, возникающий на валу двигателя при номинальной мощности и номинальных оборотах. Под номинальными данными понимают данные, которые определяются при работе двигателя в режиме, для которого он был спроектирован и изготовлен.

Электромагнитный момент – момент, возникающий на валу электродвигателя при протекании по его обмоткам электрического тока. В литературе встречаются синонимы этого термина: вращающий момент двигателя или крутящий момент электродвигателя. Так же часто попадаются вариации с более развернутой формулировкой: электромагнитный вращающий момент или электромагнитный крутящий момент.

Это один из ключевых параметров теории, определяющий способность асинхронного двигателя вращать подсоединенную к его валу нагрузку в требуемых статических и динамических режимах. По этой причине при принятии решения об использовании двигателя для решения конкретной задачи важно принимать во внимание характер повидения электромагнитного момента. В самом общем случае электромагнитный момент на валу двигателя определяют по формуле: Мэм = (?Еф х Iф)/?2

В рамках современной теории асинхронных электрических машин применяют ряд терминов связанных с понятием момента. Часть этих терминов относится к моменту создаваемому на валу (на роторе) электродвигателя. Другая группа терминов определяет моменты создаваемые механической нагрузкой подключенной к валу электрического двигателя.

Эти термины определяют как сам момент развиваемый двигателем, так и различный состояния момента на выходном валу двигателя. Под состоянием подразумевается значение момента в кретических точках. Например номинальный момент или пусковой момент.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector