Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рабочие характеристики

Рабочие характеристики

Рабочие характеристики ДПТ параллельного возбуждения малой мощности приведены на рис. 5.8.

Рис. 5.8

Рабочие характеристики двигателя представляют собой зависимости скорости вращения n, потребляемого тока I и мощности P1, момента на валу двигателя M, коэффициента полезного действия η от полезной мощности P2 при неизменном значении напряжения питания Uн = const, тока обмотки возбуждения Iвн=const и отсутствии добавочного сопротивления в якорной цепи Rд я = 0. Они дают возможность судить об эксплуатационных свойствах двигателей и определять наиболее экономичные их режимы работы в условиях производства.

Механическая характеристика двигателя постоянного тока

Механическими характеристиками двигателя называются зависимости установившейся частоты вращения от момента на валу двигателя – n=f1(M) или ω=f2(M).

Характеристики называют естественными, если они получены при номинальных условиях питания (при номинальном напряжении), номинальном возбуждении и отсутствии добавочных сопротивлений в цепи якоря.

Характеристики двигателя называются искусственными при изменении любого из перечисленных выше факторов.

Подставим в уравнение ,выражения для определения тока и ЭДС ДПТ

Механическая характеристика двигателя постоянного тока с независимым и параллельным возбуждением имеет вид:

,

где Rяц = Rя + Rдоб – полное сопротивление цепи якоря, Ом;

RЯ – сопротивление обмотки якоря, Ом;

Rдоб – добавочное сопротивление в цепи якоря, Ом.

Анализируя выражение для построения механической характеристики, видим, что математически это уравнения прямой линии, пересекающей ось скоростей в точке n, где

n = U/(·Ф) – скорость холостого хода.

где Pн – номинальная мощность двигателя, Вт;

ωн – номинальная частота вращения, рад/сек.

Естественная механическая характеристика показана на рис. 5.9.

Для построения естественной механической характеристики (ЕМХ) необходимо найти две точки.

Одна из них определяется из паспортных данных двигателя для номинальных значений nн и Мн:

где Pн – номинальная мощность двигателя, Вт;

ωн – номинальная частота вращения, рад/сек .

Вторая точка соответствует идеальному холостому ходу, когда I = 0 и М=0.

Скорость холостого хода можно найти из следующего уравнения при подстановке паспортных данных двигателя:

.

Регулирование скорости вращения дпт

Существует три основных способа регулирования частоты вращения машин постоянного тока: реостатное регулирование, регулирование изменением магнитного потока, регулирование изменением напряжения сети.

Реостатное регулирование частоты вращения осуществляется путем введения в цепь якоря дополнительных активных сопротивлений – резисторов, т.е. Rяц = (Rя + Rдоб) = var при U = Uн, Ф = Фн. Как видно из уравнения механической характеристики

при изменении величины добавочного сопротивления Rдоб в цепи якоря скорость идеального холостого хода n остается постоянной изменяется лишь жесткость характеристики.

Искусственные механические характеристики (ИМХ) при введении добавочного сопротивления в цепь ротора двигателя постоянного тока независимого возбуждения показаны на рис. 5.10.

Регулирование частоты вращения при изменении магнитного потока осуществляется преимущественно за счет ослабления магнитного потока Ф возбуждения двигателя, т.е. за счет уменьшения тока возбуждения iв.

При уменьшении магнитного потока обычно соблюдаются условия: U = Uн; Rдя= 0. В этом случае для скорости идеального холостого хода имеем

, тогда ,

где — скорость холостого хода для искусственной механической характеристики;

— скорость холостого хода для естественной механической характеристики.

Искусственные механические характеристики при уменьшении магнитного потока представлены на рис. 5.11.

Для регулирования частоты вращения двигателя постоянного токанезависимого возбуждения изменением питающего напряжения необходимы регулируемые источники напряжения.

Из уравнения механической характеристики видно, что с регулированием напряжения связано изменение скорости идеального холостого хода n = Uн/(·Фн) при сохранении жесткости характеристик. Это позволяет существенно расширить диапазон регулирования. Регулирование частоты вращения идет, как правило, вниз от основной характеристики.Искусственные характеристики при изменении (уменьшении) напряжения будут иметь вид прямых. Механические характеристики двигателя постоянного тока независимого возбуждения при изменении напряжения питания показаны на рис. 5. 12.

Электрические машины (стр. 2 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7

Требуется определить: ток генератора Iн; ток в цепи якоря Iан; ток в цепи возбуждения Iв; ЭДС якоря Еан; полезную мощность Рн; потребляемую мощность Р1Н; суммарные потери в генераторе Ур; электромагнитную мощность Рэм; электрические потери в обмотке якоря ра; электрические потери в обмотке возбуждения рв.

1) Номинальный ток на выходе генератора

2) Ток в обмотке возбуждения

3) Ток в цепи якоря при номинальной нагрузке

4) ЭДС якоря в номинальном режиме

5) Полезная мощность

6) Мощность приводного двигателя

7) Электромагнитная мощность генератора при номинальной нагрузке

8) Суммарные потери в генераторе

9) Электрические потери в обмотке якоря

10) Электрические потери в обмотке возбуждения

1.2 Двигатели постоянного тока

Задача 1.5. Двигатель постоянного тока параллельного возбуждения имеет следующие данные: номинальная мощность Рн = 25 кВт, напряжение питания Uн = 440 В, номинальная частота вращения nн = 1500 об/мин, сопротивление обмоток в цепи якоря Уr = 0,15 Ом, сопротивление цепи возбуждения rв = 88 Ом, падение напряжения в щеточном контакте щеток ДUщ = 2 В. КПД двигателя в номинальном режиме зн = 85 %.

Читать еще:  Что такое крутящий момент на коленчатого вала двигателя

Требуется определить: потребляемый двигателем ток в режиме номинальной нагрузки Iн; сопротивление пускового реостата Rпр, при котором начальный пусковой ток в цепи якоря двигателя был бы равен 2,5Iан; начальный пусковой момент МП; частоту вращения n0 и ток I0 в режиме холостого хода; номинальное изменение частоты вращения якоря двигателя при сбросе нагрузки. Влиянием реакции якоря пренебречь.

1) Потребляемая двигателем мощность при номинальной нагрузке

2) Ток, потребляемый двигателем при номинальной нагрузке

3) Ток в цепи обмотки возбуждения

4) Ток в обмотке якоря

5) Начальный пусковой ток якоря при заданной кратности 2,5

6) Требуемое сопротивление цепи якоря при заданной кратности пускового тока 2,5

7) Сопротивление пускового реостата

8) ЭДС якоря в режиме номинальной нагрузки

9) Из выражения определим

следовательно, в данном случае

10) Начальный пусковой момент при заданной кратности пускового тока 2,5

11) Момент на валу двигателя при номинальной нагрузке

12) Электромагнитный момент при номинальной нагрузке

где Рэм – электромагнитная мощность при номинальной нагрузке

13) Момент холостого хода

14) Ток якоря в режиме холостого хода

15) ЭДС якоря в режиме холостого хода (принимаем ДUщ = 0)

16) Частота вращения якоря в режиме холостого хода

17) Номинальное изменение частоты вращения двигателя при сбросе нагрузки

Задача 1.6. Двигатель постоянного тока независимого возбуждения имеет следующие параметры: номинальная мощность двигателя Рн = 25 кВт; напряжение питания цепи якоря Uн = 440 В; напряжение питания цепи возбуждения Uв = 220 В; частота вращения якоря в номинальном режиме nн = 2200 об/мин; сопротивления цепи якоря Уr = 0,3 Ом и цепи возбуждения rв = 60 Ом, приведенные к рабочей температуре; падение напряжения в щеточном контакте при номинальном токе ДUщ = 2 В; номинальное изменение частоты вращения при сбросе нагрузки Дnн = 8,0 %; ток якоря в режиме холостого хода I0 = 6 А.

Требуется определить все виды потерь и КПД двигателя.

1) Частота вращения в режиме холостого хода

2) ЭДС якоря в режиме холостого хода (падением напряжения в щеточном контакте пренебрегаем ввиду его незначительной величины в режиме холостого хода)

3) Момент в режиме холостого хода

4) Момент на валу двигателя в режиме номинальной нагрузки

5) Электромагнитный момент двигателя при номинальной нагрузке

6) Электромагнитная мощность двигателя в режиме номинальной нагрузки

7) ЭДС якоря в режиме холостого хода

так как , то

Из выражения электромагнитного момента в режиме номинальной нагрузки

определим значение тока якоря в режиме номинальной нагрузки

8) Сумма магнитных и механических потерь двигателя пропорциональна моменту холостого хода

9) Электрические потери в цепи обмотки якоря

10) Электрические потери в щеточном контакте якоря

11) Мощность, подводимая к цепи якоря, в номинальном режиме

12) Ток в обмотке возбуждения

13) Мощность в цепи возбуждения

14) Мощность, потребляемая двигателем в режиме номинальной нагрузки,

15) КПД двигателя в номинальном режиме

1.3 Расчет характеристики двигателя постоянного тока

Задача 1.7. Двигатель постоянного тока параллельного возбуждения работает от сети напряжением Uс = 220 В. Технические данные двигателя: номинальный ток нагрузки Iн = 65 А; номинальная частота вращения nн = 770 об/мин; ток холостого хода I0 = 6,5 А; сопротивление цепи якоря, приведенное к рабочей температуре, Уr = 0,28 Ом; ток возбуждения Iв = 1,6 А (остается неизменным во всем диапазоне нагрузки двигателя); в двигателе применены угольно-графитные щетки с переходным падением напряжения на пару щеток ДUщ = 2 В.

Требуется рассчитать данные и построить графики зависимости КПД з, частоты вращения n, момента на валу М2 от мощности на валу двигателя Р2.

Влиянием реакции якоря пренебречь и считать магнитный поток Ф постоянным.

1) Потери и КПД двигателя.

Постоянные потери двигателя включают магнитные Рм, механические потери Рмех и потери на возбуждение Рв

где

Основные характеристики двигателя постоянного тока

Коэффициент полезного действия двигателя

Преобразование электрической энергии в механическую при работе ДПТ сопровождается потерями энергии. Отношение полезной механической мощности Р2 на валу двигателя к потребляемой из сети электрической мощности Р1 определяет коэффициент полезного действия (КПД) двигателей

η = ∙ 100% = ∙ 100%

Полезная механическая мощность Р2 , снимаемая с вала двигателя, рассчитывается по формуле

Р2 = 0,105 Мn , Вт (6.9)

где М = МС – момент сопротивления на валу двигателя, Нм;

n – частота вращения вала двигателя, об/мин.

Так как двигатель обладает «саморегулированием», то вращающий момент, развиваемый двигателем, равен моменту сопротивления на его валу, т.е. МВР = МС = М, поэтому, зная полезную мощность двигателя, можно определить его вращающий момент по выражению

М = 9,55 , Нм (6.10)

Потребляемая двигателем мощность Р1 определяется по формуле

Р1 = U∙I = U∙(Iя + Iв) , Вт (6.11)

где U – напряжение питания двигателя.

I = Iя + Iв — ток, потребляемый из сети двигателем с параллельным возбуждением.

ΔР = ΔРэРст + ΔРмех — сумма всех потерь двигателя постоянного тока, Вт.

Читать еще:  А что за двигатель 4ab форд транзит

где ΔРэ – электрические потери;

ΔРст – потери в стали статора и якоря;

ΔРмех – механические потери.

Электрические потери ΔРэ являются переменными, так как зависят от нагрузки и их значения может быть представлено как

где ΔРя = Iя 2 Rя – потери в обмотке якоря (при номинальном режиме составляют 50% всех потерь);

ΔРв = Iв 2 Rв – потери в обмотке возбуждения;

ΔРщ = Iя 2 ΔUщ – потери на коллекторно-щеточном контакте;

ΔUщ – падение напряжения между щеткой и коллектором (зависит от материала щеток: ΔUщ = 2 В для графитовых и 0,6 В для металлографитовых щеток.)

Потери в стали ΔРст связаны с вихревыми токами и перемагничивании якоря при его вращении и составляет 1 – 3% от номинальной мощности двигателя.

Механические потери ΔРмех связаны с трением движущихся частей двигателя и составляют 1 -2 % от номинальной мощности двигателя. Эти потери, как и потери в стали, являются постоянными и не зависят от нагрузки двигателя. Их называют потерями холостого хода.

При работе ДПТ вхолостую Р2 = 0 и η= 0 при увеличении полезной мощности Р2 КПД растет. Двигатели рассчитывают так, чтобы максимальное значение КПД соответствовало номинальной мощности двигателя (при этом постоянные потери равны переменным). При нагрузке больше номинальной КПД уменьшается за счет значительного роста переменных потерь. Для машин мощностью 1 – 100 кВт номинальное значение КПД лежит в пределах 74 – 92 %.

Основными характеристика ДПТ, получаемыми теоретически или экспериментально, являются его механическая характеристика, а также рабочая и регулировочная характеристики.

Механической характеристикой двигателя называется зависимость частоты вращения якоря nот момента М на валу двигателя: n = f(М). Уравнением механической характеристики является выражение (6.7).

Механическая характеристика двигателя с параллельным возбуждением представляет собой прямую с незначительным наклоном по мере роста момента на валу (рис.6.7). Такая характеристика называется «жесткой».

Рис. 6.7. Механическая характеристика ДПТ с параллельным возбуждением.

Жесткость механической характеристики объясняется тем, что при параллельном включении обмотки возбуждения, с ростом момента нагрузки, ток возбуждения Iв, а следовательно, и магнитный поток двигателя Ф остаются неизменными, а сопротивление якоря Rя сравнительно мало.

Рабочие характеристики ДПТ представляют собой зависимости частоты вращения n, момента М, тока якоря Iя и КПД η от полезной мощности Р2 на валу двигателя при неизменном напряжении на его зажимах U = const.Рабочие характеристики ДПТ с параллельным возбуждением представлены на рис. 6.8.

Зависимость полезного момента на валу двигателя от нагрузки Р2 представляет собой почти прямую линию, так как момент этого двигателя пропорционален нагрузке на валу: М = 9,55 Р2/n. Искривление указанной зависимости объясняется некоторым снижением частоты вращения с увеличением нагрузки. При Р2 = 0 ток, потребляемый электродвигателем равен току холостого хода. При увеличении мощности, развиваемой электродвигателем, ток якоря увеличивается приблизительно по той же зависимости, что и момент нагрузки на валу, так как при условии Ф = const токе якоря пропорционален моменту нагрузки.

Рис. 6.8. Рабочие характеристики ДПТ с параллельным возбуждением.

В соответствии с тремя вышеуказанными способами регулирования частоты вращения двигателя, его регулировочными характеристиками являются зависимости: n = f(Rя), n = f(Iв), и n = f(U),

где Rя – сопротивление якорной цепи, равное сумме сопротивлений самого якоря и реостата регулирования тока возбуждения;

Iв – ток возбуждения, вызывающий пропорциональный ему магнитный поток возбуждения Ф;

U – напряжение, подаваемое на обмотку якоря, при соблюдении условия Ф = const, т.е. Iв = const.

Примерный вид регулировочных характеристик, получаемых из выражения (6.7) при условии М = const, представлен на рис. 6.9.

Рис. 6.9. Регулировочные характеристики ДПТ с параллельным возбуждением: а) n = f(Rя), б) n = f(Iв) с) n = f(U).

1.1. Простейшая цепь постоянного тока…………….………………………..1

1.2. Баланс мощностей в простейшей цепи постоянного тока………………..7

1.3. Последовательное соединение сопротивлений……………………………9

1.4. Параллельное соединения сопротивлений……………………………….10

1.5. Смешанное соединение сопротивлений……………………………….….12

1.6. Холостой ход и короткое замыкание …………………………………. 13

1.7. Расчет сложных электрических цепей постоянного тока………………14

1.7.1. Метод непосредственного применения законов Кирхгофа………….14

2. ОДНОФАЗНЫЙ ПЕРЕМЕННЫЙ ТОК……………………………………18

2.1. Получение однофазного переменного тока……………………………..18

2.2. Цепь переменного тока с активным сопротивлением…………………..20

2.3 Цепь переменного тока с индуктивным сопротивлением……………….23

2.4. Цепь переменного тока с ёмкостным сопротивлением…………………25

2.5. Цепь переменного тока с последовательным

соединением активного, индуктивного и ёмкостного сопротивлений

2.7. Цепь переменного тока с параллельным соединением

активного, индуктивного и ёмкостного сопротивлений

2.8. Понятие эквивалентной проводимости………………………………….36

3. ТРЕХФАЗНЫЙ ПЕРЕМЕННЫЙ ТОК…………………………………….39

3.1. Трехфазный ток и его получение…………………………………………39

3.2. Соединение звездой. Четырехпроводная система трехфазного………41

3.3 Соединение звездой. Трехпроводная система трехфазного тока………46

3.4. Соединение по схеме «треугольник»…………………………………….48

3.5. Мощность трехфазной системы……………………………………………50

3.6. Измерения мощности потребляемой

4.1. Назначение, области применения и классификация трансформаторов..53

4.2. Устройство и принцип работы однофазного

4.3. Холостой ход трансформатора……………………………………………..56

Читать еще:  Блок управления двигателем ауди 100 как проверить

4.4. Схема замещения трансформатора в режиме холостого хода.…. ……..60

4.5. Приведение вторичной обмотки трансформатора………………………..60

4.6. Схема замещения трансформатора в рабочем режиме……………. ……62

4.7. Векторная диаграмма рабочего режима трансформатора………………..63

4.8. Коэффициент полезного действия трансформатора………………. ……65

4.9. Экспериментальное определение параметров трансформаторов……….66

4.9.2.. Опыт короткого замыкания……………………………………………..69

4.10 Нагрузочные характеристики трансформатора…………………………..71

5. АИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ… ………………………………72

5.1. Принцип действия и области применения асинхронных двигателей….72

5.2. Получение вращающегося магнитного поля……………………………..73

5.3. Конструкция асинхронных двигателей……………………………………77

5.5. Магнитные потоки и ЭДС асинхронного двигателя…………………….79

5.6. Основные уравнения асинхронного двигателя……………………….…..80

5.7. Приведение параметров обмотки ротора к обмотке статора…………….81

5.8. Векторная диаграмма асинхронного двигателя…………………………..82

5.9. Схема замещения асинхронного двигателя………………………………82

5.10. Потери мощности и КПД асинхронного двигателя……………..…….83

5.11. Уравнение вращающего момента………………………………….…….85

5.12. Механические характеристики асинхронного двигателя………………85

5.13. Рабочие характеристики асинхронного двигателя………………………88

5.14. Пуск, регулирование частоты вращения и торможение

6. ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА…………………………90

6.1. Назначение, устройство и способы возбуждения

двигателей постоянного тока……………………………………………..…….90

6.2. Принцип действия двигателя постоянного тока

и его основные уравнения…………………………………. …………………92

6.3. Пуск и реверсирование двигателя постоянного тока…………………….94

6.4. Регулирование скорости вращения двигателя……………………………96

6.5. Коэффициент полезного действия двигателя…………………………….98

6.6. Основные характеристики двигателя постоянного тока…………………99

Пусковой ток.

В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В — ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.

Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector