Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронный редуктор или как кардинально увеличить крутящий момент коллекторного двигателя переменного тока на низких оборотах

Электронный редуктор или как кардинально увеличить крутящий момент коллекторного двигателя переменного тока на низких оборотах. Часть 1

Atmel U2008B U2010B

В статье приведены принципиальные схемы, разводка плат и фотографии устройств регуляторов-стабилизаторов скорости вращения мини дрелей на базе микросхем U2010B / U2008B. Стабилизация скорости вращения коллекторных двигателей переменного тока, примененных в этих дрелях, дала возможность в разы увеличить их крутящий момент, что позволило существенно расширить сферу применения подобных дрелей и использовать их в таких режимах работы, которые ранее были для них недоступны (сверление отверстий, распиловка, заточка). Показаны примеры применения сконструированных устройств совместно с мини дрелями.

Введение

Коллекторные двигатели постоянного и переменного тока, как известно, обладают одним общим свойством: при увеличении напряжения, подаваемого на такие двигатели, увеличиваются их скорость и крутящий момент. Причем, на холостом ходу, то есть без нагрузки на вал, или, другими словами, при нулевом тормозном моменте, скорость вращения таких двигателей (а особенно двигателей переменного тока) может достигать достаточно высоких значений – до десятков тысяч об/мин. В то же время при сверлении отверстий, например, электродрелью от двигателя требуется повышенный крутящий момент, который тем больше, чем толще сверло. При этом для более точного позиционирования сверла и, особенно, для приемлемого режима сверления скорость вращения должна быть достаточно низкой (несколько сот об/мин). В связи с этим в электродрели устанавливают механический редуктор, снижающий скорость вращения вала и одновременно увеличивающий его крутящий момент в десятки и даже в сотни раз (особенно в дрелях-шуруповертах). Если же двигатель используется в инструментах для заточки (например, сверл) или резки каких-либо материалов (например, в циркулярной пиле), то есть на его валу установлен абразивный точильный или отрезной круг, то сверхвысокая скорость вращения двигателя на холостых оборотах (например, 30000 об/мин) может привести к разрушению таких кругов (они могут просто разлететься на куски, что уже травмоопасно). В связи с этим, при эксплуатации подобных кругов для них указывается максимальная скорость их вращения. Однако если снизить скорость вращения двигателя до приемлемого уровня путем подачи на двигатель пониженного напряжения, то одновременно снизится и крутящий момент. А поскольку тормозной момент круга часто на порядок больше аналогичного момента сверла, так как их диаметры могут отличаться на порядок, то при низкой скорости вращения и, соответственно, малом крутящем моменте при достаточном тормозном моменте такой круг может просто остановиться. В связи с этим в подобных устройствах, так же как и в электродрелях, может понадобиться установка механического редуктора.

Механический редуктор, устанавливаемый, например, в электродрели, как известно, представляет собой устройство, состоящее из нескольких стальных шестерен, укрепленных на осях с подшипниками. Поскольку редуктор имеет некоторые габариты и вес, естественно, габариты и вес таких дрелей несколько увеличены (до 2 кг и более), но при ручном сверлении отверстий это не представляет особой проблемы. Однако если для более прецизионных сверловочных работ используется стойка для дрели, то установка подобной дрели с редуктором в такую стойку уже представляет некоторую проблему. В основном это связано с относительно большими габаритами и весом подобных дрелей и, кроме того, их рукоятка существенно мешает работе. Здесь вне конкуренции более легкая (не более 1 кг) и компактная так называемая мини дрель (её ещё называют прямой шлифовальной машиной, гравером и т.п.). Такое устройство представляет собой просто коллекторный электродвигатель (постоянного или переменного тока) без редуктора (и без рукоятки), на валу которого укреплен патрон для зажатия сверл (или иных насадок, например, отрезных или точильных абразивных дисков). В стойке для дрели подобное устройство закрепляется специальным зажимом (хомутом).

В то же время, как уже упоминалось, сверхвысокие скорости вращения электродвигателей подобных устройств на холостом ходу и низкий крутящий момент на малых и средних скоростях при сверлении отверстий, при разрезке (циркулярная пила) или заточке (точило), не позволяют их использовать в таких режимах работы. Однако эту проблему можно решить более простым и эффективным электронным способом.

Этот способ заключается в стабилизации скорости вращения вала электродвигателя вне зависимости от тормозного момента, или, другими словами, при увеличении тормозного момента на двигатель подается бóльшая мощность, отчего соответственно увеличивается крутящий момент, и установленная скорость вращения вала остается прежней (или, по крайней мере, к ней стремится).

Электронный стабилизатор скорости вращения коллекторных электродвигателей представляет собой устройство, имеющее несложную электронную схему, основу работы которой составляют электрические эффекты, возникающие в электродвигателях при торможении их вала. Что это за эффекты?

Если, например, в электродвигателе постоянного тока попытаться затормозить вал, то возникнет так называемая противо-ЭДС – дополнительное напряжение определенной формы, которое можно использовать для увеличения мощности, подаваемой на двигатель. В работе автора [1] показано, что если питать подобный двигатель выпрямленным напряжением 12 – 18 В частотой 50 Гц (то есть, пульсирующим с частотой 100 Гц), и использовать для подачи на двигатель часть этого напряжения с помощью тиристора, на управляющий электрод (УЭ) которого подавать импульсы для его открытия в определенное время, зависящее от противо-ЭДС, то таким способом можно решить подобную задачу, или, другими словами, стабилизировать скорость вращения двигателя. В схеме [1] входное напряжение подается на двигатель через тиристор, а простейшая RC-цепочка подключена к аноду и катоду тиристора. Напряжение, снятое с конденсатора C, подается на базу npn-транзистора, коллектор которого подключен к аноду тиристора, а эмиттер – к УЭ тиристора. При торможении вала двигателя возникает противо-ЭДС, которая с помощью транзистора включает тиристор раньше, вследствие чего на двигатель подается бóльшая площадь полусинусоиды (выпрямленного напряжения), отчего крутящий момент увеличивается, и, таким образом, скорость вращения вала остается прежней, то есть той, которая изначально была установлена.

Но коллекторный двигатель переменного тока (его еще называют универсальным, поскольку он может работать и от напряжения постоянного тока), используемый в мини дрелях, работающих от сетевого напряжения

220 В, устроен иначе, чем двигатель постоянного тока. Основное отличие этих двигателей – устройство статора. Если в двигателях постоянного тока магнитное поле статора, как правило, постоянно, поскольку статор представляет собой постоянный магнит кольцевой формы, то в двигателях переменного тока статор (как и ротор) является электромагнитом. Часто в таких двигателях в качестве статора используются два электромагнита, обмотки которых подключены последовательно с обмотками ротора (с помощью щеток), или, другими словами, сетевое напряжение подается на одни концы обмоток, а вторые их концы подключены к щеткам (коллектору) ротора. Направление обмоток статора и ротора выбрано таким образом, что при любой полуволне переменного напряжения магнитное поле заставляет вращаться ротор в одну и ту же сторону. Кстати, если поменять направление обмоток статора, то вал будет вращаться в обратную сторону. Это свойство используется в дрелях и шуруповертах для так называемого реверса – переключения направления вращения в обратную сторону. В такой конфигурации двигателя при его торможении, к сожалению, противо-ЭДС не возникает (или возникает, но очень слабая). Поэтому все попытки автора применить к такому двигателю схему, описанную в [1], ни к чему не привели.

Читать еще:  Что такое сейф для блока управления двигателем

К счастью, для стабилизации скорости вращения подобных двигателей, работающих от сетевого напряжения

220 В, в свое время немецкой компанией Telefunken (Temic Semiconductors) была разработана специализированная микросхема U2010B и ее несколько упрощенный вариант U2008B. Впоследствии эти микросхемы выпускались компанией Atmel, которая больше известна как разработчик микроконтроллеров. Микросхемы U2008B/U2010B используют иной эффект коллекторных двигателей переменного тока, возникающий при торможении их вала. Этот эффект состоит в том, что при торможении вала ток через двигатель увеличивается. Если этот ток пропустить через токоизмерительный резистор достаточно малого номинала (десятые доли Ома), измерить напряжение на этом резисторе и, в зависимости от этого напряжения, открывать симистор раньше или позже, то таким способом можно достаточно просто стабилизировать скорость вращения двигателя. Фактически на этих микросхемах организован хорошо известный из теории автоматического управления (ТАУ) так называемый ПИД-регулятор (Пропорционально-Интегрально-Дифференциальный регулятор) – устройство в цепи обратной связи, используемое в системах автоматического управления для поддержания заданного значения измеряемого параметра. Такой ПИД-регулятор обладает одним неприятным свойством (впрочем, присущим всем ПИД-регуляторам) – так называемым перерегулированием, проявляющимся в том, что при торможении вала двигателя его скорость может не только оставаться прежней (как на холостом ходу), но даже увеличиваться (и очень существенно). Кроме того, она может и осциллировать с небольшой частотой. Все зависит от соответствующей настройки. Сами микросхемы U2008B/U2010B достаточно распространены, недороги, и в Интернете можно найти массу схем стабилизаторов скорости вращения двигателей переменного тока на базе этих микросхем. Однако все подобные схемы в качестве исходных используют базовые схемы, приведенные в справочных листках на микросхемы U2008B/U2010B, и, кроме того, сконструированы (схемы) на устаревшей элементной базе. Здесь необходимо особо подчеркнуть, что сами по себе схемы хорошо известны, и главное заключается не в самих схемах, а в номиналах и типах компонентов в них входящих, а также в их настройке. В связи с изложенным автором разработаны конкретные устройства на базе этих схем, которые показали достаточно удовлетворительную работу. Описание таких устройств и их настройка с конкретными двигателями переменного тока и является предметом настоящей статьи.

Таким образом, дальнейшее изложение будет построено следующим образом. Вначале будут рассмотрены принципиальные схемы устройств – стабилизаторов скорости вращения электродвигателей на базе микросхем U2008B/U2010B, описан принцип их работы и настройка. Затем будут приведены разводка плат, их фотографии, а также фотографии самих устройств. Далее будут показаны примеры применения этих устройств с конкретными двигателями, а именно: с двигателем, установленным в стойку для дрели, и с двигателем, на базе которого сконструирована небольшая циркулярная пила и точильный станок (последние две опции объединены в одном общем устройстве).

Предварительные замечания о некоторых механических и электрических характеристиках электродвигателей

Как известно, крутящий момент двигателя, рассматриваемого в настоящей статье, в зависимости от частоты его вращения нелинеен. Он имеет два максимума: один – при нулевой частоте, то есть при полностью заторможенном двигателе, второй – при относительно высоких частотах, приближающихся к максимальной. Наиболее интересен диапазон низких частот вплоть до нулевой (особенно в режимах сверления), а диапазон высоких частот, как в режимах разрезки (циркулярная пила), заточки (точило), так и в режимах сверления в свете настоящей статьи интереса не представляет, поэтому далее не рассматривается.

Кроме того, крутящий момент, M, пропорционален квадрату тока, I, протекающего через двигатель, то есть M = kI 2 , где k – коэффициент пропорциональности. Этот факт также хорошо известен и будет использован при дальнейшем изложении.

В качестве «подопытных кроликов» для проверки работоспособности устройств на базе микросхем U2008B/U2010B были выбраны две мини дрели: «TUNGFULL 1806B» и «SKRAB 56000». Это две недорогие мини дрели не имеют редуктора и рукоятки; кроме того, они относительно легки (не более 1 кг). По своим параметрам эти мини дрели, на взгляд автора, как нельзя лучше подходят для использования в устройствах стабилизаторов скорости вращения на базе микросхем U2008B/U2010B.

В паспорте на мини дрель, как правило, указывается её рабочее напряжение питания, мощность, а также скорость вращения (или ее диапазон, если она оборудована электронным переключателем скорости) на холостом ходу. Например, у двигателя мини дрели «SKRAB 56000» напряжение составляет 220 В, мощность 480 Вт, скорость 8000-30000 об/мин (он оборудован переключателем скоростей на базе простейшей схемы на симисторе). У двигателя мини дрели «TUNGFULL 1806B» при том же напряжении питания мощность составляет 260 Вт, а скорость вращения 27,600 об/мин.

Поскольку, как указывалось во введении, микросхемы U2008B / U2010B в качестве одного из параметров, влияющих на регулирование скорости вращения, используют ток, протекающий через двигатель, имеет смысл более подробно рассмотреть диапазон токов вышеуказанных мини дрелей.

Наибольший ток (см. выше) имеет двигатель в полностью заторможенном состоянии. Как определить этот ток, и как он связан с паспортной мощностью мини дрели? Для этого автором был проведен несложный эксперимент, сводящийся к следующему.

С помощью лабораторного автотрансформатора (ЛАТРа) на дрель подавалось переменное напряжение, измеряемое стрелочным тестером; одновременно измерялся и ток (также переменный, то есть в режиме AC) с помощью цифрового тестера. Вначале напряжение устанавливалось достаточно низким (40–50 В), чтобы вал можно было легко затормозить, а затем напряжение быстро увеличивалось до 220 В, и при заторможенном вале, удерживаемом не более 1–2 секунд, снималось показание тока. Эксперимент показал следующее. При полностью заторможенном двигателе и напряжении 220 В ток двигателя дрели «TUNGFULL 1806B» составил около 3 А, а ток двигателя дрели «SKRAB 56000» составил около 2.8 А. Нетрудно подсчитать, что мощность, W, дрели «TUNGFULL 1806B» составила: W = 3 A × 220 В = 660 Вт (против паспортной 260 Вт), а мощность дрели «SKRAB 56000»: W = 2.8 A × 220 В = 616 Вт (против паспортной 480 Вт). Как видно из этого эксперимента, мощности дрелей при полностью заторможенном двигателе существенно превышают паспортные.

Автор задался вопросом: a при каких напряжениях питания мощности заторможенных двигателей дрелей соответствуют паспортным? Это было выяснено путем подачи разных напряжений (ниже 220 В) и одновременного измерения тока.

Вот результат. У дрели «TUNGFULL 1806B» при напряжении питания 138 В ток составил 1.88 А, а мощность: 138 В × 1.88 А = 259.4 Вт (≈260 Вт). У дрели «SKRAB 56000» при напряжении 190 В ток составил около 2.5 А, а мощность: 190 В × 2.5 А = 475 Вт (≈480 Вт). Вот эти значения токов и напряжений (1.88 А и 138 В для дрели «TUNGFULL 1806B» и 2.5 А и 190 В для дрели «SKRAB 56000») и были использованы в дальнейшем при расчете номиналов токоизмерительных резисторов, о которых упоминалось выше.

Читать еще:  Что означает адаптация двигателя к холодному климату

Теперь после этих предварительных пояснений перейдем к принципиальным схемам устройств.

Регулятор оборотов на 220в (Прокачиваем свой инструмент)

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Всем привет!

Заказал я недавно себе стойку для дрели и к ней Хильду, чтобы на высоких оборотах на стойке можно было обрабатывать пластик и алюминий. Все заказывал в фирменном магазине HILDA на Али Экспресс с русского склада. Стойка пришла через два дня, а вот Хильду они мне смогли отправить только через месяц. Ну и в период ожидания решил попробовать зенковать отверстия с помощью старой дрели. Как оказалось это не так-то просто. Дрель не возможно включить на малых оборотах да и вообще сложно было ее включать и выключать. Стал думать как бы решить этот вопрос. И вспомнил, что давно покупал регулятор оборотов на 220в.

За пару минут набросал 3D модель, напечатал и собрал регулятор, подключив его к большому выключателю и розетке в одном корпусе.

При экстренных случаях большой выключатель очень удобен. Еще хочу обратить ваше внимание на то, что если у дрели или в другом инструменте есть своя регулировка, то на стойке все равно удобнее пользоваться выносной. И для этого нужно штатную выкрутить на максимум, иначе штатная электроника будем пересекаться с выносной и работать не будет.

В видео я показал, что такой вариант отлично работает с любым инструментом. И легко выдерживает 2 киловатта. Есть модуль и на 4 киловатта, но он немного больше да и смысла в нем не вижу. Обогреватель к нему подключать все равно не буду.

Модуль имеет синий подстроечный резистор. Им можно настроить минимальные обороты, чтобы мотор не останавливался.

В конце концов мне так понравилась связка (Стойка + Хильда) что я не выдержал и заказал себе координатный столик. Пока мало на нем работал, но уже понимаю как сильно это расширяет возможность моей маленькой мастерской. В общем остался очень доволен и регулятором и инструментом который стоит не много, а решает много :). В будущем есть планы установить на координатный стол два шаговых двигателя и тогда фрезеровка будет еще легче, точнее и качественнее.

Хильда стоит 1500р и я не ожидал, что она абсолютно не имеет люфта. Зато имеет два подшипника, что хорошо сказывается на боковых нагрузках, которые возникают в момент фрезеровки на координатном столике.

Думаю в будущих роликах вы еще не раз увидите это трио.

И чуть не забыл! Для Хильды нужно распечатать переходник, благо есть уже готовый скачать можно ТУТ.

Что такое подкрученный регулятор оборотов двигателя

ни разу не ставил

думаю, что если буду использовать, то буду постоянно забывать вырубать =)

я его в 4 слот поставил

жму 4 и выключаю через 3-4 сек. хотя навыки мехвода больше дают, но хоть для веселухи

и стоит как многоразовый, хоть навечно оставь

зато занимает целый слот

на кв-5 стоит вместо огнетушителя, хорошая вещь

у меня на всех советских стоит

есть смысл ставить

хорошая штука, особенно на советских тяжах

на 261 стоит, на остальных танках (тт/ст) голдовый попатушитель. Лучше уж потушиться чем, на пару сек быстрее приехать на место. А так как то пользовался, принцип работы такой: при включении н-ное количество оборотов дает, что помогает при разгоне, и — при включении по тихой ломается движок. При отключении движок восстанавливается со временем.

+, стоит только на арте

катаясь во взводе заметили: 2 одинаковых танка, с

одинаковыми перками. тот что с регулятором вырывается на 2-3 корпуса. при этом повреждённый регулятором движок имеет больше шансов пожара, а огнетушителя то уже нет. да, двигатель горит с определенной вероятностью, и видимо ставя регулятор я гневал вбр. горели даже те тачки что обычно ваще не горят.
ещё регулятор подходит только танкам у котор двигатель с большим кол-во хп. при отключении хп двигателя восстанавливается до 75%, не более.

У мну он сейчас стоит на ИСУ, у движка 12% возгорания — не горит совсем

зато не дать себя закрутить в нужный момент, а скорость поворота ощутимо повышается, бесценно.

я врубаю по необходимости, когда нужен резкий форсаж

но он не такой резкий но все же

ну дык ису обычно в лицо огребает

+ она бортом не танкует. а так да, мысль. на пт я не ставил. как раз владею сим аппаратом. надо заценить, спс.

не дал себя закрутить

на су8-двум светлякам(убил) потом убежал быстро от засвета на полном газу

ахаха, колобок же

и от дедушки ушел, и от бабушки, и от светляков =))))

да просто надоело

когда сокомандники светляков проепывают, поставил «систему ПРО» и стало полегче

тогда прибежали токо к трупам

от оставшегося засвета

убегал от оставшегося засвета где то 5 сек, зигзагами, советую тоже , чтоб арта не минусанула . также на танках подранках

от оставшегося засвета

убегал от оставшегося засвета где то 5 сек, зигзагами, советую тоже , чтоб арта не минусанула . также на танках подранках

В сарае есть одна штука, купил как-то,

нифига с ним не разобрался, запорол разок двигатель, с тех пор он валяется.

кто нить пробовал?я пока с китайцами завязал, а в игре ни разу не видел что они горят

на типке норма регулятор.

На остальных танках не ставлю. есть вещи и поважнее!

по результатам акции ТТ

1 место на т46 занял некто mrFruit — .

нет не я))) в игре у меня другой ник)))

Регулятор оборотов двигателя сверлильного станка

Предлагается рассмотреть вариант изготовления электронного регулятора оборотов для двигателя постоянного тока с рабочим напряжением 24 V.

Предлагаемая конструкция регулятора оборотов двигателя, предназначена для изменения скорости вращения инструмента на сверлильном станке, изготовление которого описано в заметке «Сверлильный станок – ромбоид». Однако это устройство возможно использовать для регулирования мощности и в других конструкциях.

Необходимость в регулировке оборотов инструмента вызвана следующими причинами. Изменение обрабатываемого материала, диаметра и вида инструмента требует изменения скорости резания. Например, сверление оргстекла или некоторых термопластичных пластмасс, на режимах оптимальных для сверления металла, приведет лишь к расплавлению обрабатываемого материала в зоне резания и налипанию его на сверло. Сверление, развертывание и зенковка одного и того же отверстия, также требует разных оборотов для качественной обработки поверхности. Увеличение диаметра сверла требует пропорционального уменьшения числа оборотов. Кроме того, иногда требуется реверс направления вращения инструмента. Для элементарного выполнения этих условий предлагается изготовить электронный регулятор оборотов.

Читать еще:  Что такое поршень двигателя внутреннего сгорания

Изготовление регулятора оборотов двигателя.

1. Исходные данные.
В рассматриваемом примере, на сверлильном станке используется электродвигатель постоянного тока на 24 Вольта (0,7А).

Для работы этого электродвигателя нужен соответствующий источник питания.

Необходимое для работы двигателя напряжение и ток может обеспечить трансформатор кадровой развертки ТВК-110Л-1, взятый из старого телевизора. Он имеет небольшие габариты и массу (ШЛ 20 х 32) и с вторичной обмотки способен выдать ток 1 A с напряжением 22…24 V. При этом выпрямленное напряжение будет около 30 V, но с ростом потребляемого тока выходное напряжение будет несколько снижаться.

2. Изготовление выпрямителя.
Так как при возможном резком торможении обрабатывающего инструмента, вероятны скачки потребляемого двигателем тока до 1,5…2,0 А, для изготовляемого выпрямителя необходимо использовать диоды с запасом по предельному току. Желательно применить диоды с рабочим напряжением более 30V и предельным током более 2,0А.

В рассматриваемом варианте регулятора использованы, оптимальные из имеющихся под рукой, диоды КД202Д (200V — 5,0А).
Из выбранных диодов соберем мостовой выпрямитель и подключим его к вторичной обмотке трансформатора. Запитаем трансформатор от сети и проверим выходное напряжение.

3. Изготовление корпуса для устройства.
Пришло время для размещения электрической части регулятора оборотов. Возможны следующие варианты исполнения. В отдельном независимом от станка корпусе, в установленном постоянно на станке корпусе, а также встроенном в конструкцию станка (например, в столе станка).

Так как предлагаемая конструкция является регулятором мощности для различных устройств, то с учетом перспектив его возможного дальнейшего применения целесообразно изготовить это устройство в отдельном мобильном корпусе. Изготовление или приобретение подходящего корпуса будет зависеть от Ваших пожеланий и возможностей. Как вариант, в рассматриваемой конструкции использован пластмассовый флакон от химикатов с габаритными размерами 90 х 70 х 90 мм.

У емкости частично срезана верхняя часть. Образовавшееся окно закрывается декоративной панелью изготовленной из металлического листа толщиной 0,4 мм. Ребра, образованные после гибки с трех сторон полочек на заготовке, придают панели достаточную для работы жесткость. При установке в конструкцию, панель также дает корпусу дополнительную прочность. На панели устанавливается розетка для выходного напряжения, регулятор мощности, плата с электронной схемой (снизу).
По размерам окна в корпусе, из универсальной монтажной платы, вырезается рабочая плата для размещения электронной схемы регулятора.

Схема регулятора выполнена на базе DA1 — импортном интегральном таймере NE555 (отечественный аналог — КР1006ВИ1). Конструкция таймера представляет собой многофункциональную интегральную микросхему (ИМС). Она часто применяется в различных устройствах (электроника, вычислительная техника, автоматика). Основным назначением этого таймера, является генерирование импульсов с большим диапазоном периода повторения (от микросекунд до нескольких часов).

Приведенная схема регулятора на таймере NE555, позволяет управлять оборотами электродвигателя с помощью широтно-импульсной модуляции (ШИМ).

В этом методе, напряжение питания на двигатель подается в виде импульсов с постоянной частотой следования, но при этом их длительностью (шириной импульса) можно управлять. При этом способе регулирования, передаваемая мощность и скорость вращения двигателя будут пропорциональны длительности импульсов (коэффициенту заполнения ШИМ сигнала — отношению длительности импульса к его периоду).
Принцип работы генератора ШИМ сигнала на таймере NE555 многократно и подробно описан в соответствующих публикациях, с чем можно ознакомиться в интернете.

Генератор регулятора работает на частоте около 500 Гц. Его частота зависит от емкости конденсатора С1. Длительность импульса будем регулировать переменным резистором R2. Сигналы с выхода генератора ШИМ сигнала, через усилитель тока на транзисторе VT1 управляют электродвигателем станка. Увеличивая ширину положительного импульса поступающего на базу транзистора VT1, мы увеличиваем мощность поступающую на двигатель постоянного тока, и наоборот. Длительность импульсов, следовательно и частоту вращения двигателя можно изменять в пределах от 0 до 95…98%.

Реверс направления вращения инструмента можно выполнить с помощью тумблера установленного на панели. Но для упрощения конструкции, эта функция выполняется поворотом вилки (сменой полюсов) в розетке на панели.

Вместо составного n-p-n транзистора КТ 829А можно применить полевой транзистор или оптрон соответствующей мощности.
Регулятор будет питаться от сети 220 В и иметь регулируемый по мощности выход на 24 В. Напряжение питания таймера NE555 должно быть в диапазоне 5…16 В, в схеме он будет работать от стабилизированного напряжения 12В. Данная схема регулятора может работать и от другого источника питания в пределах 24…30 В.

5. Комплектация устройства.
Комплектуем устройство деталями согласно приведенной схеме. Выходной транзистор VT1 и стабилизатор VR1 устанавливаем на небольшие радиаторы. В приведенной конструкции они изготовлены из алюминиевого уголка.

6. Проверка работы схемы генератора.
В интернете размещено много похожих вариантов схемы генератора на таймере NE555, но номиналы деталей в разных схемах отличаются в десятки и сотни раз. Поэтому, для упрощения изготовления и отладки работающей схемы, желательно предварительно собрать ее на универсальной монтажной плате.

Собираем схему генератора. К выходу таймера (выв.3) подключаем базу n-p-n транзистора КТ315. В цепь его коллектора включаем индикаторный светодиод через ограничительный резистор 1кОм. Эмиттер подключаем на минус схемы. Запитываем схему генератора от стабилизированного источника питания 12В. Подбирая номиналы деталей, контролируем правильность работы генератора по свечению светодиода.

Контрольный светодиод можно установить и непосредственно к выходу таймера (выв.3), но следует учитывать, что таймер NE555 имеет выходной ток до 200 мА. Близкий отечественный аналог КР1006ВИ1 допускает выходной ток до 100 мА.

8. Сборка регулятора оборотов двигателя.
Собираем все узлы регулятора оборотов. Закрепляем плату на панели устройства, используя прокладку из тонкого текстолита для изоляции контактов платы от металлической панели. Выход регулятора присоединяем к розетке расположенной на панели. Также к ее клеммам, в обратном направлении, припаиваем диод VD3. Он будет гасить импульсы самоиндукции обмотки электродвигателя. Этот диод должен выдерживать рабочее напряжение и ток, не менее двух раз превышающие рабочие характеристики двигателя.

Роль индикатора работы регулятора будет выполнять один элемент светодиодной ленты LED1, на напряжение 12В. Разместим (приклеим) его на плечо подвески двигателя, над сверлильным патроном, для одновременной с индикацией подсветки зоны обработки.

9. Доработка конструкции сверлильного станка.
Работа на изготовленном станке показала необходимость в некоторых доработках его конструкции.

Под винт фиксации по высоте установлена дополнительная пластина, позволяющая распределить давление зажима на большую площадь, исключить заклинивания и облегчить скольжение основания подвески по стойке станка.

По предложению комментатора о контроле оптимального положения инструмента относительно обрабатываемой детали, изготовлен и установлен регулируемый упор. Он устанавливается наверху основания подвески и служит упором для верхнего рычага подвески. Упор настраивается так, чтобы сверлильный патрон и рычаги подвески не могли опуститься ниже 2-х мм от нулевой линии. В положении на упоре, сверло устанавливается в патроне, до касания столика станка. Так оно автоматически будет работать в оптимальной зоне 4мм, с минимальным боковым смещением 0,01мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector