Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

4 Графики

4 Графики

График зависимости

График зависимости

График зависимости

График зависимости

График зависимости

5 Контрольные вопросы

Вопрос №1. Объяснить устройство и принцип действия асинхронного двигателя с короткозамкнутым ротором.

Ответ: Асинхронный двигатель — это машина переменного тока. Слово «асинхронный» означает не одновременный. При этом имеется в виду, что у асинхронных двигателей частота вращения магнитного поля отличается от частоты вращения ротора. Основными частями машины являются статор и ротор, отделенные друг от друга равномерным воздушным зазором.

Статор — неподвижная часть машины. Его сердечник с целью уменьшения потерь на вихревые токи набирают из штампованных листов электротехнической стали толщиной 0,35 — 0,5 мм, изолированных друг от друга слоем лака. В пазы магнитопровода статора укладывается обмотка. В трехфазных двигателях обмотка трехфазная. Фазы обмотки могут соединяться в звезду или в треугольник в зависимости от величины напряжения сети.

Ротор — вращающаяся часть двигателя. Магнитопровод ротора представляет собой цилиндр, набранный из штампованных листов электротехнической стали (рис. 2 а) В пазах ротора укладывают обмотку. В зависимости от типа обмотки роторы асинхронных двигателей делятся на короткозамкнутые и фазные (с контактными кольцами). Короткозамкнутая обмотка представляет собой неизолированные медные или алюминиевые стержни, соединенные с торцов кольцами из этого же материала («беличья клетка»). Свободные концы фаз обмотки присоединены к трем медным контактным кольцам, насаженным на вал двигателя. Контактные кольца изолированы друг от друга и от вала. К кольцам прижаты угольные или медно-графитные щетки. Через контактные кольца и щетки в обмотку ротора можно включить трехфазный пускорегулировочный реостат.

Вопрос №2. Каковы способы пуска асинхронных короткозамкнутых двигателей?

Прямой пуск. При этом обмотка статора включается непосредственно в сеть на полное напряжение. Прямой пуск допустим только для асинхронных двигателей с короткозамкнутым ротором малой и средней мощности (до 15-20 кВт). Однако при значительной мощности питающей сети этот способ можно распространить на двигатели большей мощности (примерно до 50 кВт).

Пуск при пониженном напряжении. Пусковой ток двигателя пропорционален напряжению на фазах обмотки статора U1, поэтому уменьшение напряжения U1 сопровождается соответствующим уменьшением пускового тока. Однако такой способ приводит к уменьшению начального пускового момента, который пропорционален квадрату напряжения на фазах обмотки статора. Ввиду значительного снижения пускового момента указанный способ пуска применим только при малых нагрузках на валу. Имеется несколько способов понижения напряжения U1 в момент пуска:

при легком пуске асинхронных двигателей средней мощности, которые нормально работают при соединении фаз обмотки статора треугольником, применяют снижение напряжения на зажимах, этих фаз переключением их в звезду;

при любом типе соединения фаз обмотки статора понизить напряжение можно с помощью реактора (трехфазной индуктивной катушки), включенного последовательно в обмотку статора. Менее экономично снижать напряжение на статоре последовательным включением резисторов, т.к. они при этом сильно нагреваются и возникают дополнительные потери электрической энергии;

для двигателей большой мощности снижать напряжение целесообразно при помощи понижающего трехфазного автотрансформатора. Этот способ лучше предыдущего, но значительно дороже. После того, как ротор двигателя разгонится, и ток спадает, на обмотку статора подается полное напряжение сети.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора. Пусковой реостат снижает величину начального пускового тока и одновременно увеличивает начальный пусковой момент, который может достигнуть величины, близкой к максимальному моменту. По мере разгона двигателя пусковой реостат выводят.

Вопрос №3. Чему равны скольжение и число пар полюсов асинхронного двигателя, если его номинальная частота вращения 950 об/мин?

Ответ: Токи фаз обмотки создают магнитное поле, вращающееся относительно статора с частотой n, об/мин, которая называется синхронной частотой вращения двигателя:

Читать еще:  Электрическая схема управления двигателем опель астра

где f1— частота тока сети, Гц,

р — число пар полюсов магнитного поля

При стандартной частоте тока сети f1-50 Гц, частота вращения поля

и в зависимости от числа пар полюсов имеет следующие значения:

Механическая характеристика асинхронного двигателя с переключением пар полюсов

Благодаря простой конструкции, высокой надежности и выгодной цене асинхронный двигатель с короткозамкнутым ротором, стал наиболее популярным электродвигателем применяемый в промышленности и быту. В данной статье рассмотрим механическую и пусковую характеристику асинхронного двигателя с короткозамкнутым ротором и возможностью переключения пар полюсов.

Переключение числа полюсов – это один из способов регулирования скорости привода. Данный электропривод часто используются в приводных системах подъёмно-транспортного оборудования, станочных приводах. При этом большая частота вращения используется для обеспечения высокой скорости, а низкая – для позиционирования (скорость дотягивания). Асинхронные двигатели с переключением пар полюсов изготавливаются на скорости вращения: 1500/3000 об/мин (число полюсов 4/2 – схема Даландера), 750/3000 об/мин (число полюсов 8/2 – раздельные обмотки), 1000/1500 об/мин (число полюсов 6/4 — раздельные обмотки), 750/1500 об/мин (число полюсов 8/4 — схема Даландера), при частоте питающей сети 50 Гц.

Механическая характеристика асинхронного двигателя

При разгоне асинхронного двигателя с короткозамкнутым ротором изменяется сопротивление обмотки ротора, а следовательно в зависимости от частоты вращения (от величины скольжения) изменяется и вращающий момент. Пусковая характеристика выражается через механическую характеристику асинхронного двигателя.

  • MA1 = пусковой момент (8-полюсное включение);
  • MA2 = пусковой момент (2-полюсное включение) ;
  • MS = минимальный пусковой момент;
  • MK = опрокидывающий момент;
  • MN = номинальный момент;
  • ML = момент нагрузки;
  • [1] = двигательный режим;
  • [2] = генераторный режим (торможение) ;
  • [3] = стабильная рабочая точка;
  • 2P = 2- полюсное включение обмотки;
  • 8P = 8-полюсное включение обмотки;

Механическая характеристика асинхронного двигателя с короткозамкнутым ротором, с переключением числа пар полюсов.

При каждом разгоне двигатель проходит эту механическую характеристику до стабильной рабочей точки, в которой кривая момента нагрузки пересекается с кривой момента двигателя. Стабильная рабочая точка достигается в том случае, если момент нагрузки меньше пускового или минимального пускового момента.

При переключении обмотки статора с 2-полюсного на 8-полюсное включение частота вращения не сразу снижается до синхронной, и двигатель кратковременно работает в генераторном режиме. За счет преобразования кинетической энергии в электрическую, торможение от высокой частоты вращения до низкой выполняется без потерь мощности и износа деталей. При этом торможении достигается вращающий момент, величина которого рассчитывается по следующей формуле:

MU = момент при переключении пар полюсов;

MA1 = пусковой момент двигателя с включением обмотки для меньшей частоты вращения;

Момент при переключении пар полюсов MU – это средняя разность характеристик для 2-полюсного и 8-полюсного включения обмотки в диапазоне частоты вращения, ограниченном соответствующими номинальными значениями (механическая характеристика асинхронного двигателя — заштрихованная область).

Электростанции

  • Главная
  • карта сайта
  • статьи

Навигация

  • Меню сайта
    • Организация эксплуатации
    • Электрические схемы
    • Турбогенераторы
    • Трансформаторы и автотрансформаторы
    • Распределительные устройства
    • Электродвигатели
    • Автоматика
    • Тепловая изоляция
    • Регулирование энергоблоков
    • Тяговые подстанции
    • Выпрямители и зарядные устройства
    • Проектирование электрических сетей и систем
    • Электрооборудование электротермических установок

Меню раздела

Регулирование скорости асинхронных двигателей изменением числа полюсов

Регулирование скорости асинхронных двигателей изменением числа полюсов требует специальных машин, позволяющих сравнительно просто переключить обмотку статора на другое число пар полюсов. Переключение обмоток ротора на соответствующее число пар полюсов в двигателях с фазным ротором значительно усложняет их конструкцию.. Поэтому этот способ регулирования скорости распространен только для двигателей с короткозамкнутым ротором.
Принцип изменения числа пар полюсов при переключении секций обмотки одной фазы трехфазного двигателя иллюстрируется рис. 4.13. При одновременном переключении обмоток всех трех фаз токи в ветвях обмоток изменяют свое направление и в зазоре машины возникает показанное на рис, 4.13 вращающееся поле с отличным от предыдущего числом пар полюсов. Двухскоростные асинхронные двигатели могут выполняться с одной обмоткой, число пар полюсов которой изменяется вдвое при ее переключении. На статоре трехскоростных двигателей укладываются две независимые обмотки, одна из которых выполняется переключаемой. Четырехскоростные двигатели имеют на статоре две независимые переключаемые обмотки.
Например, при необходимости иметь четыре синхронные ‘ частоты вращения: 1500, 750, 1000, 500 об/мин на статоре укладывают две независимые обмотки, одна из которых обеспечивает число пар полюсов р=2 и р—4, а другая р—3 и р=6.
В зависимости от характера нагрузки схемы соединения статорных обмоток выбирают из соображений обеспечения постоянства момента двигателя М=const или постоянства мощности на его валу P=const. На рис. 4.14,а приведены схема включения статора асинхронного двигателя при изменении числа пар полюсов переключением обмоток со звезды при замкнутых контактах 1К на двойную звезду при замкнутых контактах 2К и соответствующие механические характеристики. При включении контактора 2К при одних и тех. же значениях фазного напряжения и допустимого в обмотках тока, равного номинальному, мощность двигателя удваивается, так как фазные полу-обмотки при схеме соединения в двойную звезду будут потреблять удвоенный ток. Двигатель работает при этом на верхней характеристике с удвоенной синхронной скоростью шов- Следовательно, при переключении числа пар полюсов по схеме.
В схеме же рис. 4.14,6 при включенном контакторе 1К ста-торные обмотки соединены в треугольник и двигатель работает на нижней характеристике. В этом случае по сравнению со схемой соединения статорных обмоток в двойную звезду при замкнутых контакторах 2К к фазе двигателя приложено линейное напряжение питающей сети, в 3 раз большее, а ток фазы двигателя меньше вдвое, так как при одном и том же допустимом значении тока в обмотке двигателя при двойной звезде фазные полуобмотки соединяются параллельно. Таким образом, так как при схеме двойной звезды увеличивается ток холостого хода двигателя, получаем Рлди&яР доп. т. е. регулирование скорости происходит по закону, показанному на характеристиках рис. 4.14,6 штриховой линией.
Двигатели с переключаемыми полюсами несколько больше по габаритам и дороже. Но регулирование экономично, так как для его осуществления необходима только дополнительная коммутационная аппаратура, а потери скольжения согласно при регулировании не увеличиваются, поскольку при работе на каждой скорости двигатель работает при небольших скольжениях. Регулирование скорости таким способом принципиально не может быть плавным. В ЭТУ регулирование скорости изменением числа пар полюсов асинхронных двигателей применяется для приводов наклона печей при сливе металла (медленный наклон печи и быстрый возврат в исходное положение), литейных конвейеров и других разливочных машин.

Читать еще:  Что сделать чтобы магнитофон не выключался при запуске двигателя

Асинхронный электродвигатель: принцип работы и устройство

Содержание

  1. Устройство асинхронного электродвигателя
  2. Принцип работы асинхронного двигателя
  3. Преимущества асинхронных двигателей

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

Читать еще:  Что такое рабочий объем двигателя 2359

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector