Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое полюса двигателя переменного тока

18. Двигатели переменного и постоянного электрического тока. Лещинский.

Электрические двигатели бывают постоянного и переменного тока (рис. 2). Наиболее распространены электрические двигатели переменного тока. Они просты по устройству, неприхотливы в эксплуатации. Основной недостаток — практически не регулируемая частота вращения.

Электрические двигатели переменного тока изготавливают одно- и многофазными. Основные элементы таких двигателей — статор (неподвижная часть) и ротор (вращающаяся часть). Выпускаются электродвигатели с коротко замкнутыми обмотками ротора (типа беличьей клетки) и обмотками, выведенными на коллектор (систему контактных колец) и замыкающимися через регулируемые резисторы. Такие роторы называют фазными, а электродвигатели — электродвигателями с фазным ротором.

Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т. д.), не требующих регулирования частоты вращения.

Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Достоинством двигателей постоянного тока является способность регулировать частоту вращения, но они требуют значительных усилий при эксплуатации.

Следует особо отметить, что машины постоянного тока является обратимой машиной, т.е. она может работать как генератор электрической энергии, если к ее валу подводится механический вращающий момент. И как двигатель, если к ее обмоткам подводится электрическая энергия.

Принцип действия двигателя постоянного тока.

Электрическая энергия подводится к обмоткам якоря и возбужде­ния двигателя постоянного тока, которые имеют такое же устройство,

Рис. 11.25. Принцип действия двигателя постоянного тока

как и обмотки генератора. Благодаря коллектору подводимый постоянный ток меняет направление в проводниках обмотки якоря, ког­да при вращении якоря они переходят в другую параллельную ветвь, т. е. попадают в пространство под другим полюсом. Таким образом, направление тока в проводниках обметки якоря, находящихся под данным полюсом, остается все время неизменным (рис. 11.25).

Как известно, на проводник с током, находящийся в магнитном поле, действует электромагнитная сила F, направление которой опре­деляется правилом левой руки. При указанном на рисунке направле­нии тока в обмотке якоря и полярности полюсов якорь машины вращается под действием силы F против часовой стрелки. Таким образом, машина постоянного тока разви­вает вращающий момент и к ее валу может быть приложен тормозной момент — механическая нагрузка.

Универсальные коллекторные двигатели применяются в промышленных и бытовых электроустановках (электрифицированный инструмент, вентиляторы, холодильники, соковыжималки, мясорубки, пылесосы и др.). Они рассчитаны для работы как от сети постоянного тока (110 и 220 В), так и от сети переменного тока частотой 50 Гц (127 и 220 В). Эти двигатели имеют большой пусковой момент и сравнительно малые размеры.

По своему устройству универсальные коллекторные двигатели принципиально не отличаются от двухполюсных двигателей постоянного тока с последовательным возбуждением.

В универсальных коллекторных двигателях не только якорь набирается из листовой электротехнической стали, но и неподвижная часть магнитопровода (полюса и ярмо).

Обмотка возбуждения этих двигателей включается с обеих сторон якоря. Такое включение (симметрирование) обмотки позволяет уменьшить радиопомехи, создаваемые двигателем.

Для получения примерно одинаковых частот вращения при номинальной нагрузке как на постоянном, так и на переменном токе обмотку возбуждения выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотку возбуждения используют полностью, а при работе от сети переменного тока — лишь частично.

Вращающий момент создается за счет взаимодействия тока в обмотке якоря (ротора) с магнитным потоком возбуждения.

Эти двигатели выпускаются на сравнительно небольшие мощности — от 5 до 600 Вт (для электроинструмента — до 800 Вт) и частоты вращения — 2770 — 8000 об/мин. Пусковые токи таких двигателей невелики, поэтому их в сеть включают непосредственно без пусковых сопротивлений. Универсальные коллекторные двигатели имеют минимум четыре вывода: два для подключения к сети переменного тока и два для подключения к сети постоянного тока. КПД универсального двигателя на переменном токе ниже, чем на постоянном. Это вызвано повышенными магнитными и электрическими потерями. Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую.

Частоту вращения таких двигателей регулируют, изменяя подводимое от сети напряжение, например, автотрансформатором, а у двигателей небольшой мощности — реостатом.

Однофазный коллекторный двигатель нельзя пускать в ход при малой нагрузке, потому что он может пойти «вразнос».

Отечественная промышленность выпускает универсальные коллекторные двигатели серий УЛ, МУН, УМТ, ДТА-4, УВ, М-1Д, ЭП, УД, Д2-03, ЭПП-1 и др.

Рис. 2. Электрические двигатели: а постоянного тока; б — синхронные; в — асинхронные с фазным ротором; г — асинхронные трехфазные с коротко замкнутым ротором серии 4А. 1 — вал, 2 — шпонка, 3 —подшипник, 4 — статор, 5 — обмотка статора, 6 — ротор (якорь); 7 — вентилятор; 8 — коробка выводов; 9 — лапа, 10 — коллектор; 11 — щетки; l1, l2 — продольное и поперечное расстояния в лапах; l3 — длина выступающего конца вала; l4. — размер выступающей крышки; hвысота оси вращения; d1, d2 — диаметры вала и отверстий в лапах.

Коллекторный двигатель постоянного и переменного тока

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.
Читать еще:  Вибрация двигателя на холостых передается на кузов лексус

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Добавочные полюса

Назначение. Добавочные полюса применяют для создания магнитного потока в зоне коммутации. Под влиянием этого потока в коммутирующих витках наводится э д.с , направленная против реактивной э.д.с. Включение обмоток добавочных полюсов последовательно с обмоткой якоря способствует автоматической компенсации реактивной э.д.с. при изменении режимов работы двигателя. Число добавочных полюсов всегда равно числу главных. В тяговом режиме полярность добавочных полюсов должна быть обратна полярности соседних (по направлению вращения якоря) главных полюсов, а в генераторном — той же самой. Чтобы магнитный поток возрастал пропорционально току якоря, необходимо иметь слабое насыщение добавочных полюсов Добавочный полюс состоит из сердечника и катушки.

Сердечники. Они имеют более простую форму, чем сердечники главных полюсов. У тяговых двигателей отечественных электровозов постоянного тока сердечники добавочных полюсов сделаны сплошными из стали в виде отливок или обработанных поковок, так как индукция в них невелика и вследствие этого потери от пульсации магнитного потока ничтожны. В машинах с тяжелыми условиями коммутации, а также в двигателях пульсирующего тока для уменьшения вихревых токов сердечники выполняют шихтованными (отечественные двигатели НБ-414Б, НБ-412М, НБ-412К, НБ-418К, РТ-51Д; двигатели БШ 4336 и Т01368 соответственно французских электровозов ВВ9004 и ВВ16000). Сердечники добавочных полюсов в основном шихтуют перпендикулярно, а реже — параллельно оси якоря (двигатели РТ-51Д и др.). В последнем случае листы сердечника выполняют роль экранов для пульсирующей составляющей потоков рассеяния. В результате этого снижаются вихревые токи в сердечнике, уменьшается отставание пульсирующей составляющей потока полюса и наводимой им коммутирующей э.д.с. от тока в цепи обмотки якоря, т. е. лучше компенсируется реактивная э.д.с.

Длину сердечника полюса для уменьшения индукции в его теле принимают обычно максимальной возможной. Практически она ограничивается осевым размером полюсных катушек. Так как ширина меди катушек добавочных полюсов обычно меньше, чем главных полюсов, то сердечник добавочного полюса выполняют на 2-6 см длиннее сердечника якоря. Ширину сердечника выбирают такой, чтобы индукция Ядп при номинальном режиме в полюсе была не выше 0,6-0,7 Тл. У шихтованных полюсов из стали Э310 индукция выше на 15%.

Чтобы добавочные полюса работали на прямолинейной части кривой намагничивания, необходимо иметь большой воздушный зазор 6ДП между их сердечниками и якорем. Однако увеличение воздушного зазора у полюса, имеющего высокий сердечник, вызывает повышение потока рассеяния. При этом значительная часть магнитного потока замыкается не через сердечник якоря, а через сердечник главного полюса и остов (рис. 83, а).

При разделении зазора добавочного полюса на две части и установке между сердечником и остовом диамагнитной прокладки (латунной, алюминиевой или текстолитовой) рассеяние магнитного потока уменьшается (рис. 83,6), так как наконечник сердечника приближается к якорю и увеличивается магнитное сопротивлеиие в цепи потоков рассеяния Фв. Это снижает степень насыщения цепи добавочных полюсов, т. е. делает их магнитную характеристику более прямолинейной, а следовательно, в еще более широком диапазоне изменения нагрузок коммутирующая э.д.с. компенсирует реактивную. В результате значительно улучшается коммутация двигателя (см. § 36). Однако из-за введения второго зазора бд,-требуется увеличить м.д.с. дополнительных полюсов. Некоторое увеличение массы меди катушек добавочных полюсов окупается повышением коммутационной устойчивости тягового двигателя, особенно при больших нагрузках в режиме ослабленного возбуждения. Поэтому почти у всех тяговых двигателей между сердечником добавочного полюса и остовом устанавливают диамагнитные прокладки 6 (рис. 84).

Воздушный зазор между якорем и добавочным полюсом принимают обычно равным (0,5ч-1)6„, где Ь„- ширина паза. Большие значения зазора соответствуют меньшим зубцовым делениям и отсутствию зазора между добавочным полюсом и остовом Для снижения насыщения магнитной цепи добавочного полюса со стороны остова предусматривают зазор в пределах от 1 мм до размера, равного зазору между сердечниками главного полюса и якоря. Если магнит ная система остова шихтованная, то зазор между остовом и добавочным полюсом не предусматривают, когда это не требуется для спрямления магнитной характеристики.

Рис. 83 Схемы потоков рассеяния добавочных полюсов при отсутствии (а) и наличии (б) диамагнитной прокладки

Расчетные значения индукции под полюсом можно получить, лишь выдержи-

Рис 84 Крепление добавочных полюсов с шихтованным сердечником к остову двигателей НБ 418К (а) и НБ-514 (б)

1 — остов, 2 — болт из немагнитной стали; 3 — шихтованный сердечник (тяговые двигатели НБ 418К и др ), 4 — стержень, 5 — заклепка, 6 — текстолитовая (илн латунная) прокладка, 7 — обмотка полюса

Читать еще:  Шум при запуске двигателя ваз 2107

Рис. 85. Крепление добавочного полюса со сплошным сердечником к остову 1 — остов, 2 — болт из немагнитной стали, 3 — литой или кованый сердечник, 4 — текстолитовая или латунная прокладка, 5 — обмотка, б — пружинный фланец вая с высокой точностью расчетные воздушные зазоры. Чтобы не перекрывать зазор между остовом и сердечником ферромагнитными элементами, болты (или шпильки) добавочных полюсов иногда выполняют из немагнитных материалов.

Катушки добавочных полюсов. Их наматывают из меди прямоугольного сечения на специальном станке по шаблону, обычно на ребро (рис. 84 и 85). При намотке катушек плашмя шины меди, располагаясь параллельно боковым стенкам сердечника, частично выполняют роль экранов для пульсирующей составляющей потока рассеяния. Однако такие катушки не получили практического применения из-за конструктивных затруднений по вписыванию в габарит двигателя. Витки располагают вдоль всего сердечника или вблизи полюсных наконечников; изоляция катушек не отличается от изоляции катушек главных полюсов. Число витков добавочного полюса шдп = ,РД//Ч, где /=д — м.д.с. добавочного полюса.

Катушка добавочного полюса (за исключением катушки двигателя НБ-514), удерживается на сердечнике бронзовой рамкой или угольниками из диамагнитного материала. Чтобы не допустить ослабления плотности крепления, возникающей при усыхании стекломикалент-ной изоляции, применяют пружинный фланец, состоящий из двух половин.

Электровозы и электропоезда

  • От автора
  • Введение
  • Классификация электровозов и электропоездов
  • Основные узлы и аппараты электровозов и электропоездов
  • Назначение и классификация рам; усилия, действующие на них
  • Конструкция рам тележек
  • Колесные пары
  • Буксовые узлы
  • Общие сведения о рессорном подвешивании и его влиянии на снижение сил взаимодействия колеса и рельса
  • Схемы и элементы рессорного подвешивания
  • Конструкция рессорного подвешивания и упругие опоры кузовов
  • Гидравлические гасители колебаний
  • Передача вращающего момента и классификация тяговых передач
  • Конструкция опорно-осевого подвешивания и зубчатой передачи
  • Конструкция рамного подвешивания и передача вращающего момента
  • Автосцепные устройства
  • Назначение и классификация кузовов электровозов и электропоездов
  • Конструкция кузовов электровозов
  • Конструкция кузовов электропоездов
  • Планировка вагонов электропоездов
  • Жесткие опоры и шкворневые узлы кузовов
  • Системы вентиляции на электровозах
  • Системы вентиляции и отопления на электропоездах
  • Расположение электрического оборудования на электровозах
  • Расположение электрического оборудования на электропоездах
  • Использование сцепного веса электровоза
  • Движение электровоза на прямых и кривых участках пути
  • Пневматические цепи
  • Пневматические устройства и аппараты
  • Условия и номинальные режимы работы тяговых двигателей
  • Общие сведения об устройстве тяговых двигателей постоянного и пульсирующего тока
  • Остовы
  • Главные полюса
  • Добавочные полюса
  • Якоря тяговых двигателей
  • Подшипниковые узлы и моторно-осевые подшипники тяговых двигателей
  • Щетки, щеткодержатели, кронштейны и траверсы тяговых двигателей
  • Улучшение коммутации тяговых двигателей
  • Вентиляция тяговых двигателей
  • Основные технические данные и примеры конструктивного выполнения тяговых двигателей
  • Особенности конструкции бесколлекторных тяговых двигателей переменного тока
  • Основные параметры и узлы тяговых трансформаторов
  • Конструкция основных узлов тяговых трансформаторов
  • Основные технические данные и примеры конструктивного выполнения тяговых трансформаторов
  • Реакторы
  • Индуктивные делители и индуктивные шунты
  • Реакторы помехоподавления, цепей защиты и собственных нужд, фильтры, конденсаторы
  • Магнитные усилители, датчики тока, измерительные и импульсные трансформаторы
  • Назначение и структурные схемы преобразователей
  • Схемы преобразователей
  • Диодные и диодно-тиристорные выпрямители в силовых цепях
  • Тиристорные и диодно-тиристорные выпрямители, используемые в цепях вспомогательных машин, упрввпения и освещения
  • Тиристорные и диодно-тиристорные выпрямительно-инверторные преобразователи цепей тяговых двигателей пульсирующего тока
  • Схемы преобразователей частоты и числа фаз
  • Схемы преобразователей с импульсным управлением тяговыми двигателями э.п.с. постоянного тока
  • Конструкция преобразователей
  • Системы вспомогательных машин
  • Мотор-компрессоры, мотор-вентиляторы и мотор-насосы
  • Делители напряжения и расщепители фаз
  • Мотор-генераторы и двухмашинные агрегаты
  • Генераторы управления
  • Аккумуляторные батареи
  • Аппараты напряжением выше 1000 В и требования, предъявляемые к ним
  • Токоприемники
  • Разъединители и отключатели
  • Индивидуальные контакторы
  • Групповые контакторы
  • Реверсоры, тормозные переключатели, переключатели напряжения и мотор-вентиляторов
  • Резисторы
  • Электрические печи, калориферы, нагреватели
  • Автоматические выключатели
  • Быстродействующие контакторы
  • Реле, бесконтактные датчики, регуляторы напряжения и блоки защиты
  • Плавкие предохранители
  • Разрядники и ограничители напряжений
  • Контроллеры машиниста
  • Выключатели управления, разъединители, кнопочные выключатели и посты, распределительные щиты и панели аппаратов
  • Заземляющие штанги, сельсины, сигнализаторы, устройства контроля рода тока и переключения воздуха
  • Амперметры, вольтметры, счетчики электрической энергии, тахогенераторы и частотомеры
  • Арматура различных соединений, осветительная. Шины, кабели, провода, изоляторы
  • Контактные системы управления
  • Бесконтактные системы управления
  • Классификация цепей и требования, предъявляемые к электрическим схемам
  • Способы регулирования частоты вращения якорей тяговых двигателей постоянного тока и реостатный пуск
  • Регулирование частоты вращения якорей тяговых двигателей постоянного тока
  • Способы перехода с одного соединения тяговых двигателей на другое
  • Импульсное регулирование частоты вращения якорей тяговых двигателей постоянного тока
  • Способы перехода с одной ступени на другую при переключении секций обмотки тягового трансформатора
  • Ступечатое регулирование на стороне низшего напряжения
  • Ступенчатое регулирование на стороне высшего напряжения
  • Плавное регулирование напряжения
  • Регулирование частоты вращения роторов трехфазных асинхронных тяговых двигателей
  • Регулирование частоты вращения роторов вентильных тяговых двигателей
  • Сущность электрического торможения и условия его осуществления
  • Реостатное торможение
  • Рекуперативное торможение
  • Защита электрических машин и аппаратов в тяговом режиме
  • Защита полупроводниковых преобразователей
  • Защита оборудования при нарушении режимов во время электрического торможения
  • Способы защиты от боксования и юза колесных пар
  • Построение схем силовых цепей э.п.с. постоянного тока
  • Силовые цепи электровоза ВЛ15
  • Силовые цепи электропоездов ЭР2Р и ЭР2Т
  • Построение схем силовых цепей электровозов и электропоездов переменного тока
  • Силовые цепи электровоза ВЛ85
  • Схема силовых цепей электровоза ВЛ86 Ф
  • Силовые цепи моторного вагона электропоезда ЭР9Е
  • Особенности схемы силовых цепей электропоезда ЭР29
  • Построение отдельных узлов схем управления силовыми цепями
  • Цепи управления электровоза ВЛ15
  • Цепи управления электропоездов ЭР2Р и ЭР2Т
  • Цепи управления электровоза ВЛ85
  • Цепи управлении электровоза ВЛ86 Ф
  • Цепи управления электропоезда ЭР9Е
  • Построение и примеры схем цепей вспомогательных машин и приборов отопления электровозов
  • Примеры схем высоковольтных цепей машин и приборов отопления электропоездов
  • Управление токоприемниками, защитными аппаратами, вспомогательными машинами, отоплением, песочницами, звуковыми сигналами и освещением
  • Список литературы
Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Электродвигатели переменного тока

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

Асинхронные трех фазные двигатели

В рубрике «Общее» рассмотрим устройство и принцип работы трех фазных и одно фазных асинхронных двигателей. Электродвигатели переменного тока очень широко применяются в промышленности, на транспорте, в авиации, в автоматических системах управления и регулирования, а также в народном хозяйстве. В насосном оборудовании применяются асинхронный электрический двигатель переменного тока. Двигатель преобразует электрическую энергию (энергию магнитного поля) в механическую (вращательную) энергию на валу насоса. Насос преобразует механическую энергию в гидравлическую энергию перемещения жидкости. В наше время асинхронные электродвигатели переменного тока являются наиболее распространенными электродвигателями. Они получили такое широкое распространение из-за своей низкой стоимости, простоты в конструкции и высокой надежности при эксплуатации. Коэффициент полезного действия (КПД): асинхронных двигателей при мощностях более 1 кВт составляет 0,7 — 0,95. Существует различные способы запуска асинхронных двигателей. Наиболее часто применяемые способы будут рассмотрены в отдельной статье.

Электромагнетизм

Из курса физики известно, что магнит имеет два полюса: северный (отрицательный) и южный (положительный). Противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются друг от друга (см. рис).

При протекании электрического тока по проводнику, вокруг него создается магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы как для постоянных магнитов, так и электромагнитов. Чем выше ток, протыкаемый по проводнику, тем сильнее магнитное поле. Магнитное поле вокруг проводника можно увеличить, если на стальной сердечник намотать катушку. В таком случае линии магнитного потока, образуемого каждым витком, складываются и создают единое магнитное поле вокруг катушки. Чем больше количество витков в катушке, тем сильнее магнитное поле. Это поле имеет такие же свойства и характеристики, что и постоянное магнитное поле, а, следовательно, и у электромагнитов тоже есть северный и южный полюса. Если в катушке поменять направление движения электрического тока, то поменяются местами и полюса электромагнита (см. рис).

Устройство асинхронных электродвигателей переменного тока

Электрический двигатель состоит из двух основных частей – это статор и ротор.

Статор – это неподвижная и по цене самая дорогая часть электродвигателя. Сердечник статора представляет собой полый цилиндр. Изготавливают и набирают сердечник из отдельных пластин электротехнической стали толщиной 0,5-0,35 мм. Пластины штампуют со специальными пазами, изолируют лаком или окалиной для уменьшения потерь (вихревые токи), собирают в пакеты. Готовый сердечник запрессовывается в корпус статора. Корпус статора электродвигателя изготавливается из алюминия или чугуна. Затем в продольные пазы статора укладывается обмотка. Если электродвигатель трехфазный, то каждая фаза расположена по отношению к другой фазе под углом 120 градусов. Все обмотки состоят из двух катушек, которые образуют два полюса.

Переменным ток – это электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. При подаче напряжения на катушки статора одна из них становится северным полюсом, а другая – южным. Полярность полюсов все время меняется, так как ток переменный и создается комбинированное электромагнитное поле статора, направленное перпендикулярно проводникам ротора. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.

Читать еще:  Электрический топливный насос низкого давления дизельного двигателя 24v

Ротор – подвижная часть электродвигателя, которая вращается на валу электродвигателя, двигаясь за магнитным полем статора. Сердечник ротора тоже набирают из стальных пластин толщиной 0,5 мм, изолированных лаком или окалиной для уменьшения потерь на вихревые токи. Пластины штампуют с пазами, насаживают на вал, и в результате образуется цилиндр. В продольные пазы цилиндра укладывают медные или алюминиевые проводники обмотки ротора. В зависимости от типа обмотки асинхронные двигатели могут быть с фазным и короткозамкнутым ротором. Наибольшее применение нашли роторы с короткозамкнутыми обмотками, или как их еще называют «беличьи колеса» из-за конструкции, которая напоминает барабаны для белок (см. фото).

Ротор и его конструкция

При подаче переменного тока на обмотки статора в них создается электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Магнитное поле статора индуцирует в обмотках ротора ток, который в свою очередь создает вокруг ротора электромагнитное поле и поляризацию ротора.

Индукция – (латинского inductio — наведение) это явление, которое происходит при движении проводника в магнитном поле, приводящее к появлению в проводнике индукционного электрического тока. Этот ток создает свое магнитное поле вокруг каждого проводника обмотки ротора. Вращающееся магнитное поле создает вращающийся магнитный поток. Магнитное поле пропорционально напряжению, а магнитный поток пропорционален току.

Трёхфазное напряжение на обмотках статора создает магнитное поле. Магнитное поле статора движется быстрее ротора, это способствует наведению тока в проводниках обмотки ротора, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои магнитные потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставит ротор вращаться. Электродвигатели переменного тока очень часто называют еще индукционными электродвигателями. На вал ротора запрессовываются подшипники, которые при сборке электродвигателя вставляются в переднюю и заднюю крышки статора. Затем эти крышки стягиваются с помощью шпилек.

Асинхронные электродвигатели

Электродвигатель, у которого ротор вращается с частотой не равной частоте вращения магнитного поля статора, называют асинхронным. Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать по формуле Ns=120*F/P , где F – частота сети, P – число полюсов электродвигателя. При частоте сети 50 Гц и двух полюсном двигателе, синхронная частота вращения Ns =120*50/2 Ns = 3000 мин –1 .Синхронная частота вращения уменьшается с увеличением количества полюсов. В таблице приведена синхронная частота для различного числа полюсов.

Частота вращения

Асинхронные электродвигатели переменного тока производятся на мощность от нескольких десятков ватт до 15000 кВт, и напряжение на обмотках статора достигает 6 кВ. Между статором и ротором имеется воздушный зазор, величина которого оказывает существенное влияние на рабочие свойства двигателя. В электродвигателях переменного тока вращающий момент возникает в результате взаимодействия вращающихся магнитных полей статора и ротора. Магнитное поле, возникающее в обмотках ротора, будет стремиться к тому, чтобы приблизиться к магнитному полю статора. Во время работы двигателя частота вращения ротора всегда ниже частоты вращения магнитного поля статора. Следовательно, магнитное поле ротора может пересекать магнитное поле статора и создавать вращающий момент. Если предположить, что в какой-то момент времени частота вращения ротора оказалась равной частоте вращения поля статора, то проводники обмотки ротора не будут пересекать магнитное поле статора и тока в роторе не будет. В этом случае вращающийся момент станет равным нулю, и частота вращения ротора уменьшится по сравнению с частотой вращения поля статора, пока снова не возникнет вращающейся момент, уравновешивающий тормозной момент, который складывается из момента нагрузки на валу и момента сил трения в двигателе. Разница в частоте вращения полей ротора и статора называется скольжением и измеряется в процентах.

Кроме многих положительных качеств: легкости в обслуживании, простой конструкции, а также низкой стоимости – асинхронный двигатель имеет и недостатки, наиболее существенным, из которых является относительно низкий коэффициент мощности (соs φ). У асинхронного двигателя соs φ, при полной нагрузке достигает 0,85-0,9; при малой нагрузке двигателя соs φ резко уменьшается, а при холостом ходе может составлять 0,2-0,3. Асинхронный двигатель потребляет большую реактивную мощность, необходимую для возбуждения магнитного поля, этим и объясняется низкий коэффициент мощности. Между ротором и статором в асинхронном двигателе существует воздушный зазор, и магнитный поток встречает на своем пути дополнительное сопротивление, а, следовательно, увеличивается и мощность, потребляемφая двигателем. В целях повышения соs φ в асинхронных двигателях воздушный зазор между статором и ротором стараются делать как можно меньшим, доводя его у двигателей малой мощности (2-5кВт) до 0,3 мм. Из-за конструктивных особенностей в двигателях большей мощности воздушный зазор приходится увеличивать до 2-2,5 мм.

На коммутационной колодке трехфазного двигателя имеется шесть зажимов, к которым подключаются начала и концы обмоток каждой фазы. Начало обмоток обозначены латинскими буквами U1, V1 и W1, а концы U2, V2, и W2. Обмотки могут быть соединены по схеме «звезда» или «треугольник» (см. рис).

Электрическое подключение обмоток двигателя

Это дает возможность подключить трехфазный двигатель на два разных напряжения. Рабочие напряжения, при которых работает электродвигатель, указываются на фирменной табличке. На пример 220/380: двигатель может работать на напряжение 220 вольт при подключении обмоток в «треугольник» и 380 вольт при подключении в «звезду». Для более низких напряжений, указанных на фирменной табличке, обмотки статора соединяется в «треугольник», а для более высоких – в «звезду».

Чтобы изменить направление вращения ротора трехфазного двигателя, необходимо изменить направление вращения магнитного поля, созданного обмотками статора. Это достигается путем изменения чередования фаз обмоток статора, для чего следует поменять местами любые из двух фаз на коммутационной колодке двигателя.

Однофазные электродвигатели переменного тока

Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из обмоток считается рабочей (основная), другая – пусковой (вспомогательная). Однофазные двигатели изготавливаются до мощности 2,2 кВт. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций. Принцип действия однофазных электродвигателей такой же, как и у трёхфазных, только с более низким пусковым моментом. Однофазные электродвигатели очень часто применяются в бытовой технике, а также там, где нет трехфазного напряжения. Однако между однофазным и трехфазным двигателем есть существенные различия. У однофазного двигателя нет бегущего магнитного поля, а происходит только смена полюсов один раз в каждом цикле. Это значит, что однофазный индукционный электродвигатель не может быть запущен в работу самостоятельно. Теоретически, однофазный электродвигатель можно запустить при помощи механического вращения ротора с последующим немедленным подключением питания. Однако на практике пуск однофазных электродвигателей осуществляется автоматически. Выделяют четыре основных типа запуска однофазных электродвигателей:

  • индукционный двигатель с пуском через конденсатор, и работа через обмотку (индуктивность);
  • индукционный двигатель с пуском через конденсатор, и работа через конденсатор;
  • индукционный двигатель с реостатным пуском;
  • индукционный двигатель с постоянной пусковой емкостью.

Наибольшее применение нашли электродвигатели, оснащенные конденсатором, который во время работы постоянно подключен и соединён последовательно с пусковой обмоткой. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения. Асинхронные двигатели с рабочим конденсатором могут использоваться для выполнения различных задач в зависимости от их конструкции. В дополнение ко всему вышесказанному они являются самыми надёжными из всех однофазных электродвигателей. Типичным примером использования таких двигателей, являются низко инерционные нагрузки, на пример вентиляторы или насосы. Схема электрических соединений однофазного двигателя показано на (рис.)

Электрическое подключение обмоток однофазного двигателя

Для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода. Не рекомендуется также эксплуатировать однофазные двигатели при нагрузке меньшей 25% от полной, так как это вызывает повышение температуры внутри обмоток электродвигателя, что может привести к выходу его из строя

Потребляемая мощность

Мощность двигателей на валу принято измерять в киловаттах (кВт). В США мощность двигателя принято измерять в лошадиных силах (HP). Если нужно перевести лошадиные силы в кВт, то необходимо значение в лошадиных силах умножить на 0,746. На пример 20 HP*0,746=14,92 кВт. И наоборот кВт можно перевести в л. с., для этого значение в киловаттах необходимо умножить на 1,34. Это значит, что 15 кВт*1,34=20,1 HP. Переводы различных единиц можно посмотреть здесь

Мощность P1 (кВт) – это мощность, которую электродвигатель потребляет от электрической сети. Мощность P2 (кВт) – это мощность Р1 умноженная на КПД или полезная мощность.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector