Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Порядок работы многоцилиндрового двигателя

Порядок работы многоцилиндрового двигателя

Порядок работы многоцилиндрового двигателя зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Порядок работы — последовательность чередо­вания одноименных тактов в цилиндрах в течение рабочего цикла. При вращении коленчатого вала за два его оборота (720) количество тактов расши­рения равно количеству цилиндров, и они чере­дуются через угловой интервал, равный 720°/гс, где п — количество цилиндров. Например, если в двигателе шесть цилиндров, то такты расшире­ния (рабочие ходы) повторяются через угол пово­рота коленчатого вала в 120°.

Например, четырехцилиндровый рядный двига­тель автомобиля «Волга» ГАЗ-3110 имеет порядок работы 1-2-4-3, то есть чередование тактов про­исходит в следующей последовательности (указана в таблице):

В зависимости от последовательности откры­тий-закрытий клапанов цилиндров порядок рабо­ты может быть разным при одинаковом располо­жении кривошипов коленчатого вала.

В четырех цилиндровых двигателях рабочие ходы (такты расширения) не перекрываются. В шести­цилиндровых и восьмицилиндровых двигателях про­исходит перекрытие рабочих ходов

В них располо­жение кривошипов таково, что такты не могут начи­наться и кончаться одновременно, они смещаются на некоторый угол. Например, в шестицилиндровом ряд­ном двигателе при парном расположении шатунных реек в трех плоскостях такты в одной паре смеще­ны на 120°, а такты расширения перекрываются на l/З хода поршня. В восьмицилиндровом V-образном двигателе возможно перекрытие рабочих ходов на 1/2 хода поршня. Перекрытие рабочих ходов спо­собствует более равномерному вращению коленча­того вала, уравновешиванию возникающих сил инерции.

Наиболее распространенный порядок работы для шестицилиндрового карбюраторного двигателя — 1—5—3—6—2—4, для дизеля (V—образный с развалом цилиндров под углом 90°) — 1—4—2—5—3—6. Для восьмицилиндровых двигателей распространен по­рядок 1-5-4-2-6-3-7-8.

9. Коленчатый вал – один из наиболее ответственных и дорогостоящих конструктивных элементов двигателя внутреннего сгорания. Он преобразует возвратно-поступательное движение поршней в крутящий момент. Коленчатый вал воспринимает периодические переменные нагрузки от сил давления газов, а также сил инерции движущихся и вращающихся масс.

Коленчатый вал двигателя, как правило, цельный конструктивный элемент, поэтому правильно его называть деталью. Вал изготавливается из стали с помощью ковки или чугуна путем литья. На дизельных и турбированных двигателях устанавливаются более прочные стальные коленчатые валы.

Схема коленчатого вала

Конструктивно коленчатый вал объединяет несколько коренных и шатунных шеек, соединенных между собой щеками. Коренных шеек, как правило, на одну больше, а вал с такой компоновкой называется полноопорным. Коренные шейки имеют больший диаметр, чем шатунные шейки. Продолжением щеки в противоположном от шатунной шейки направлении является противовес. Противовесы уравновешивают вес шатунов и поршней, тем самым обеспечивают плавную работу двигателя.

Шатунная шейка, расположенная между двумя щеками, называетсяколеном. Колена располагаются в зависимости от числа, расположения и порядка работы цилиндров, тактности двигателя. Положение колен должно обеспечивать уравновешенность двигателя, равномерность воспламенения, минимальные крутильные колебания и изгибающие моменты.

Шатунная шейка служит опорной поверхностью для конкретного шатуна. Коленчатый вал V-образного двигателя выполняется с удлинёнными шатунными шейками, на которых базируется два шатуна левого и правого рядов цилиндров. На некоторых валах V-образных двигателей спаренные шатунные шейки сдвинуты относительно друг друга на угол 18°, что обеспечивает равномерность воспламенения (технология носит название Split-pin).

Наиболее нагруженным в конструкции коленчатого вала является место перехода от шейки (коренной, шатунной) к щеке. Для снижения концентрации напряжений переход от шейки к щеке выполняется с радиусом закругления (галтелью). Галтели в совокупности увеличивают длину коленчатого вала, для уменьшения длины их выполняют с углублением в щеку или шейку.

Вращение коленчатого вала в опорах, а шатунов в шатунных шейках обеспечивается подшипниками скольжения. В качестве подшипников применяются разъемные тонкостенные вкладыши, которые изготавливаются из стальной ленты с нанесенным антифрикционным слоем. Проворачиванию вкладышей вокруг шейки препятствует выступ, которым они фиксируются в опоре. Для предотвращения осевых перемещений коленчатого вала используется упорный подшипник скольжения, который устанавливается на средней или крайней коренной шейке.

Схема системы смазки

Коренные и шатунные шейки включены в систему смазки двигателя. Они смазываются под давлением. К каждой опоре коренной шейки обеспечивается индивидуальный подвод масла от общей магистрали. Далее масло по каналам в щеках подается к шатунным шейкам.

Отбор мощности с коленчатого вала производится с заднего конца (хвостовика), к которому крепитсямаховик. На переднем конце (носке) коленчатого вала располагаются посадочные места, на которых крепятся шестерня (звездочка) привода распределительного вала, шкив привода вспомогательных агрегатов, а также в ряде конструкций – гаситель крутильных колебаний. По конструкции это два диска и соединяющий их упругий материал (резина, силиконовая жидкость, пружина), который поглощает вибрации вала за счет внутреннего трения.

Поршневая группа

В нее входят поршень с поршневыми кольцами, поршневой палец и шатун. Поршень 9 (рис. 8) воспринимает усилия от расширяющихся газов и через шатун 5 передает их коленчатому валу. Поршни отливают из алюминиевого сплава.

Верхняя часть поршня — головка — имеет днище. На головке поршня проточены три кольцевые канавки для двух компрессионных колец 10 и одного маслосъемного. От канавки масло-съемного кольца к внутренней полости идут две щелевидные прорези, по которым излишнее масло, снимаемое маслосъемным кольцом с цилиндра, сбрасывается в картер двигателя.

Рис. 8. Шатунно-поршневая группа:

а — поршень с шатуном, б — установка поршневых колец; 1 — крышка шатуна, 2 — шатунные вкладыши, 3 — гайка, 4—болт, 5 — шатун, 6 — втулка верхней головки шатуна, 7 — стопорное кольцо, 8 — поршневой палец, 9 — поршень, 10 — компрессионные кольца, 11 — кольцевые диски маслосъемного кольца, 12— осевой расширитель, 13 — радиальный расширитель; А —выступы

Наружная поверхность поршня луженая. Юбка поршня в поперечном сечении овальная, а по высоте имеет коническую форму: в верхней части диаметр меньше, чем в нижней. В бобышках поршня сделаны отверстия Для прохода масла к поршневому пальцу. Отверстие под поршневой палец смещено от оси симметрии на 1,5. 2 мм в правую сторону двигателя. Для правильной установки поршня в цилиндр около отверстия под поршневой палец есть метка П или стрелка (на рис. не показано), которая должна быть обращена в сторону передней части двигателя.

По наружному диаметру поршни подразделяются, как правило, на пять классов с разницей 0,01 мм, а по диаметру отверстия под поршневой палец — на три-четыре категории с разницей 0,004 мм. Такая разбивка поршней на классы и категории помогает во время сборки двигателей при подборе поршней по соответствующим классам гильз цилиндров и поршневых пальцев по категориям поршней. Класс поршня (буква) и категория отверстия под поршневой палец (цифра) клеймятся на днище поршня.

Читать еще:  Выхлопная система газ 3110 402 двигатель как довести до ума

Для создания уплотнения между стенками цилиндра и движущимся поршнем предусмотрены поршневые кольца.

Компрессионные кольца 10 изготовляют из специального чугуна. Верхнее компрессионное кольцо для увеличения износостойкости покрывается по наружному диаметру слоем хрома, нижнее — для улучшения приработки — слоем олова. Для более плотного прилегания колец к стенкам цилиндра и канавкам поршня на некоторых компрессионных кольцах делают фаски или выточки на наружной или внутренней поверхности.

Маслосъемные кольца изготовляют стальными в виде комплектов, состоящих из четырех элементов (двух дисков 11, радиального 13 и осевого 12 расширителей), или чугунными — с прорезями для снимаемого со стенок цилиндра масла.

Поршневые пальцы 8 — стальные, пустотелые. Наружная поверхность их подвергается закалке. В продольном направлении пальцы фиксируются в поршне стопорными кольцами 7 из упругой проволоки, размещенными в канавках бобышек поршней. Рабочая поверхность пальцев тщательно шлифуется и полируется.

Шатун 5 — стальной, кованый. Стержень шатуна двутаврового сечения. Нижняя головка шатуна разъемная, в ней устанавливаются вкладыши 2 шатунного подшипника. Шатун обрабатывается вместе с крышкой 1, и поэтому она невзаимозаменяема с крышками других шатунов.

Чтобы при сборке не перепутать крышки шатунов, на каждом шатуне и соответствующей ему крышке (сбоку) ставят клеймо — номер этого цилиндра, в который они устанавливаются. При сборке цифры на шатуне и крышке должны находиться с одной стороны. Там, где нижняя головка шатуна переходит в стержень, предусмотрено отверстие, по которому проходит масло, смазывающее стенки цилиндра.

11. Газораспределительный механизм (другое наименование – система газораспределения, сокращенное наименование – ГРМ) предназначен для обеспечения своевременной подачи в цилиндры двигателя воздуха или топливно-воздушной смеси (в зависимости от типа двигателя) и выпуска из цилиндров отработавших газов. Данные функции реализуются за счет своевременного открытия и закрытия клапанов.

На самых распространенных четырехтактных поршневых двигателях внутреннего сгорания применяются клапанные газораспределительные механизмы, поэтому устройство ГРМ рассмотрено именно на его примере.

Газораспределительный механизм имеет следующее общее устройство:

· привод распределительного вала.

Схема газораспределительного механизма

Клапаны непосредственно осуществляют подачу в цилиндры воздуха (топливно-воздушной смеси) и выпуск отработавших газов. Клапан состоит из тарелки и стержня. На современных двигателях клапаны располагаются в головке блока цилиндров, а место соприкосновения клапана с ней называется седлом. Различают впускные и выпускные клапаны. Для лучшего наполнения цилиндров диаметр тарелки впускного клапана, как правило, больше, чем выпускного.

Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень. Пружина закреплена на стержне с помощью тарелки пружины и сухарей. Клапанные пружины имеют определенную жесткость, обеспечивающую закрытие клапана при работе. Для предупреждения резонансных колебаний на клапанах может устанавливаться две пружины меньшей жесткости, имеющие противоположную навивку.

Клапаны изготавливаются из сплавов металлов. Рабочая кромка тарелки клапана усилена. Стержень впускного клапана, как правило, полнотелый, а выпускного – полый, с натриевым наполнением для лучшего охлаждения.

Большинство современных ДВС имеют по два впускных и два выпускных клапана на каждый цилиндр. Помимо данной схемы ГРМ используется: двухклапанная схема (один впускной, один выпускной), трехклапанная схема (два впускных, один выпускной), пятиклапанная схема (три впускных, два выпускных). Использование большего числа клапанов ограничивается размером камеры сгорания и сложностью привода.

Открытие клапана осуществляется с помощью привода, обеспечивающего передачу усилия от распределительного вала на клапан. В настоящее время применяются две основные схемы привода клапанов:

Роликовые рычаги в качестве привода клапанов более предпочтительны, т.к. имеют меньшие потери на трение и меньшую массу. Роликовый рычаг (другие наименования – коромысло, рокер, от английского «коромысло») одной стороной опирается на стержень клапана, другой – на гидрокомпенсатор (в некоторых конструкциях на шаровую опору). Для снижения потерь на трение место сопряжения рычага и кулачка распределительного вала выполнено в виде ролика.

С помощью гидрокомпенсаторов в приводе клапанов реализуется нулевой тепловой зазор во всех положениях, обеспечивается меньший шум и мягкость работы. Конструктивно гидрокомпенсатор состоит из цилиндра, поршня с пружиной, обратного клапана и каналов для подвода масла. Гидравлический компенсатор, расположенный непосредственно на толкателе клапана, носит название гидравлического толкателя (гидротолкателя).

Распределительный вал обеспечивает функционирование газораспределительного механизма в соответствии с принятым для данного двигателя порядком работы цилиндров и фазами газораспределения. Он представляет собой вал с расположенными кулачками. Форма кулачков определяет фазы газораспределения, а именно моменты открытия-закрытия клапанов и продолжительность их работы. Существенное повышение эффективности ГРМ, а следовательно и улучшение характеристик двигателя дают различные системы изменения фаз газораспределения.

На современных двигателях распределительный вал расположен в головке блока цилиндров. Он вращается в подшипниках скольжения, выполненных в виде опор. Используются как разъемные опоры, так и неразъемные (вал вставляется с торца). В некоторых двигателях в опорах используются тонкостенные вкладыши. От перемещения в продольном направлении распределительный вал удерживается упорным подшипником, который располагается со стороны привода вала. К опорам распределительного вала по индивидуальным каналам и под давлением подается масло из системы смазки.

Порядок работы цилиндров двигателя

Порядок работы цилиндров зависит от их расположения и взаимного нахождения кривошипов в коленчатом вале. Обеспечивается он за счет действия газораспределяющего механизма и подачи горючего (в карбюраторном двигателе – системой зажигания), воспламенением рабочей смеси и своевременным закрытием и открытием клапанов.

Порядок работы цилиндров четырехцилиндровых двигателей

У коленчатого вала все кривошипы находятся в одной плоскости, при этом два их них обращены в одну стороны, а другие — в противоположную, то есть угол между соседними кривошипами составляет 180 градусов. Поршни второго и третьего цилиндра при таком расположении идут вверх, в тот же момент поршни четвертого и первого опускаются вниз. Естественно, нецелесообразно начинать рабочий ход одновременно в двух цилиндрах. Поэтому, если он начинается в первом, то в четвертом должен начинаться впуск. В это время во втором цилиндре может происходить выпуск или сжатие. В любом расположении коленчатого вала в одном из цилиндров осуществляется рабочий ход. В каждом последующем он начинается после предыдущего ровно через 180 градусов.

Читать еще:  Вибрация двигателя на холостом ходу мерседес 210

Порядок работы цилиндров в шестицилиндровом двигателе

В нем кривошипы коленчатого вала располагаются попарно, один к одному под углом в 120 градусов. Каждая последующая пара поршней после предыдущей приходит в мертвую точку опять же через 120 градусов. Вспышки цилиндров происходят через те же промежутки. Такой порядок работы цилиндров ВАЗ имеет преимущество, которое заключается в том, что вспышки в двух соседних не происходят подряд. При этом чередовании достигаются лучшие условия для работы шатунно-кривошипного механизма.

Порядок работы цилиндров V-образного двигателя

Кривошипы в валу могут располагаться под углом в 180 и 90 градусов. Со всеми кривошипами связано по два шатуна. Один из них соединяется с первым поршнем цилиндра, другой – со вторым. Поршень цилиндра первого ряда возвращается в верхнюю мертвую точку, по сравнению со вторым рядом, на 90 градусов раньше.

Порядок работы цилиндров двенадцатицилиндровых двигателей

В любой момент осуществляется расширение сразу в трех цилиндрах: начинается в одном, затем продолжается в последующем и заканчивается в третьем. За счет этого обеспечивается меньшее изменение величины момента на валу и, соответственно, большая равномерность хода.

Порядок работы цилиндров двигателя звездообразного

Коленчатый вал обладает только одним кривошипом, с которым соединяются все шатуны. К примеру, поршень в первом цилиндре находится в мертвой верхней точке, когда шатун и колено кривошипа располагаются на одной прямой. Поршень второго приходит в эту точку после того, как повернется на угол коленчатый вал, равняющийся углу между осями ближайших цилиндров. Возможно равномерное чередование рабочего хода только при нечетном количестве цилиндров. Поэтому в таких двигателях число всегда нечетное, и не больше 11. При необходимости в большем количестве цилиндров они располагаются в несколько рядов, при этом каждый из них находится в одной плоскости, работая на общий кривошип.

Порядок работы цилиндров двигателя

Порядок работы цилиндров зависит от их расположения и взаимного нахождения кривошипов в коленчатом вале. Обеспечивается он за счет действия газораспределяющего механизма и подачи горючего (в карбюраторном двигателе – системой зажигания), воспламенением рабочей смеси и своевременным закрытием и открытием клапанов.

Порядок работы цилиндров четырехцилиндровых двигателей

У коленчатого вала все кривошипы находятся в одной плоскости, при этом два их них обращены в одну стороны, а другие — в противоположную, то есть угол между соседними кривошипами составляет 180 градусов. Поршни второго и третьего цилиндра при таком расположении идут вверх, в тот же момент поршни четвертого и первого опускаются вниз. Естественно, нецелесообразно начинать рабочий ход одновременно в двух цилиндрах. Поэтому, если он начинается в первом, то в четвертом должен начинаться впуск. В это время во втором цилиндре может происходить выпуск или сжатие. В любом расположении коленчатого вала в одном из цилиндров осуществляется рабочий ход. В каждом последующем он начинается после предыдущего ровно через 180 градусов.

Порядок работы цилиндров в шестицилиндровом двигателе

В нем кривошипы коленчатого вала располагаются попарно, один к одному под углом в 120 градусов. Каждая последующая пара поршней после предыдущей приходит в мертвую точку опять же через 120 градусов. Вспышки цилиндров происходят через те же промежутки. Такой порядок работы цилиндров ВАЗ имеет преимущество, которое заключается в том, что вспышки в двух соседних не происходят подряд. При этом чередовании достигаются лучшие условия для работы шатунно-кривошипного механизма.

Порядок работы цилиндров V-образного двигателя

Кривошипы в валу могут располагаться под углом в 180 и 90 градусов. Со всеми кривошипами связано по два шатуна. Один из них соединяется с первым поршнем цилиндра, другой – со вторым. Поршень цилиндра первого ряда возвращается в верхнюю мертвую точку, по сравнению со вторым рядом, на 90 градусов раньше.

Порядок работы цилиндров двенадцатицилиндровых двигателей

В любой момент осуществляется расширение сразу в трех цилиндрах: начинается в одном, затем продолжается в последующем и заканчивается в третьем. За счет этого обеспечивается меньшее изменение величины момента на валу и, соответственно, большая равномерность хода.

Порядок работы цилиндров двигателя звездообразного

Коленчатый вал обладает только одним кривошипом, с которым соединяются все шатуны. К примеру, поршень в первом цилиндре находится в мертвой верхней точке, когда шатун и колено кривошипа располагаются на одной прямой. Поршень второго приходит в эту точку после того, как повернется на угол коленчатый вал, равняющийся углу между осями ближайших цилиндров. Возможно равномерное чередование рабочего хода только при нечетном количестве цилиндров. Поэтому в таких двигателях число всегда нечетное, и не больше 11. При необходимости в большем количестве цилиндров они располагаются в несколько рядов, при этом каждый из них находится в одной плоскости, работая на общий кривошип.

1.7. Число и расположение цилиндров

Одноцилиндровый четырехтактный двигатель имеет значительную неравномерность вращения коленчатого вала, которая вызвана тем, что за два оборота коленчатого вала только в течение одного полуоборота коленчатый вал вращается вследствие давления газов, а три полуоборота — за счет энергии, накопленной маховиком. Причем во время рабочего хода вращение коленчатого вала ускоренное, а во время подготовительных ходов — замедленное, что вызывает повышенную вибрацию двигателя, которая может быть лишь частично уменьшена вследствие значительного момента инерции маховика.

Повышения равномерности работы двигателя можно добиться увеличением числа цилиндров, так как при этом может быть увеличено число рабочих ходов, приходящихся на один оборот коленчатого вала.

Цилиндры двигателя могут располагаться (рис. 5 и 6):

  • вертикально в один ряд (рядное расположение);
  • горизонтально в один ряд;
  • однорядно с наклоном от вертикали;
  • двухрядно V-образно;
  • оппозитно.

Рис. 5.
Варианты различною расположения цилиндров двигателей:
а — однорядного; 6 — однорядного с наклоном от вертикали; в — V-образного; г — с противоположно лежащими цилиндрами; 1 — цилиндр; 2 — головка цилиндров; 3 — блок-картер; 4 — поддон

При V-образном расположении цилиндров двигатель имеет более жесткую конструкцию, меньшие габаритные размеры (длину) и массу, чем рядный двигатель той же мощности.

К недостаткам V-образных двигателей необходимо отнести значительную ширину и более сложную конструкцию.

Рис. 6.
Примеры различного числа и расположений цилиндров двигателей:
а — четырехтактный V-образный шестицилиндровы ; б — четырехтактный V-образный восьмицилиндровый ; в — четырехтактный рядный четырехцилиндровый; г — четырехтактный рядный шестицилиндровый

Читать еще:  Ауди 100 с4 какие объемы двигателя

Равномерность вращения коленчатого вала многоцилиндрового двигателя обеспечивается при равномерном чередовании рабочих ходов поршней.

Последовательное чередование одноименных тактов в различных цилиндрах за рабочий цикл называется порядком работы двигателя. При выборе порядка работы двигателя стремятся обеспечивать равномерное распределение нагрузки на коленчатый вал.

В четырехцилиндровом двигателе (рис. 7 и 8) угол чередования рабочих ходов 180° (720° 4). Это определяет конструкцию коленчатого вала и угол между шатунными шейками, который должен равняться 180°

Рис. 7.
Продольный разрез двигателя автомобиля «Волга»:
1 — поддон; 2 — шкив; 3 — храповик; 4 — термостат; 5 — выпускной клапан; 6 — впускной клапан; 7 — распорная пружина; 8 — головка блока цилиндров; 9 — блок цилиндров; 10 — маховик; 11 — распределительный ват; 12 — коленчатый вал; 13 — масляный насос; 14 — маслоприемник; 15 — шатун; 16 — поршневые кольца; 17 — поршневой палец

Рис. 8.
Поперечный разрез двигателя автомобиля «Волга»:
1 — поддон; 2 — коленчатый вал; 3 — шатун; 4 — блок цилиндров; 5 — поршень; 6 — гильза цилиндра; 7 — выпускной трубопровод; 8 — впускной трубопровод; 9 — карбюратор; 10 — коромысло; 11 — ось коромысел; 12 — распределитель зажигания; 13 — штанга; 14 — указатель уровня масла; 15 — распределительный вал; 16 — стартер; 17 — маслоприемник

Порядок работы четырехцилиндрового двигателя может быть 1—3—4—2 или 1—2—4—3.

В шестицилиндровом рядном двигателе шатунные шейки коленчатого вала расположены в трех плоскостях под углом 120° порядок работы 1—5—3—6—2—4.

В V-образных четырехтактных двигателях на равномерность чередования рабочих ходов влияет не только расположение шатунных шеек коленчатого вала, но и угол между осями цилиндров. Для получения оптимальной равномерности хода двухрядного двигателя угол, называемый углом развала, должен быть в два раза меньше угла между шатунными шейками. В этом случае угол чередования рабочих ходов определяется по формуле 720/2i, где i — число цилиндров.

Рис. 9.
Поперечный разрез дизеля ЯМ3-236:
1 — поддон; 2 — коленчатый вал; 3 — шатун правого (по ходу автомобиля) ряда цилиндров; 4 — стартер; 5 — поршень; 6 — гильза цилиндра; 7 — выпускной трубопровод; 8 — форсунка; 9 — топливный насос высокого давления; 10 — воздухоочиститель; 11 — переходник впускных трубопроводов; 12 — маслозаливная горловина; 13 — впускной клапан; 14 — головка блока цилиндров; 15 — блок цилиндров; 16 — распределительный вал; 17— шатун левого (по ходу автомобиля,) ряда цилиндров

В шестицилиндровых V-образных двигателях (рис. 9) с углом развала 90° и углом между шатунными шейками 120° порядок работы 1—4—2—5—6—3. Особенностью данного двигателя является крепление на одной шатунной шейке двух шатунов. В этом случае чередование одноименных тактов в цилиндрах неравномерно через 90 и 150° На таких двигателях для повышения равномерности хода устанавливают маховик с повышенным моментом инерции (на 60—70 % больше, чем у рядного двигателя).

Рис. 10.
Поперечный разрез дизеля ЗИЛ-645 автомобиля ЗИЛ-433100:
1 — пробка маслозаливного патрубка; 2 — форсунка: 3 — топливопровод высокого давления; 4 — впускной воздухопровод; 5 — штанга; 6 — крышка клапанов; 7 — впускной клапан; 8 — головка блока цилиндров; 9 — выпускной газопровод; 10 — поршень: 11 — компрессионное кольцо; 12 — блок-картер; 13 — маслосъемное кольцо; 14 — резиновое уплотнение; 15 — шатун; 16 — болт-стяжка; 17 — коленчатый вал; 18 — фильтр тонкой очистки масла; 19 — гильза цилиндра; 20 — пружина клапана; 21 — выпускной клапан; 22 — коромысло

Восьмицилиндровые V-образные двигатели ЗИЛ-645 (рис. 10 и 11), КамАЗ-740.10 (рис. 12 и 13), ГАЗ-53-12 (рис. 14) имеют угол развала 90° Чередование одноименных тактов осуществляется через 90° Шатунные шейки коленчатого вала располагаются под углом 90° Перекрытие рабочих ходов в этом случае составляет также 90° что обеспечивает равномерное вращение коленчатого вала. Порядок работы цилиндров двигателей

Рис. 11.
Продольный разрез дизеля ЗИЛ-645 автомобиля ЗИЛ-433100:
1 — муфта отключения вентилятора; 2 — шкив насоса системы охлаждения; 3 — ремень привода компрессора; 4 — патрубок системы охлаждения; 5 — зубчатое колесо привода топливного насоса высокого давления; 6 — муфта; 7— топливный насос высокого давления; 8 — топливоподкачивающий насос; 9 — ручной топливоподкачивающий насос; 10 — распределительный вал; 11 — маховик; 12 — уплотнительная манжета; 13 — вкладыши коренного подшипника; 14 — шайба упорного подшипника; 15 — форсунка; 16 — поддон; 17 — маслоприемник; 18 — пробка сливного отверстия; 19 — насос смазочной системы; 20 — вкладыши шатунного подшипника; 21 — уплотнительная манжета; 22 — демпфер шкива коленчатого вала; 23 — ремень привода насоса рулевого гидроусилителя; 24 — шкив коленчатого вала; 25 — натяжной шкив; 26 — насос системы охлаждения; 27 — вентилятор

Рис. 12.
Продольный разрез дизеля КамАЗ-740.10 автомобиля КамАЗ-5320:
1 — вентилятор; 2 — гидромуфта привода вентилятора; 3 — генератор; 4 — ручной топливоподкачивающий насос; 5 — топливный насос высокого давления; 6 — компрессор; 7 — фильтр тонкой очистки топлива; 8 — зубчатое колесо привода топливного насоса; 9 — распределительный вал; 10 — коленчатый вал; 11 — маховик; 12 — шатунная шейка коленчатого вала; 13 — маслоприем-ник; 14 — поддон; 15 — масляный насос

Рис. 13.
Поперечный разрез двигателя КамАЗ-740.10 автомобиля КамАЗ-5320:
1 — поддон; 2 — полнопоточный масляный фильтр; 3 — коленчатый вал; 4 — шатун правого (по ходу автомобиля) ряда цилиндров; 5 — поршень с поршневыми кольцами; 6 — головка блока цилиндров; 7 — форсунка; 8 — коромысло; 9 — впускной трубопровод; 10 — ручной топливоподкачивающий насос; 11 — топливный насос высокого давления; 12 — выпускной клапан; 13 — выпускной трубопровод; 14 — поршневой палец; 15 — распределительный вал; 16 — шатун левого (по ходу автомобиля) ряда цилиндров; 17 — масляный насос

Рис. 14.
Продольный разрез двигателя автомобиля ГАЗ-53-12:
1 — поддон; 2— шкив коленчатого вала; 3 — храповик; 4 — распределительный вал; 5 — датчик ограничителя частоты вращения; 6 — водяной насос; 7 — вентилятор; 8 — полнопоточный масляный фильтр; 9 — карбюратор; 10 — распределитель зажигания; 11 — блок цилиндров; 12 — маховик; 13 — коленчатый вал; 14 — крышка коренного подшипника; 15 — шатун первого цилиндра (правого по ходу ряда); 16 — шатун пятого цилиндра (левого по ходу ряда)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector