Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое прямой впрыск топлива в дизельном двигателе

Что такое прямой впрыск топлива в дизельном двигателе

Но попробуем пока разобрать ранний-поздний впрыск

Рабочий ход.
При впрыске топлива форсункой в сжатый поршнем до высокого давления и горячий воздух происходит
преобразование и подготовка топлива к возгоранию и сгоранию, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх. Наконец, через некоторый, очень малый промежуток времени оно вспыхивает и сгорает по мере поступления из форсунки, а продукты горения, расширяясь, двигают поршень вниз.
Впрыск топлива происходит чуть раньше момента достижения поршнем ВМТ вследствие некоторой инертности процесса горения.
Задержка начала возгорания в каждом конкретном дизельном двигателе зависит от конструкции и изменяется под действием давления впрыска, температуры топлива и сжатого воздуха, момента впрыска и др.. Сгорание топлива происходит столько времени, сколько длится подача порции топлива из форсунки + догорание. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов.

• 1. Процесс горения в длится столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода. Это приводит к тому, что рабочий процесс протекает при постоянном давлении.
• 2. Соотношение топливо/воздух в цилиндре может существенно отличаться от идеального, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объёма камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс не сгоревших углеводородов с сажей.

Итак, в одном и том же двигателе, при одном и том же количестве поступившего кислорода делаем впрыск раньше,

• Топливо загорается раньше ВМТ ,резко возрастает давление и палец поршня и шатун продавливают слой масляной подушки и ударяют в противоход шатуна(палец) и коленвала(шатун), слышим резкий стук, затем масса крутящегося железа продавливает сопротивление давления горящей смеси и после прохождения поршнем ВМТ пошёл уже нормальный рабочий процесс толкания поршня вниз, при котором топливо успевает догорать в цилиндре до открытия выхлопных клапанов( рабочий процесс протекает при постоянном давлении и достаточности кислорода.)
• продукты идеального сгорания топлива состоят из углекислого газа(СО2), водяного пара (Н2О) , оставшегося избыточного кислорода(О2) , и азота(N2) поступившего в цилиндр вместе с воздухом.

Таким образом внешние признаки раннего впрыска

стук двигателя и беловатый (не сизый) дымок ( вода в виде пара, его много, т.к. кроме топлива и водород(Н2)содержащийся в воздухе сгорел с образованием воды)

Итак, в одном и том же двигателе, при одном и том же количестве поступившего кислорода делаем впрыск позже,

читаем для начала.

Сажа -продукт неполного сгорания углеродистых веществ. Сажа состоит из аморфного углерода, в большинстве случаев с примесью продуктов сухой перегонки. Внутри всякого пламени, происходящего от сгорания парообразных или газообразных углеродистых соединений, под влиянием высокой температуры и от неполного сгорания наступает разложение этих соединений с выделением углерода в мелкоразделенном состояния; эти мелкие частички углерода сгорают в наружной части пламени, предварительно накаливаясь, отчего пламя делается светящимся. Если к сгорающим углеродистым парам и газам воздух будет притекать в недостаточном количестве, то часть углерода выделяется в виде мелкоразделенного угля — С(углерод). Образование углерода происходит также в том случае, если светящуюся часть пламени охладить до некоторого предела, напр. вводя в эту часть пламени твердый холодный предмет(суньте- выньте нож например, и увидите сажу на нём).

И выдержки читаем.
Теория поршневых
и комбинированных двигателей

Четвертое издание, переработанное и дополненное
Под редакцией А.С. ОРЛИНА, М.Г. КРУГЛОВА

«»Сгорание топлива , при котором часть его горючих составляющих превращается в продукты неполного окисления , называют неполным сгоранием. Причиной неполного сгорания может быть общий недостаток кислорода в горючей смеси , и местный недостаток кислорода в зоне горения вследствие несовершенства смесеобразования или недостаточность времени для сгорания переобеднённой смеси.»»

«»Опыты показывают,что в этом случае продукты сгорания состоят из углекислого газа(СО2), окиси углерода(СО), водяного пара(Н2О), водорода(Н2), азота(N2) и его окислов, метана(СН4), и следов других углеводородов и кислорода(О2)»»

Отсюда видимое увеличение объёма выхлопного газа , в сравнении с нормальным ,т.к. при сгорании углерода в СО(газ) происходит изменение объёма на величину образовавшегося газа , плюс метан и др.

«» При дальнейшем уменьшении коэффициента a (коэффициент избытка воздуха) часть углерода совершенно не будет окисляться и в продуктах сгорания появится сажа.»»
«» Для ускорения испарения дизельного топлива необходимо обеспечить распыливание и прогрев капель. Это в значительной степени определяет момент начала впрыска, его продолжительность и давление топлива при впрыске»»

И из этой книжки
«Diesel Fuel-lnjection Systems
Unit Injector System/Unit Pump System
© Robert Bosch GmbH, 1999 P.O. Box 10 60 50,

D-70049 Stuttgart, Federal Republic Germany
© ЗАО «Легион-Автодата», перевод на русский язык, 2005

« « Угол опережения впрыска.

При небольших углах опережения впрыска,то есть при позднем впрыске, процесс сгорания протекает при низких температурах,что снижает эмиссию NOx, однако, если
угол опережения впрыска слишком мал,
то
увеличиваются выброс углеводородов СН и расход топлива, как и эмиссия сажи
на режимах больших нагрузок. При отклонении угла опережения впрыска от оптимального только на один градус п.к.в. эмиссия NOx может увеличиться на 5%. Отклонение угла на два градуса п.к.в. в сторону опережения впрыска может привести к увеличению максимального давления сгорания на 10 бар,
а отклонение угла на два градуса п.к.в. в сторону запаздывания приводит к увеличению температуры отработавших газов на 20“С. Такая высокая чувствительность требует очень точного регулирования угла
опережения впрыска. »»

вот эту книжку почитать нужно

Двигатели внутреннего сгорания:Учебник для вузов.
Хачикян А.С., Морозов К.А., Луканин В. Н.,
Издательство «высшая школа» ,1985 г.


Ну и собственно процесс горения,

Процесс сгорания топлива в дизеле принято разделять на 4 фазы:
1. Задержка самовоспламенения — период от начала впрыскивания топлива до его самовоспламенения
2. Быстрое сгорание – в этот период сгорает большая часть топлива , которое впрыснулось и смешалось с воздухом в первой фазе, а так же часть топлива, которое поступает в продолжении второй фазы. Впрыск топлива обычно заканчивается во второй фазе.
3. Сгорание при постоянном давлении. — Топливо горит, выделяя газ: поршень идёт вниз, увеличивая объём.
4. Догорание топлива и продуктов его неполного окисления. — Горение в этой фазе происходит относительно медленно, т.к. неиспользованного воздуха уже маловато,к тому же в зонах горения и вокруг них находятся продукты сгорания

Итак приступим к разбору полётов топлива из форсунки и ОГ(остатков горения) в цилиндре.

Поршень в ВМТ, наибольшая температура и давление воздуха. начинается впрыск топлива.
Началась 1ая фаза, но поршень уже идёт вниз, и давление и температура уменьшаются, потому эта фаза перед возгоранием затягивается во времени, и как итог, топлива впрыскивается всё больше ,и оно ещё понижает температуру при смешивании с воздухом, что ещё на немного отодвигает момент возгорания.
Наконец топливо загорелось , пошла вторая фаза. Но т.к. топлива больше некой нормы влилось и продолжает поступать, вспышка его смеси сожгла много кислорода вокруг факела топлива и его уже недостаточно для хорошего горения факела, нужно некоторое время для его притока при завихрении смеси воздуха и ОГ, итог — неполное сгорание факела с образованием сажи и ОГ, что ещё немного замедляет процесс горения, а топливо в конце впрыска поступает всё с меньшим давлением и хуже распыляется , что ещё замедляет процесс горения ,и наконец топливо впрыснулось всё.
пошла 3 фаза , остатки топлива, его радикалы контачат с кислородом, вступают в реакцию и горят выделяя газы и поддерживая давление давят на поршень
наступила 4 фаза догорания , температура растёт, и в тоже время горение замедляется , т.к. кислорода маловато уже, и ОГ окружают очаги горения остатков топлива и сажи. И всё догорело бы через некоторое время благополучно, просто не хватило времени, т.к. начали открываться клапана…….
Давление резко падает, горение почти прекращается ,

Ну и сажа,и ОГ со свистом полетели в трубу..у…у

Таким образом внешние признаки позднего впрыска —

Тёмный сажный дым с сизоватым оттенком в увеличенном объёме (см. выше)

писал здесь по быстрому и своими словами, но кому интересно , почитайте вышеуказанные книги,
там очень подробно с формулами, графиками.

Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Читать еще:  Что такое блок управления двигателем рено кенго

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Первыми бензиновыми двигателями с непосредственным впрыском стали моторы GDI на моделях японской компании Mitsubishi. В дальнейшем схема получила широкое распространение, в результате чего сегодня ДВС с такой системой подачи топлива можно встретить в линейке многих известных автопроизводителей.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

РДТ (регулятор давления топлива) интегрирован в насос и отвечает за дозированную подачу топлива, что соответствует впрыску форсунки. Топливная рейка (топливная рампа) нужна для того, чтобы распределить горючее на форсунки. Также наличие данного элемента позволяет избежать скачков давления (пульсации) горючего в контуре.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Что касается инжекторной форсунки, элемент обеспечивает своевременную подачу и распыл топлива в камере сгорания, чтобы создать необходимую топливно-воздушную смесь. Отметим, что описанные процессы протекают под управлением ЭСУД (электронная система управления двигателем). Система имеет группу различных датчиков, электронный блок управления, а также исполнительные устройства.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

Следует выделить послойное смесеобразование, стехиометрическое, а также гомогенное. Именно такое смесеобразование позволяет в конечном итоге максимально эффективно расходовать топливо. Смесь всегда получается качественной независимо от режима работы ДВС, бензин сгорает полноценно, двигатель становится более мощным, при этом одновременно снижается токсичность выхлопа.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

Рекомендуем также прочитать статью о том, как можно сделать тюнинг топливной системы двигателя. Из этой статьи вы узнаете о различных методах тюнинга системы питания двигателя, а также на что можно рассчитывать после такой процедуры.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

Если же рассматривать гомогенное стехиометрическое смесеобразование, такой процесс происходит тогда, когда впускные заслонки открыты, при этом дроссельная заслонка также открыта на тот или иной угол (зависит от степени нажатия на педаль акселератора).

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Рекомендуем также прочитать статью о том, чем инжекторный впрыск отличается от карбюратора. Из этой статьи вы узнаете об основных отличиях данных решений, а также какие плюсы и минусы имеет карбюратор и инжектор.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Что такое инжектор: особенности и отличия от карбюратора

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы. Читать далее

Тюнинг топливной системы двигателя

Тюнинг топливной системы атмосферного и турбо двигателя. Производительность и энергопотребление бензонасоса, выбор топливных форсунок, регуляторы давления. Читать далее

Как переделать инжекторный двигатель на карбюраторный

Установка карбюратора вместо инжектора, особенности процесса замены системы впрыска. Замена карбюратора на инжекторный электронный впрыск. Рекомендации. Читать далее

Настройка моновпрыска своими руками

Что такое моноинжектор: главные отличия и особенности одноточечной системы впрыска топлива. Как проверить и самостоятельно настроить моновпрыск . Читать далее

Система питания дизельного двигателя

Устройство и схема работы системы питания дизельного двигателя. Особенности топлива и его подачи , основные компоненты системы питания, турбодизельный ДВС. Читать далее

Насос VP-44 и система непосредственного впрыска…

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи. Читать далее

avtoexperts.ru

Молодое поколение водителей уже и не знает, что раньше инжекторных моторов не было – почти все бензиновые силовые агрегаты были карбюраторные. Но экология и развитие технологий вытеснили их, сегодня системы подачи топлива сплошь компьютерные. Но их развитие не остановилось. Современный автомобиль с бензиновым мотором может быть оборудован тремя типами впрыска – распределенным, непосредственным или комбинированным. Чем они отличаются и какой из них лучше рассмотрим в этой статье.

Распределенный впрыск (MPI)

Формально это не первый вид впрыска, и не он пришел на смену карбюратору. Был еще так называемый моновпрыск – топливо во впускной коллектор подавала одна форсунка. Несмотря на то, что управление у нее было электронным, по сигналам с датчиков, заметного преимущества моновпрыск перед карбюратором не дал: основная проблема с оседанием топлива на стенках коллектора сохранилась. Моновпрыск популярности не получил, а автомобильные инженеры сразу перешли к впрыску распределенному.

Читать еще:  В каком документе указан объем двигателя

Основная его особенность – наличие индивидуальной форсунки на каждый цилиндр. Впрыск топлива происходит во впускной коллектор, в нем происходит смесь с воздухом. Форсунки расположены около впускных клапанов, топливу не нужно блуждать по недрам коллектора, смесь получается стабильной. Уже этот факт позволил снизить расход, повысить мощность и улучшить экологичность. Кроме того, система распределенного впрыска получилась недорогой – форсунки простые, бензонасос дешевый, все отточено и хорошо работает. Неудивительно, что распределенный впрыск до сих пор остается самым популярным, особенно на недорогих автомобилях, для которых себестоимость производства и цена владения имеют важное значение.

Минус у распределенного впрыска сегодня один – он достиг потолка по эффективности. Инженеры уже выжали максимум, дальше ни расход топлива снижать, ни мощность увеличить невозможно, поэтому конструкторам приходится искать новые варианты, чтобы укладываться во все более строгие экологические рамки и удовлетворять запросы покупателей, которые постоянно хотят более экономичные и более мощные автомобили.

Непосредственный впрыск (GDI)

Довольно очевидно, что главное направление улучшения характеристик – образование топливо-воздушной смеси прямо в цилиндре. Да, по сравнению с карбюратором и моновпрыском, потери топлива на проход по коллектору у распределенного впрыска заметно меньше, но они все равно есть. Что-то остается на коллекторе, что-то на впускных клапанах. Всего этого можно избежать если подавать бензин прямо в цилиндр. Так и происходит на моторах с непосредственным впрыском.

То, что это работает, хорошо видно по характеристикам. GDI-моторы мощнее и экономичнее собратьев с распределенным впрыском. Прибавка составляет порядка 5-10%, что не так уж и мало. Такой результат достигается не только за счет меньшей потери топлива, но и за счет гибкости, которую инженеры получают в настройке впрыска. Например, они могут «играть» с так называемым стехиометрическим числом – соотношением бензина и воздуха в смеси. Обедненные смеси, в которых мало бензина, но много воздуха, на распределенном впрыске невозможны – они просто напросто не смогут воспламениться по законам физики. У непосредственного впрыска эта проблема решена очень элегантно, бензин распыляется около свечи зажигания, рядом с ней смесь богатая, но по всему остальному цилиндру – бедная. Получается, что и с воспламенением проблем нет, и топлива используется меньше.

Еще одна перспективная тема для непосредственного впрыска – управлением моментом подачи топлива. В зависимости от нагрузки на мотор, топливо можно подавать на разных циклах движения поршня (например, на сжатии или на впуске) и получать нужный результат по соотношению мощность/экономичность. Эта сфера еще не до конца исследована и оставляет инженерам большой простор для улучшения показателей моторов.

Казалось бы, непосредственный впрыск намного лучше распределенного и должен был бы его уже вытеснить. Но оказалось все не так просто. У GDI-моторов нашлись и серьезные минусы.

Во-первых, сильно усложнилась конструкция. Форсунки более дорогие и сложные, обычного насоса в баке уже не хватает, требуется использовать дополнительный ТНВД, который повышает себестоимость системы. Кроме того, очень сильно возрастают требования к качеству топлива. Форсунки и ТНВД сильнее страдают от некачественного бензина, а ремонт оказывается очень дорогим. Неудивительно, что на дешевых машинах непосредственный впрыск встречается нечасто – он реально дороже в обслуживании чем распределенный.

Во-вторых, обнаружились и технические проблемы. То, что бензин не проходит через впускные клапана обратилось не только в плюсы, но и в минусы для самих клапанов. Они больше не смазываются и не охлаждаются бензином. Из-за этого на машинах с непосредственным впрыском на впускных клапанах часто образуется нагар, а это приводит к неправильной работе всего мотора. Яркий пример – двигатель ЕP6 (Prince), о котором мы уже рассказывали.

Не удивительно, что в России первые GDI-моторы получили так сказать «плохую прессу», с российским «серным» бензином ТНВД и форсунки служили недолго, а их замена всегда была дорогой. Сейчас качество топлива чуть выросло, да и агрегаты постепенно избавляются от детских болезней, но до сих пор нужно признать, что распределенный впрыск в целом чуть более надежный чем непосредственный.

Нельзя сказать, что перечисленные недостатки ставят крест на непосредственном впрыске, но то, что они сдерживают его развитие, это точно.

Комбинированный впрыск

Популярная тема последних 5-6 лет – использование на одном моторе обоих типа инжектора. То есть у машины есть два комплекта форсунок – один установлен перед клапанами во впускном коллекторе, а второй – прямо в цилиндрах. В зависимости от настройки ЭБУ, в разных режимах может работать как одна форсунка, так другая, или вообще обе сразу – тут тоже непаханное поле для экспериментов и улучшений. Обычно в простых режимах движения используются форсунки в коллекторе, а когда нужно поднажать и от мотора требуется максимум, то подключаются форсунки в цилиндрах. Может быть и чуть иначе, настройки у каждого мотора свои.

Объединение впрысков помогает решить технические проблемы. Если часть бензина идет из коллектора, то впускные клапана нормально охлаждаются и смазываются. Жизнь форсунок тоже по идее должна увеличиться, ведь они теперь используются по очереди. При этом все эксперименты с бедной смесью и временем впрыска на комбинированной системе тоже возможны.

Однако проблему сложности и долговечности комбинированный впрыск не решает. У него все равно есть ТНВД, дополнительные форсунки и очень замороченная настройка. Своими силами ремонтировать такие машины очень сложно. Есть и другие заморочки в обслуживании таких машин, например, при установке ГБО, уже есть «газовые» решения, которые могут работать и с комбинированным впрыском, но они дорогие и сложные в настройке и установке.

На сегодняшний момент с разными типами инжекторов сложилась понятная ситуация – есть отработанная и проверенная технология (мы имеем в виду распределенный впрыск), которая за годы использования избавилась от проблем, дешева и надежна, но которая исчерпала резервы к улучшению и уже не всегда устраивает по эффективности. И есть более перспективные технологии, сложные, пока менее надежные и заметно более дорогие, но дающие лучший результат и в целом более прогрессивные. Наверное, когда-то распределенный впрыск тоже будет отправлен на свалку истории, но у нынешних покупателей машин есть выбор – либо предпочесть надежность и дешевизну, либо мощность и экономию топлива. И не факт, какой из этих выборов лучше.

Что необходимо знать о системе прямого впрыска топлива

Кто изобрёл и как развивалась технология прямого или непосредственного впрыска топлива

Технология прямого или непосредственного впрыска топлива изначально разрабатывалась для дизельных двигателей. Примечательно, что в том виде, в котором она существует сейчас, её в начале 20-го века разработал и успешно внедрил русский инженер Вадим Аршаулов.

Не много позже эту технологию внедрили и в бензиновые двигатели, но произошло это отнюдь не в конце 20-го века, как думают некоторые. Эта технология использовалась ещё во времена Второй мировой войны в двигателях истребителей Messerschmitt. Что касается автомобилей, то первым серийным автомобилем с бензиновым двигателем, в котором её применили, стал легендарный Mercedes-Benz 300 SL Gullwing, появившийся в 1954 году.

В то время управление прямым впрыском топлива осуществлялось с помощью механики, что было очень сложно и дорого, в связи с чем в бензиновых двигателях эта технология сразу не прижилась. Однако благодаря развитию электроники, в 1990-х годах автопроизводители решили к ней вернуться.

Симптомы и признаки загрязнения форсунок

Да, основная причина загрязнение распылителей форсунок и приносит наибольшую головную боль обладателям современных FSI-моторов. Обычно сопровождается это вибрацией, пропусками воспламенения при холодном пуске, а также повышенным расходом топлива и дерганьем автомобиля при разгоне. Почему так происходит, вы, наверное, уже догадались. Разумеется, из-за отклонения топливной струи от расчетной траектории, ведь в данном случае совсем небольшого отклонения вполне достаточно, чтобы резко «обеднить» зону вокруг центрального электрода, при котором устойчивого воспламенения уже не будет. Но и это далеко не последняя проблема в данном ДВС. Довольно часто обсуждают следующее явление на впускных клапанах:

А вот так выглядит начало такого процесса:

Обратите внимание: налет мягкий, легко снимаемый и совершенно непохожий на тот твердый светло-бурый налет на MPI-моторах, который иначе как механической обработкой не снять. Больше всего он напоминает налет на впускных коллекторах дизельных моторов. И в этом есть часть ответа на вопрос по образованию такого нагара.

Очень часто на вопрос о загрязнении впускных клапанов и форсунок отвечают стандартными фразами: «некачественное топливо», «несвоевременное обслуживание» или «неправильно подобранное масло». Но, к сожалению, даже при использовании высококачественных материалов и сокращенном интервале обслуживания ситуация радикальным образом не изменится. Чтобы понять причину этой проблемы, давайте рассмотрим диаграмму фаз газораспределения. Один из наиболее характерных режимов, описывающий важность регулирования фаз газораспределения, на стандартной круговой диаграмме выглядит так:

Читать еще:  402 двигатель волги заливает бензином карбюратор

Но, как быть с увеличением NOx при повышении температуры отработавших газов? Каталитический нейтрализатор для данного соединения человечество еще не придумало. Была изобретена система возврата отработавших газов EGR, которая и занималась снижением температуры ОГ и, как следствие, уменьшением доли NOx в выхлопных газах. Но поскольку со временем клапан EGR не сильно отличался по виду от впускных клапанов, выложенных ранее, по степени негативных эмоций он прочно занимал второе место и у механиков, и у владельцев. Одна из самых «оптимистичных» конструкций клапана EGR выглядела так:

Тут конструкторы немного погорячились: поставить дроссельную заслонку на выпускные газы?! Кто хоть раз видел дроссельную заслонку на впуске, может представить, как она будет выглядеть на выпуске. Думаю, понятно, почему последствия загрязнения и отказа этого клапана занимают второе место по негативу у владельцев Passat B6. Однако, несмотря на многочисленные отказы регулирующих элементов этой системы, надо было как-то решать данный вопрос согласно постоянно ужесточающимся экологическим нормам. В ходе изысканий появилась система внутренней рециркуляции отработавших газов. Реализована она была как составляющая другой системы и не имела своих компонентов.

Теперь начинает прояснятся происхождение отложений на впускных клапанах, как и довольно слабая их зависимость от топлива, обслуживания, масла и т.д. Надо учитывать, что и загрязнение форсунок, и загрязнение поверхности впускных клапанов – процессы связанные и влияющие на один фактор – качество смеси в районе центрального электрода. В то же время заметим, что определяющим фактором влияния на характер воспламенения в цилиндрах все же является именно загрязнение распылителей форсунок. Этот «процесс» начинает беспокоить владельцев с 35 000 – 45 000 км пробега, и, увидев ошибки по «пропускам воспламенения», далеко не всегда начинают решать проблему с «правильного конца». А что же официальные лица? Неужели такой проблеме не уделяется внимание? Так сказать нельзя. Официально существует пункт при техническом обслуживании. Для примера возьмем Audi Q5:

Но возникает вопрос: а говорили ли вам о необходимости использования этой промывки на официальном ТО? А о регулярности такого мероприятия? Ведь подобные рекомендации для эксплуатации автомобиля в России есть и у BMW, и у Mercedes-Benz, и у других крупных автопроизводителей. Также нужно понимать, что использование такой промывки, учитывая ее концентрацию в полном баке, играет только профилактическую роль и полностью не очищает распылители. Но, разумеется, длительность нормального функционирования топливных форсунок увеличивает и рекомендуется к использованию.

Рекомендуем: Срок годности моторного масла в канистре и двигателе

А теперь коснемся того, почему же так важно, чтобы распылители топливных форсунок были исправными (чистыми). Дело в том, что конструкция поршней новых двигателей FSI отнюдь не обладает весомым запасом прочности к детонационному сгоранию смеси, поскольку главный принцип построения таких моторов – максимальное облегчение конструкции и снижение трения. И тут уместно вспомнить, что днище поршня в таком типе конструкции не имеет возможности омываться (охлаждаться) топливной струей, а это значит, что при любом нарушении процесса воспламенения вполне возможна детонация и, как следствие, разрушение самого поршня (перемычек), что как раз и происходит на моторах 1.4, 1.8 и 2.0 TSI.

Отметим, что, проектируя третье поколение моторов серии 888, конструкторы VAG учли этот момент и создали смешанный впрыск MPI+FSI, который как раз и призван обойти описанные проблемы. Но вот обладатели автомобилей VAG, выпущенных до 2012 года, должны учитывать и такую печальную вероятность событий.

Надеемся, что после прочтения этого материала у вас не возникнет вопроса, для чего необходимо использовать промывку топливной системы и очищать детали впускной системы двигателей с непосредственным впрыском.

Материал подготовлен экспертом компании turbo-union.ru

Недостатки системы прямого или непосредственного впрыска топлива

Дело в том, что система прямого впрыска топлива очень чувствительна к качеству самого топлива, поэтому автомобили, двигатели которых оснащены этой системой, рекомендуется заправлять бензином марки АИ-98. Это связано с тем, что топливо низкого качества в лучшем случае засоряет форсунки и впускные клапана, на которых со временем образуется ничем не смываемый налёт, а в худшем случае выводит из строя топливный насос высокого давления (ТНВД).

Эта проблема особенно актуальна, когда вы покупаете подержанный автомобиль, двигатель которого оснащён системой прямого впрыска топлива. В этом случае доподлинно неизвестно, соблюдал ли предыдущий владелец все правила эксплуатации. В результате чего получается, что вы не застрахованы от возможных в ближайшем будущем проблем с двигателем и топливной системой, устранение которых может вам дорого обойтись.

Устройство и принцип действия системы GDI

В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi), FSI или TSI (Volkswagen), JIS (Toyota), CGI (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.

Рекомендуем: Что такое крутящий момент двигателя автомобиля?

Конструктивные особенности двигателей GDI

Система питания воздухом двигателя GDI

Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов:

  • Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.
  • Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
  • Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
  • Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.
  • Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
  • Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.
  • Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Режимы работы системы прямого впрыска

Схема работы непосредственного впрыска топлива

Как правило, двигатели с непосредственным впрыском имеют три основных режима работы:

  • Впрыск в цилиндр на такте сжатия (послойное смесеобразование). Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания. Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.
  • Впрыск на такте впуска (гомогенное смесеобразование). Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).
  • Двухстадийный впрыск на такте сжатия и впуска. Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси. Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.

Рекомендуем: Срочный выкуп авто

Как избежать возможных проблем с системой прямого или непосредственного впрыска топлива

Однако, даже если вы купили новый автомобиль, и заправляете его только качественным и высокооктановым бензином, то чтобы в будущем избежать возможных проблем с системой прямого впрыска топлива, необходимо регулярно, каждые 50 000 километров пробега, проводить её профилактическое обслуживание, которое стоит не дёшево.

Нет, я не призываю вас отказываться от покупки автомобиля, двигатель которого оснащён системой прямого впрыска топлива. Тем более, что этой системой сейчас оснащаются практически все автомобили. Я просто хочу вас предупредить, что если вы уже купили или собираетесь купить такой автомобиль, то не забывайте о своевременном профилактическом обслуживании.

Особенно это касается подержанных автомобилей, профилактическое обслуживание которых я рекомендую сделать сразу после покупки, что в будущем сохранит ваши нервы, время и деньги.
Понравилась публикация? Поделись!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector