Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Компенсация пусковых токов электродвигателей

Компенсация пусковых токов электродвигателей.

Motor starting current compensation.

Активные фильтры эффективно компенсируют пусковые токи электродвигателей, сохраняя неизменным пусковой момент и время разгона привода.

Пусковые токи электродвигателей переменного тока (асинхронных и синхронных при асинхронном пуске) возникают в момент подачи напряжения и могут превышать в 5–7 раз номинальный ток. По мере разгона двигателя ток снижается, вплоть до достижения подсинхронной скорости. Пусковые токи перегружают источники электроэнергии, линии электропередачи, могут привести к срабатыванию защит и отключению коммутационных аппаратов.

При питании удалённых потребителей по протяжённым линиям пусковые токи вызывают глубокие провалы напряжения.

Провал напряжения на трансформаторах собственных нужд шагающего экскаватора при включении привода тяги; в результате провала напряжения главные приводы отключены защитой.

При электроснабжении от автономных источников пусковые токи создают опасность отключения генераторов.

Применение тиристорных устройств плавного пуска (УПП) лишь отчасти улучшает ситуацию, так как пусковой ток при любых условиях в 2,5 – 3 раза будет превышать номинальное значение.

Пусковой ток (черная линия) и напряжение (красная линия) при включении привода подруливающего устройства (1 МВт) с тиристорным УПП на судне.

На приведенном графике ток при пуске в 3 раза превышает номинальное значение (940 А); колебания напряжения на входе УПП – до 20% от номинального (690 В).

Особенность пускового тока электродвигателя состоит в том, что он носит в основном реактивный (индуктивный) характер.

Коэффициент мощности в цепи питания устройства плавного пуска асинхронного двигателя.

На приведенном графике коэффициент мощности в цепи питания УПП при пуске асинхронного двигателя изменяется от 0,1 до 0,8.

Активные фильтры прекрасно компенсируют реактивную мощность, и очень быстро. Это позволяет использовать их для компенсации пускового тока электродвигателей.

Фильтр подключается параллельно электродвигателю.

При работе в режиме динамической компенсации реактивной мощности фильтру нужно указать только величину коэффициента мощности, которую требуется поддерживать. В момент подачи питающего напряжения на электродвигатель активный фильтр мгновенно начинает генерировать реактивную мощность ёмкостного характера и предоставляет её для намагничивания стали электрической машины. Таким образом, обеспечивается необходимый для двигателя пусковой ток, при этом ток в сети возрастает незначительно (в зависимости от величины активной мощности при пуске).

Компенсация пускового тока асинхронного двигателя активным фильтром (осциллограмма токов).

красная линия – ток в обмотке статора асинхронного двигателя;

синяя линия – ток, потребляемый из сети.

Достоинство данного решения по сравнению с УПП в том, что двигатель разворачивается при номинальном напряжении. Это обеспечивает требуемый момент на валу и позволяет избежать затяжного пуска привода.

Предложения Инженерного центра «АРТ».

Полный комплекс работ по созданию систем компенсации пусковых токов электродвигателей на базе активных фильтров

Пуск асинхронного двигателя

Пусковые свойства двигателей.

При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.

В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др. Ниже различные способы пуска рассматриваются более подробно.

Прямой пуск.

Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на рис. 3.22. При включении рубильника в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора

, (3.37)

максимальны (см.п.3.19 при s=1). По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.

Значение пускового момента находится из (3.23) при s = 1:

,(3.38)

Из рис. 3.18 видно, что пусковой момент близок к номинальному и значительно меньше критического. Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).

Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.

С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места. В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).

Пуск двигателей с улучшенными пусковыми свойствами.

Улучшение пусковых свойств асинхронных двигателей достигается использованием эффекта вытеснения тока в роторе за счет специальной конструкции беличьей клетки. Эффект вытеснения тока состоит в следующем: потокосцепление и индуктивное сопротивление X2 проводников в пазу ротора тем выше, чем ближе ко дну паза они расположены (рис.3.23). Также X2 прямо пропорционально частоте тока ротора.

Следовательно, при пуске двигателя, когда s=1 и f2 = f1 = 50 Гц , индуктивное сопротивление X2 = max и под влиянием этого ток вытесняется в наружный слой паза. Плотность тока j по координате h распределяется по кривой, показанной на рис.3.24. В результате ток в основном проходит по наружному сечению проводника, т.е. по значительно меньшему сечению стержня, и, следовательно, активное сопротивление обмотки ротора R2 намного больше, чем при нормальной работе. За счет этого уменьшается пусковой ток и увеличивается пусковой момент МП (см. (3.37), (3.38) ).

По мере разгона двигателя скольжение и частота тока ротора падает и к концу пуска достигает 1 – 4 Гц. При такой частоте индуктивное сопротивление мало и ток распределяется равномерно по всему сечению проводника. При сильно выраженном эффекте вытеснения тока становится возможным прямой пуск при меньших бросках тока и больших пусковых моментах.

К двигателям с улучшенными пусковыми свойствами относятся двигатели, имеющие роторы с глубоким пазом, с двойной беличьей клеткой и некоторые другие.

Двигатели с глубокими пазами.

Как показано на рис.3.25, паз ротора выполнен в виде узкой щели, глубина которой примерно в 10 раз больше, чем ее ширина. В эти пазы-щели укладывается обмотка в виде узких медных полос. Распределение магнитного потока показывает, что индуктивность и индуктивное сопротивление в нижней части проводника значительно больше, чем в верхней части.

Поэтому при пуске ток вытесняется в верхнюю часть стержня и активное сопротивление значительно увеличивается. По мере разгона двигателя скольжение уменьшается, и плотность тока по сечению становится почти одинаковой.

В целях увеличения эффекта вытеснения тока глубокие пазы выполняются не только в виде щели, но и трапецеидальной формы. В этом случае глубина паза несколько меньше, чем при прямоугольной форме.

Двигатели с двойной клеткой.

В таких двигателях обмотки ротора выполняются в виде двух клеток (рис.3.26): во внешних пазах 1 размещается обмотка из латунных проводников, во внутренних 2 – обмотка из медных проводников.

Таким образом, внешняя обмотка имеет большее активное сопротивление, чем внутренняя. При пуске внешняя обмотка сцепляется с очень слабым магнитным потоком, а внутренняя – сравнительно сильным полем. В результате ток вытесняется во внешнюю клетку, а во внутренней тока почти нет.

Читать еще:  Что такое вентилятор системы охлаждения двигателя

По мере разгона двигателя ток из внешней клетки переходит во внутреннюю и при s =sНОМ протекает в основном по внутренней клетке. Ток во внешней клетке при этом сравнительно небольшой.

Результирующий пусковой момент, складывающийся из моментов от двух клеток, значительно больше, чем у двигателей нормальной конструкции, и несколько больше, чем у двигателей с глубоким пазом. Однако следует иметь в виду, что стоимость двигателей с двойной клеткой ротора выше.

Пуск переключением обмотки статора.

Если при нормальной работе двигателя фазы статора соединены в треугольник, то, как показано на рис.3.27, при пуске первоначально они соединяются в звезду.

Для этого сначала включается выключатель Q, а затем переключатель S ставится в нижнее положение Пуск. В таком положении концы фаз Х, Y, Z соединены между собой, т.е. фазы соединены звездой. При этом напряжение на фазе в √3 раз меньше линейного.

В результате линейный ток при пуске в 3 раза меньше, чем при соединении треугольником. При разгоне ротора в конце пуска переключатель S переводится в верхнее положение и, как видно из рис. 3.27, фазы статора пересоединяются в треугольник.

Недостатком этого способа является то, что пусковой момент также уменьшается в 3 раза, так как момент пропорционален квадрату фазного напряжения, которое в √3 раз меньше при соединении фаз звездой. Поэтому такой способ применим при небольшом нагрузочном моменте и только для двигателей, нормально работающих при соединении обмоток статора в треугольник.

Пуск при включении добавочных резисторов в цепь статора.(рис. 3.28)

Перед пуском выключатель (пускатель) находится в разомкнутом состоянии и замыкается выключатель Q1.

При этом в цепь статора включены добавочные резисторы RДОБ. В результате обмотка статора питается пониженным напряжением U1n = U1НОМInRДОБ. После разгона двигателя замыкается выключатель Q2 и обмотка статора включается на номинальное напряжение U1НОМ. Подбором RДОБ можно ограничить пусковой ток до допустимого.

Следует иметь в виду, что момент при пуске, пропорциональный U 2 , будет меньше и составляет (U / U1НОМ) 2 номинального. Важно отметить, что при этом способе пуска значительны потери в сопротивлении RДОБ (RДОБI 2 1n). Можно вместо резисторов RДОБ включить катушки с индуктивным сопротивлением ХДОБ, близким к RДОБ.

Применение катушек позволяет уменьшить потери в пусковом сопротивлении.

Автотрансформаторный пуск.

Кроме указанных способов можно применить так называемый автотрансформаторный пуск.

Соответствующая схема показана на рис.3.29.

Перед пуском переключатель S устанавливается в положение 1, а затем включается автотрансформатор и статор питается пониженным напряжением U. Двигатель разгоняется при пониженном напряжении и в конце разгона переключатель S переводится в положение 2 и статор питается номинальным напряжением U1ном.

Если коэффициент трансформации понижающего трансформатора n, тогда ток I на его входе будет в n раз меньше. Кроме того, пусковой ток будет также в n раз меньше, т.е. ток при пуске в сети будет в n 2 раз меньше, чем при непосредственном пуске.

Этот способ, хотя и лучше рассмотренных в п.3.14.7, но значительно дороже.

Пуск двигателя с фазным ротором.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора, как это показано на рис.3.30.

Начала фаз обмоток ротора присоединяются к контактным кольцам и через щетки подключаются к пусковому реостату с сопротивлением Rp.

Приведенное к обмотке статора сопротивление пускового реостата Rp рассчитывается так, чтобы пусковой момент был максимальный, т.е. равен критическому. Так как при пуске скольжение sП = 1, то sП = 1 = sК , равенство МП = М Пmaх = МК будет обеспечено. Тогда

.

Пуск двигателя происходит по кривой, показанной на рис.3.31. В момент пуска рабочая точка на механической характеристике находится в положении а, а при разгоне двигателя она перемещается по кривой 1, соответствующей полностью включенному реостату.

При моменте, соответствующем точке е , включается первая ступень реостата и момент скачком увеличивается до точки b – рабочая точка двигателя переходит на кривую 2; в момент времени, соответствующей точке d, выключается вторая ступень реостата, рабочая точка скачком переходит в точку с и двигатель выходит на естественную характеристику 3 и затем в точку f. Реостат закорачивается, обмотка ротора замыкается накоротко, а щетки отводятся от колец.

Таким образом, фазный ротор позволяет пускать в ход асинхронные двигатели большой мощности при ограниченном пусковом токе. Однако этот способ пуска связан со значительными потерями в пусковом реостате.

Кроме того, двигатель с фазным ротором дороже двигателя с короткозамкнутым ротором. Поэтому двигатель с фазным ротором применяется лишь при больших мощностях и высоких требованиях к приводу.

Расчет основных параметров двигателя с шильдика

Электродвигатели встречаются в промышленности и быту повсеместно. Если Вы не обращали внимание, то я приведу парочку фото примеров:

Порой возникает необходимость, рожденная будничным любопытством, либо производственной необходимостью в определении мощности электродвигателя по внешнему виду, или значения допустимой температуры в эксплуатации, не говоря уже о значениях тока и напряжения.

Тут возможен вариант, что с него содрана табличка, на которой написаны номинальные параметры, либо же шильдик в таком состоянии, что различить ничего невозможно. Как же быть в такой ситуации…

Одно дело, если Вы всю жизнь работали на производстве движков, и можете определить мощность на глаз. В иных случаях, определить поможет линейка (рулетка) и таблицы с габаритами механизмов.

Если Ваша деятельность больше лежит в теоретических изысканиях, нежели практических, то пригодится формула определения мощности ЭД или таблицы с номинальным данными, именно про это и не только в этой статье.

Бирка (шильдик) электродвигателя

Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.

Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.

Первая строчка — число фаз и тип тока (3

), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции

Вторая строчка — тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения

Третья строчка — возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).

Четвертая строчка — номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.

Рассмотрим отдельные параметры более подробно.

Мощность электродвигателя: полная, активная и на валу

Формула для расчета мощности трехфазного асинхронного двигателя:

S1 — полная мощность, потребляемая двигателем из сети

P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)

P — активная мощность на валу ЭД.

cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).

В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.

Читать еще:  Электрическая схема газель 2705 двигатель 406

I1 и U1 — линейные значения тока и напряжения, их еще называют междуфазными. Не стоит путать с фазными. Линейные — это АВ, ВС, СА (380); фазные — АО, ВО, СО (220). Если выразить формулы мощностей через фазные значения тока и напряжения, то вместо корня из трех вначале будет коэффициент 3. Этот коэффициент определяется наглядно через векторную диаграмму трехфазного напряжения.

Для двигателей постоянного тока формула будет просто произведение напряжения на зажимах двигателя умножить на ток, потребляемые двигателем из сети.

Потребляемая мощность p1 больше мощности на валу ЭД из-за потерь, которые возникают при преобразовании электрической энергии в механическую.

Звезда/Треугольник и 220/380, 380/660

Смотреть все значения по порядку как они идут через дробь. То есть написано на шильде Y/D ( треугольник/звезда), значит и токи, напряжения соответственно будут сначала для Y, а после дроби для звезды. Единственно, нюанс, что при 220/380 — треугольник будет 220, А при 380/660 — треугольник будет 380. То есть говорить, что 380 — это всегда звезда — неверно.

Всегда изучайте табличку на движке перед подключением.

Достоинства при подключении звездой и треугольником абстрактны, так как каждая схема имеет свои области применения:

  • Y — меньше рабочий и пусковой ток, больше напряжение, меньше пусковой момент, меньше греется
  • D — больше пусковой момент, пусковой ток, но и больше греется.

Бывают двухскоростные двигатели, где сначала запускаются на звезде, А потом переходят на треугольник. В таком случае механизм легче запускается, А потом работает с большей мощностью.

При подключении трехфазного двигателя на 220В, где есть лишь фаза и ноль, можно прибегнуть к схеме с конденсаторами.

Форма исполнения и способ монтажа

IM 1081 — форма исполнения и способ монтажа согласно ГОСТ 2479 и МЭК60034-5. В нашем примере это обозначает “на лапах с двумя подшипниковыми щитами, с одним циллиндрическим концом вала”.

Это название состоит из латинских букв IM и четырех чисел.

Первая цифра от 1 до 9 — конструктивный способ исполнения

Вторая и третья (00. 99) — способ монтажа

Четвертая (0..9) — условное обозначение конца вала.

Коэффициент полезного действия электродвигателя

КПД показывает эффективность преобразования электродвигателем электрической энергии, которую он берет из сети, в механическую энергию вращения механизма.

Если бы не было потерь при передаче энергии, то КПД равнялся бы 100%. Однако, такого не существует. Однако, существуют виды потерь, которые уменьшают величину коэффициента:

  • потери от нагрева проводников с током при увеличении нагрузки — электрические потери
  • потери на вихревые токи, гистерезис в шихтованных статорах — магнитные потери
  • потери на трение подшипников, вентиляцию — механические потери
  • плюс различные дополнительные менее важные виды потерь.

Часто, но не всегда, чем выше скорость вращения электродвигателя, тем больше его КПД. Это связано с зависимостью КПД и скольжения ЭД. Существуют классы согласно величины КПД по ГОСТ IEC/TS 60034-31—2015: IE1, IE2, IE3, IE4.

Классы изоляции двигателей по нагревостойкости

Здесь нам на помощь придет ГОСТ 8865-93. Класс изоляции электрических машин характеризует максимальную температуру при номинальных параметрах. То есть в нашем примере при номинальных данных с таблички, температура изоляции не должна превышать 155 градусов.

Приведу данные допустимых температур электродвигателей для разных классов изоляции. Следует учитывать, что материалы могут иметь различные классы.

  • Y — 90
  • A — 105
  • E — 120
  • B — 130
  • F — 155
  • H — 180

Далее идут цифровые классы: 200, 220, 250 — а после них плюс 25 градусов с обозначением класса согласно допустимого значения температуры.

Данные температуры определены опытным путем при работе на номинальных параметрах на протяжении срока эксплуатации до величин, при которых увеличивается тангенс дельта и уменьшается напряжение пробоя.

Пусковой ток АКБ автомобиля: что это такое, как измерить, от чего зависит

Большинство автовладельцев при покупке аккумуляторной батареи ориентируется только на такой показатель, как его ёмкость, совершенно не обращая внимания на параметр, обозначаемый как «пусковой ток».

И совершенно напрасно! Если «пусковые показатели» АКБ подобраны неверно, с большой вероятностью она прослужит гораздо меньше заявленного ресурса, и уже в первую зиму вы будете испытывать сложности с пуском силового агрегата в морозы.

Что такое пусковой ток автомобильной аккумуляторной батареи

Под пусковым током следует понимать максимальное значение силы тока, которую АКБ способна отдавать на протяжении короткого временного интервала. Среднее значение тока для запуска мотора – порядка 250-270 ампер, и это на самом деле очень большая величина. Для легковых автомобилей используются батареи ёмкостью 55-60 А/ч, что в 4-5 раз меньше требуемого пускового тока. Но показатель ёмкости – это часовой показатель, а на протяжении интервала до 30 секунд аккумулятор способен выдавать значения, соответствующие паспортным.

Это значит, что пусковой ток аккумулятора при пуске силового агрегата достигает требуемых значений, но ели крутить стартер слишком долго, его ёмкость быстро уменьшится до значений, когда потребуется подзарядка.

В южных регионах России значение пускового тока АКБ не столь критично. Зимы здесь мягкие, отрицательные температуры – большая редкость. А значит, моторное масло не загустевает, и среднестатистический автомобильный аккумулятор легко справляется со своими задачами. Другое дело – районы, где зимы суровые, где морозы нередко опускаются ниже 15 градусов, а масло превращается в субстанцию, напоминающую кисель. Чтобы завести двигатель в таких условиях, требуется гораздо больше усилий, и от значения пускового тока зависит очень многое.

Для запуска мотора автомобиля при +5°С нужен пусковой ток порядка 200 А, при -15°С – 250-270 А. И если ваш аккумулятор не способен выдавать такие значения, у вас будут большие проблемы.

Физически пусковой ток можно выразить следующей формулой: P=UI, где U – напряжение, выдаваемое аккумулятором (порядка 12 вольт), I – сила тока, а P – мощность. Поскольку напряжение – величина постоянная, то с ростом мощности должно расти и мгновенное значение тока, в нашем случае – пускового.

От чего зависит ПТ аккумуляторной батареи

Очень немногие автовладельцы при покупке АКБ обращают внимание на показатель пускового тока. Между тем он может варьироваться в довольно широких пределах, порядка 30-40%, причем особенно большая разница замечена между изделиями китайского и европейского производства. Возникает вопрос: в чём причина таких расхождений?

Ответ прост, в применяемых технологиях:

  • очищенный свинец, даже в кислотных батареях, способствует быстрой зарядке, пластины из свинца низкого качества с большим количеством посторонних включений и заряжается, и отдаёт заряд медленнее, обеспечивая меньшее значение ПТ при той же ёмкости;
  • чем больше пластин, тем лучше. Европейские производители размещают в одной банке 5 пластин, китайцы – только 4 при одинаковых габаритах корпуса;
  • европейские изделия за счёт меньшей толщины пластин вмещают большее количество электролита, что положительно сказывается на величине пускового тока;
  • некачественные АКБ отличаются не лучшей герметичностью, что способствует потере электролита и уменьшению характеристик батареи.

Разумеется, имеет значение и качество изготовления, и порядочность компании-производителя (имеется в виду умышленное завышение показателей).

Читать еще:  Что происходит при отказе у самолета всех двигателей

Современные гелевые и AGM аккумуляторы являются рекордсменами по ПТ, который в некоторых моделях достигает значений в 1000 А, отдаваемых на протяжении 30 секунд.

Отметим, что во время запуска двигателя напряжение, выдаваемое автоаккумулятором, снижается до 9 вольт – это нормально, поскольку сила тока вырастает намного больше. Как только мотор запустится, напряжение вернется в норму, а потраченный при пуске заряд будет восстановлен генератором. Снижение пускового напряжения до 6 вольт свидетельствует о том, что аккумулятор находится на последнем издыхании, и скоро придётся его менять.

Методы проверки ПТ

Можно ли доверять цифрам, которые указывает производитель? Дело сугубо индивидуальное. Аккумуляторы малоизвестных брендов действительно стоит исследовать. Но как проверить пусковой ток аккумулятора самостоятельно, ведь, как мы выяснили, эта характеристика очень важна?

Существует несколько способов сделать это с использованием «народных» методов, но, признаемся честно, все они не отличаются высокой точностью – для этого нужно использовать дорогостоящее профессиональное оборудование.

Мультиметр для этих целей не годится, и вы не найдёте в сети описание, как измерить таким прибором пусковой ток аккумулятора. Дело в том, что мультиметр не рассчитан на измерение тока номиналов в несколько сотен ампер – если и есть отдельные модели, которые в состоянии сделать это, то они будут слишком дорогими.

Так что придётся использовать менее точные методы:

  • посредством нагрузочной вилки, представляющей собой вольтметр, оснащённый добавочным сопротивлением. Нагрузочная вилка при подключении к клеммам АКБ выступает в качестве нагрузки, заменяя бортовую сеть машины;
  • токоизмерительными клещами. Это самый доступный прибор для измерения пускового тока автомобильного аккумулятора, ему большой ампераж не страшен;
  • «дедовская» проверка заключается во включении ближнего света на автомобиле. Если яркость свечения лампы не меняется на протяжении 5-10 минут, можно говорить, что АКБ исправен. Таким способом можно отсечь заведомо проблемный аккумулятор при его покупке;
  • проверка «на слух» в принципе осуществляется каждый раз, когда мы заводим машину. Если топливная система в исправном состоянии, то мотор должен запуститься за 2-4 секунды. Когда на это уходит более 10 секунд, можно говорить, что его пусковой ток недостаточен.

Можно ли использовать АКБ с большим значением пускового тока

Существует мнение, что если пусковой ток аккумулятора намного больше штатного, его использование может привести к выходу из строя отдельных компонент бортовой сети. На самом деле подобные слухи не имеют под собой никаких оснований и свидетельствуют о непонимании законов физики.

Вы можете установить на свой автомобиль хоть батарею от КамАЗа. При пуске мотора стартер все равно сможет потреблять только ток, которого достаточно для проворачивания коленвала.

Самая важная причина, почему на легковые авто не устанавливают мощные батареи – это дефицит места в подкапотном пространстве, особенно на авто последних поколений, где важен каждый сантиметр. В принципе на вазовской классике найти место для грузового аккумулятора можно, но тут в силу вступает второй фактор – стоимостной.

АКБ повышенной мощности обычно применяют, когда штатный полностью разряжен – такое практикуется на многих СТО и даже в сервисных центрах, что свидетельствует о безопасности их использования. Образно говоря, если вас волнует вопрос, на что влияет пусковой ток автомобильного аккумулятора, то ответ будет простым: хватит ли этого значения для пуска мотора. В продаже есть батареи на 180 А/ч с довольно компактными габаритами, оснащаемые специальными проводами для облегчения нештатного пуска силового агрегата.

Допустимо ли покупать автоаккумулятор с малым значением пускового тока

А вот здесь ситуация прямо противоположная. Очень многие автовладельцы при покупке новой батареи обращают внимание на ёмкость, выбирая из подходящих пусковых устройств самые дешёвые. Как правило, они пребывают в уверенности, что низкая цена обусловлена исключительно качеством и это плата за менее известный бренд. В этом кроется только часть правды – если присмотреться, то можно заметить вполне прослеживаемую закономерность: чем выше значение пускового тока, тем больше цена.

Так что дешёвое изделие наверняка будет характеризоваться небольшим значением ПТ, и если оно окажется меньше требуемого, стартер при пуске двигателя будет вращаться с меньшей скоростью. В итоге, не набрав необходимое количество оборотов, мотор не запустится.

Отметим, что показатель пускового тока, равно как и ёмкости батареи, всегда указывается на лицевой стороне и в большинстве случаев – рядом. Проблема в том, что АКБ с низким значением пускового тока летом будет справляться со своими задачами, требуя большего времени вращения стартера, что отрицательно скажется на его долговечности. Но как только грянут морозы, вы сразу почувствуете, какой промах совершили, попытавшись сэкономить.

Правила подбора АКБ по пусковому току

Часть автомобилистов, отправляясь в магазин за новой батареей, просто переписывает характеристики старой. Опасность такого способа заключается в том, что предыдущая АКБ не обязательно соответствовала вашему авто.

  • объём силового агрегата, зависимость – прямо пропорциональная: чем больше литраж, тем больший пусковой ток;
  • тип силового агрегата: дизельные моторы запускаются труднее, поэтому для них подбирают устройство с большим значением ПТ, чем для бензинового с таким же литражом;
  • для карбюраторных систем пуска можно брать батарею с меньшим значением пускового тока, поскольку в данном случае её энергия будет тратиться только на прокрутку стартера, а в инжекторных моделях – ещё и на работу электроники;
  • температура наружного воздуха. Параметр сезонный, но важный: чем ниже температура, тем больший ток требуется для успешного пуска двигателя из-за загустевания моторного масла, для прогона которого по магистрали требуется больше усилий;
  • тип/модель стартера. Моделям последних поколений требуется меньше тока, чтобы вращать коленвал. Что обусловлено совершенствованием их конструкции и использованием более эффективных материалов (новые сплавы позволяют сделать обмотку тоньше, а сам стартер – компактнее и мощнее).

Поскольку некоторые из перечисленных факторов непредсказуемы (например, температурный), то подбирать автоаккумулятор следует с некоторым запасом по пусковому току.

Таблица оптимальных показателей пускового тока автомобильных аккумуляторов

В интернете при желании можно найти универсальную таблицу, в которой отражены основные характеристики аккумуляторных батарей, включая количество пусков мотора. Поскольку нас интересует именно последний параметр, приведём соответствующие значения для нескольких наиболее распространённых стандартов:

EN 60095 – 01, ГОСТ 0599 – 2002DIN 043559, ГОСТ 0599 – 91SAE J537
280170300
330220350
360255400
420255450
480280500
520310550
540335600
600365650
640395700
680420750

  • EN (Europa Norm) – европейский стандарт, при расчёте которого аккумулятор разражается до 7,5 А на протяжении 10 секунд при температуре окружающей среды -18°С;
  • DIN – стандарт, принятый в Германии (Deutsche Industrie Norm), предусматривает разряд батареи до 9 В на протяжении 30 секунд при такой же температуре;
  • стандарт SAE принят в США, предполагает разряд аккумулятора до 7,32 В на протяжении 30 секунд при температуре -18°С.

Таблица зависимости объёма мотора от ёмкости АКБ:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector