Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики двигателей постоянного тока

Характеристики двигателей постоянного тока. Обычно рассматривают три основные характеристики двигателей постоянного тока:

Обычно рассматривают три основные характеристики двигателей постоянного тока:

Все характеристики, отражающие взаимосвязь между током якоря, механическим моментом на валу двигателя и частотой вращения якоря зависят от способа возбуждения двигателя, поэтому они рассматриваются отдельно для каждой схемы возбуждения двигателя.

3.4.1. Характеристики двигателей с независимым
и параллельным возбуждением

Скоростной характеристикой называют зависимость частоты вращения якоря от тока якоря двигателя при постоянном напряжении питания U = const, равном номинальному напря­же­нию, и постоянном токе возбуждения Iв = const.

Для получения функциональной зависимости скорости вращения якоря от тока воспользуемся уравнением электрического равновесия двигателя

.

Из этого уравнения получаем выражение для частоты вращения

.

В полученной формуле от тока якоря зависят две составляющие: произведение Rя Iя и результирующий магнитный поток машины .

Рис. 3.4

Произведение RяIя, равное падению напряжения на сопротивлении цепи якоря, приводит к пропорциональному уменьшению частоты вращения при увеличении тока якоря. Магнитный поток машины при увеличении тока якоря из-за реакции якоря несколько уменьшается. Эта зависимость магнитного потока от тока якоря нелинейная, поэтому и скоростная характеристика двигателей с независимым и параллельным возбуждением нелинейная (рис. 3.4).

В зависимости от соотношения влияния на частоту вращения падения напряжения Rя Iя и изменения магнитного потока двигателя характеристика скорости может иметь различный вид. На рис. 3.4 кривая 1 представляет собой характеристику скорости двигателя, у которого влияние Rя Iя преобладает перед влиянием потока , кривая 3 представляет собой скоростную характеристику двигателя, у которого влияние потока преобладает перед влиянием падения напряжения на сопротивлении цепи якоря Rя Iя .

Чаще всего встречаются двигатели, у которых уменьшение частоты вращения за счет падения напряжения на сопротивлении цепи якоря преобладает перед влиянием реакции якоря, приводящей к уменьшению магнитного потока.

Характеристикой момента называют зависимость механического момента на валу двигателя от тока якоря при постоянном номинальном напряжении питания U = Uн = const и при постоянном номинальном токе возбуждения Iв= Iвн = const.

Ток якоря ненагруженного двигателя не равен нулю. Это объясняется наличием потерь в двигателе, работающем без нагрузки. Такой ток называется током холостого хода Iяо двигателя.

Используя ранее полученную формулу для определения механического момента на валу двигателя, получаем для двигателя, работающего в режиме холостого хода, формулу: .

Нагруженный двигатель при токе якоря Iя развивает механический момент . Этот развиваемый момент называют электромагнитным.

Механический момент на выходе двигателя равен разности электромагнитного момента и момента холостого хода .

Рис. 3.5

При неизменной величине магнитного потока зависимости и являются прямыми линиями. Однако магнитный поток машины несколько уменьшается при увеличении тока якоря Iя из-за реакции якоря, поэтому характеристики и не являются прямолинейными (рис. 3.5). Максимальное значение тока якоря, при котором якорь ненагруженного двигателя (М2 = 0) начинает вращаться, называют током трогания. Электромагнитный момент в этом случае равен моменту холостого хода.

Особый интерес представляет график зависимости КПД машины от тока якоря (см. рис. 3.5). КПД равен нулю при токах, меньших тока холостого хода или тока трогания (М2 = 0 и Р2 = 0). При дальнейшем увеличении тока КПД увеличивается и достигает максимального значения при токе якоря, равном примерно 0,75Iян. При больших токах КПД начинает уменьшаться. КПД двигате-
лей средней и большой мощности при номинальном токе достига-ет 85 – 95 %.

Основной характеристикой двигателя постоянного тока является механическая характеристика.

Механической характеристикой называют зависимость частоты вращения якоря n от механического момента на валу двигате-
ля M2 при постоянном напряжении питания и постоянном токе возбуждения, т. е. . В дальнейших рассуждениях будем предполагать, что электромагнитный момент равен механическому моменту на выходе двигателя .

Особую роль играет механическая характеристика двигателя при номинальном напряжении питающей сети U = Uн = const и номинальном токе возбуждения Iв = Iвн = const. Такую механическую характеристику называют естественной. Рассматривают и другие механические характеристики, выражающие ту же зависимость , но при других условиях работы, т. е. при других значениях напряжения, при других токах возбуждения и при различных сопротивлениях реостатов, включенных последовательно с якорем. Такие механические характеристики называют искусственными.

Найдем аналитическое уравнение, описывающее механическую характеристику.

В уравнении электрического равновесия . ПротивоЭДС обмотки якоря . Следовательно,
=
. Из полученного уравнения . Но из уравнения для определения момента и .
Тогда .

Обозначим и . Можно написать .

Полученное уравнение является уравнением прямой линии.

Уравнение состоит из двух слагаемых. Первое слагаемое не зависит от момента, а второе слагаемое прямо пропорционально механическому моменту М.

Очевидно то, что механическая характеристика (рис. 3.6) двигателя постоянного тока выражается прямой линией. Такую прямую можно провести через две точки, положение которых на графике можно найти следующим образом: в режиме идеального холостого хода момент двигателя равен нулю , и якорь вращается с частотой , а при номинальном напряжении .

Это первая точка механической характеристики. Положение другой точки определяется из условий пуска двигателя. При подключении двигателя в сеть в начальный момент времени из-за инерционности якоря частота вращения равна нулю n= 0. Противо-ЭДС обмотки якоря тоже равна нулю, и тогда приложенное напряжение падает только на сопротивлении якорной цепи. Ток якоря в этом случае достигает больших величин из-за малости Rя. Его называют пусковым током Iяп. Сила пускового тока определяется из уравнения .

Рис. 3.7

Механический момент, развиваемый двигателем, в этом случае называют пусковым моментом Мп , и его величина определяется формулой

.

Общий вид естественной механической характеристики показан на рис. 3.7.

Двигатели с параллельным возбуждением имеют пусковой момент в 10…20 раз больше номинального, поэтому рабочая часть механической характеристики, ограниченная режимом холостого хода (М = 0) и номинальным значением момента на валу , занимает лишь начальную часть полной характеристики (см. рис. 3.6), в пределах которой частота вращения изменяется незначительно. Такая механическая характеристика, когда при изменении механического момента от нулевого значения до номинального значения частота вращения изменяется незначительно, называется жесткой (см. рис. 3.7). Величина весьма невелика.

Общие сведения о двигателях постоянного тока

Принцип обратимости электрических машин.

Двигатели постоянного тока по конструкции не отличаются от генераторов и, как отмечалось, электрические машины постоянного тока могут работать как в режиме генератора, так и в режиме двигателя, т.е. являются обратимыми. Допустим, что машина работает в режиме генератора на сеть с постоянным напряжением U=const и развивает тормозной (по отношению к первичному двигателю) момент Mт (рис.1).

Для этого режима справедливы соотношения

где ?r- полное сопротивление цепи якоря.

Рис. 1 — Генераторный и двигательный режимы машины постоянного тока

Если уменьшать ЭДС Еа генератора, уменьшая его частоту вращения или магнитный поток Ф, то будет уменьшаться и ток Ia. Когда Еа станет меньше напряжения U, ток Ia изменит свое направление, однако, посколь­ку U=const, направление тока Ia в обмотке возбуждения, а следовательно и полярность основных полюсов останутся без изменения. При этих условиях изменяется знак электромагнитного момента Мг и машина переходит в двигательный режим, т.е. если прежде она работала генератором, преобразовывая механическую мощность в электрическую, то теперь она потребляет электрическую мощность, преобразовывая эту мощность в механическую и развивая на валу вращающий момент Мд. При этом машина продолжает вращаться в прежнем направлении. Если отсоединить первичный двигатель и приложить к валу машины момент сопротивления механизма Мс, то он будет преодолеваться электромагнитным моментом Мэм.

Классификация двигателей постоянного тока .

Аналогично генераторам, двигатели постоянного тока классифицируются по способу включения обмотки возбуждения по отношению к обмотке якоря — независимого, параллельного, последовательного и смешанного возбуждения. Схемы двигателей и генераторов с перечисленными способами возбуждения одинаковы и приведены на (рис. 1.). Все типы двигателей в зависимости от вида возбуждения имеют различные характеристики, но в основе их работы лежит один и тот же энергетический процесс, характеризуемый уравнениями равновесия ЭДС и моментов.

Читать еще:  Где лучше установить датчик температуры двигателя

Уравнение ЭДС двигателя в установившемся режиме работы имеет вид

ЭДС Еа в обмотке якоря направлена встречно приложенному напряжению, поэтому ее называют противо ЭДС.

Энергетическая диаграмма.

Энергетический процесс рассмотрим на примере двигателя параллельного возбуждения с помощью энергетической диаграммы (рис.2). Двигатель потребляет из сети мощность P1=U(Ia+Iв). Часть этой мощности тратится на покрытие потерь на возбуждение ?Pв=UIв и потери в цепи якоря ?Рэ=Ia 2 ?r.

Рис. 2 — Энергетическая диаграмма

Оставшаяся часть мощности представляет собой электромагнитную мощность якоря Pэм, которая преобразовывается в полную механическую мощность

Полезная механическая мощность P2, отдаваемая двигателем рабочему механизму, меньше мощности Pэм на величину потерь холостого хода ?Pо, включающих потери в стали якоря ?Pст и механические потери Pмех (трение в подшипниках, вентиляционные и т.д.)

Полезная мощность P2 обозначается на заводском щитке машины.

Аналогично происходит энергетический процесс в двигателях других типов.

Уравнение равновесия моментов.

Уравнение вращающих моментов в установившемся режиме можно получить, разделив все члены равенства на W (угловую скорость вращения двигателя)

где М2 — момент сопротивления рабочего механизма; Мо-момент холостого хода.

Вращающий электромагнитный момент равен

Таким образом, вращающий электромагнитный момент расходуется на уравновешивание двух тормозящих моментов:

— момента сопротивления рабочего механизма М2 ;

— момента холостого хода Мо, соответствующего потерям Росмх.

Момент М2 называется полезным моментом, т.к. он соответствует полезной мощности двигателя Р2. В неустановившемся режиме скорость двигателя изменяется и на его валу возникает динамический момент. Уравнение равновесия мо­ментов в таких режимах приобретает вид

где Мст2о -статический момент сопротивления;

— динамический момент.

В зависимости от того, уменьшается или увеличивается частота вращения двигателя, динамический момент может быть отрицательным или положительным, т.е. в переходных режимах на валу двигателя создается момент Мj, который препятствует изменению скорости вращения двигателя и механизма. В установившемся режиме динамический момент Мj=0.

Характеристики двигателей постоянного тока.

Рабочие свойства электродвигателей постоянного тока оцениваются следующими характеристиками:

1. Пусковые характеристики, которые оценивают пусковые свойства электродвигателя. К ним относятся:

— кратность пускового тока; где Iап — пусковой ток ; Iан— номинальный ток нагрузки;

— кратность пускового момента; где МпмIапФп;

— экономичность пуска (стоимость пусковой аппаратуры, пусковые потери).

2. Рабочие характеристики, под которыми понимают зависимости n, M и h от полезной мощности P2 или тока якоря Ia при постоянных значениях напряжения Uс, сопротивления цепи якоря ?rи сопротивления цепи возбуждения rв. Зависимость n=f(P2) называют скоростной характеристикой, зависимость М=f(P2)- моментной характеристикой.

3. Механическая характеристика, представляющая собой зависимость n=f(M) при постоянных значениях Uн, rа, rв.

4. Регулировочные характеристики, к которым относятся:

— диапазон регулирования скорости nmax/nmin;

— экономичность регулирования (потери, стоимость аппаратуры);

— характер регулирования (плавность);

— простота, надежность и компактность регулировочной аппаратуры.

Иcследование механических характеристик электродвигателя постоянного тока с независимым возбуждением

Министерство образования Российской Федерации

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра “Электропривод и автоматизация

промышленных установок”

Иcследование механических характеристик электродвигателя постоянного тока с независимым возбуждением

Методические указания к лабораторной работе №1

для студентов направления 551300 всех форм обучения

Исследование механических характеристик электродвигателя постоянного тока с независимым возбуждением: Лаб. Работа №1 по курсу «Основы электропривода» для студентов направления 551300 всех форм обучения/НГТУ; Сост.:

Изложены электромеханические свойства двигателя постоянного тока с независимым возбуждением в двигательном и тормозном режимах и порядок проведения лабораторной работы.

Подп. к печати 29.03.05. Формат 60х84 1/16. Бумага газетная. Печать офсетная.

Печ. л. 0,75. Уч.-изд. л. 0,6. Тираж 300 экз. Заказ 145

Нижегородский государственный технический университет.

Типография НГТУ. Нижний Новгород, ул. Минина, 24

У Нижегородский государственный

технический университет, 2005

Целью работы является исследование механических характеристик двигателя постоянного тока с независимым возбуждением в двигательном и тормозных режимах.

Основные сведения

Под механической характеристикой электродвигателя постоянного тока с независимым возбуждением понимается зависимость угловой скорости вращения его вала от электромагнитного момента, т. е. w = f(М).

Механические характеристики подразделяются на естественные и искусственные.

Естественной механической характеристикой называют характеристику электродвигателя, полученную при номинальном напряжении на его зажимах, нормальной схеме включения обмоток и отсутствии внешних резисторов в их цепях.

Искусственной механической характеристикой называют характеристику, полученную при условии питания двигателя от сети с напряжением, отличным от номинального, или же при включении в цепь его якоря или в цепь обмотки возбуждения внешних резисторов, а также в случае включения электродвигателя по специальной схеме.

Механические характеристики электродвигателя характеризуются относительным изменением его скорости при изменении момента нагрузки.

,

где w0 — угловая скорость при идеальном холостом ходе;

w — угловая скорость при заданной нагрузке.

Механические характеристики в двигательном режиме

Аналитическое выражение механической характеристики электродвигателя с независимым возбуждением w = f(М) можно получить из совместного решения уравнения электрического равновесия напряжения на зажимах якоря, а также уравнений вращающего момента и противо-ЭДС электродвигателя:

U=E+IR (1) ; M=КФI (2); E=KФw (3),

где U – напряжение, приложенное к зажимам якоря;

Е – противо-ЭДС электродвигателя;

K – коэффициент, зависящий от конструктивных данных электродвигателя;

w – угловая скорость двигателя;

М — электромагнитный момент, развиваемый двигателем;

Ф — магнитный поток;

I — ток якоря;

R — суммарное сопротивление якорной цепи.

Уравнение механической характеристики электродвигателя постоянного тока с независимым возбуждением получим после совместного решения уравнений (1) ¸ (3):

, (4)

или , (5)

где С=KФ. (6)

Числовое значение С может быть определено из уравнения (1), записанного для номинального режима работы:

, (7)

где UH, IH, wH — номинальные значения напряжения, тока и сопротивления якоря и угловой скорости электродвигателя.

Анализ уравнения (4) показывает: во-первых, механическая характеристика электродвигателя постоянного тока с независимым возбуждением является линейной характеристикой; во-вторых, с уменьшением момента на валу электродвигателя до нуля его угловая скорость стремится к скорости идеального холостого хода; в-третьих, с увеличением сопротивления резистора в цепи якоря жесткость механических характеристик уменьшается (рис.1); в-четвертых, с ослаблением магнитного потока электродвигателя, что достигается уменьшением тока возбуждения, скорость его идеального холостого хода возрастает и полученная при этом механическая характеристика обладает меньшей жесткостью по сравнению с естественной характеристикой (рис.2).

Механические характеристики в тормозных режимах

Для двигателя постоянного тока с независимым возбуждением возможны следующие тормозные режимы работы:

1) электродинамическое торможение;

2) торможение противовключением;

3) генераторное торможение с отдачей энергии в сеть (рекуперативное торможение).

Режим электродинамического торможения

Режимом электродинамического торможения называют такой режим работы электродвигателя, при котором его якорь отключается от питающей сети и замыкается на внешний резистор RT, а обмотка возбуждения остается подключенной к сети. В этом режиме двигатель работает в режиме генератора с независимым возбуждением (рис.3), преобразуя кинетическую энергию движущихся инерционных масс привода в электрическую, которая расходуется на нагрев резисторов в якорной цепи.

Уравнение механической характеристики в режиме динамического торможения можно получить из (4), полагая в нем напряжение сети равным нулю, U=0 :

, (8)

Читать еще:  Шум из колонок при работе двигателя

где R=RЯ+RT.

Из уравнения (8) видно, что механические характеристики в режиме динамического торможения расположены во втором квадранте и представляют прямые линии, проходящие через начало координат.

Тормозной момент возрастает с уменьшением сопротивления тормозного резистора и наоборот (рис.4). Наибольшего тормозного эффекта можно достигнуть при замыкании якоря двигателя накоротко. По условиям ограничения тормозного тока замыкание якоря накоротко применяется только для двигателей малой мощности, обладающих сравнительно большим сопротивлением якоря, а также для всех остальных электродвигателей при торможении на малых скоростях.

Электродинамическое торможение может быть использовано при тормозном спуске груза. В этом случае установившийся режим спуска будет иметь место при скорости, определяемой точкой А (рис.4).

Режим торможения противовключением

Режимом торможения противовключением называется такой режим работы, когда при вращении электродвигателя под действием инерционных масс привода в электродвигатель из сети поступает ток такого направления, которое соответствует вращению его в противоположную сторону.

Переход из двигательного режима в режим торможения противовключением можно осуществить изменением полярности напряжения на зажимах якоря.

При изменении полярности напряжения (рис.5) необходимо в цепь якоря двигателя ввести внешний тормозной резистор, с тем чтобы ток в нем, обусловленный суммой напряжения в сети и ЭДС электродвигателя, не превысил допустимого значения.

Уравнение механической характеристики для данного режима получается из (4) при смене знака перед напряжением:

. (9)

Анализ уравнения (9) показывает, что механические характеристики в режиме торможения противовключением линейны и расположены во втором квадранте (рис.6). С уменьшением сопротивления тормозного резистора тормозной момент возрастает и наоборот.

Режим торможения противовключением может быть получен без изменения полярности напряжения на якоре двигателя при наличии активного статического момента на его валу за счет введения в цепь якоря резистора RT с достаточно большим сопротивлением. Точка установившегося режима при этом находится в четвертом квадранте (точка А, рис.6) и привод работает в режиме тормозного спуска.

Режим рекуперативного торможения

Режимом рекуперативного торможения называют такой режим, когда электродвигатель при определенных режимах работы привода, в силу своей обратимости, становится генератором, преобразуя кинетическую энергию движущихся масс механизма в электрическую с отдачей ее в питающую сеть.

Переход электродвигателя в генераторный режим с отдачей энергии в сеть возможен при скорости привода, превышающей скорость соответствующего идеального холостого хода. При этом ЭДС двигателя, направленная встречно с напряжением сети, становится больше его и ток в якоре электродвигателя меняет направление на обратное. Практически режим рекуперативного торможения может быть осуществлен:

1) при наличии отрицательного статического момента нагрузки, когда электродвигатель под его действием в сторону вращения, получив ускорение, достигает скорости, превышающей скорость идеального холостого хода (рис.7);

2) при переходе электродвигателя с большей скорости, полученной ослаблением потока двигателя, на меньшую за счет резкого увеличения магнитного потока (участок w2 – w0 характеристики 1 на рис.8).

Уравнение механической характеристики для данного режима можно получить из (4), полагая в нем М = —МТ :

. (10)

Из уравнения (10) следует, что механические характеристики в данном режиме при различных сопротивлениях резисторов в якорной цепи электродвигателя являются продолжением характеристик двигательного режима в области второго квадранта (рис.7). С увеличением скорости w при неизменном R величина тормозного момента возрастает. Увеличение сопротивления внешнего резистора в цепи якоря при неизменном отрицательном статическом моменте на валу электродвигателя приводит к увеличению скорости вращения привода.

Переход из двигательного режима в режим рекуперации при резком увеличении потока возбуждения двигателя приведен на рис.8.

Программа работы

1. Ознакомиться с электрооборудованием установки (см. рис. 9).

2. Рассчитать величины сопротивлений тормозных резисторов для режимов динамического торможения и торможения противовключением при I/IH=2 и I/IH=2,5.

3. Снять и построить механические характеристики электродвигателя постоянного тока с независимым возбуждением:

б) искусственные при добавочных резисторах в цепи якоря электродвигателя сопротивлением R1=5 Ом и R2=10 Ом;

в) искусственные при токах возбуждения IВ=0,9IВH и IВ=0,7IВH;

4. Снять характеристики электродвигателя:

а) для режима динамического торможения и торможения противовключением при сопротивлениях тормозных резисторов, рассчитанных в п.2;

б) для режима рекуперативного торможения при добавочных резисторах в цепи якоря электродвигателя сопротивлением R1=0 и R2=5 Ом.

5. По характеристикам w = f(t) и IЯ = f(t) рассчитать и построить механические характеристики w(М) для всех тормозных режимов.

6. По аналитическим формулам рассчитать и построить естественную и искусственную механические характеристики w = f(М) при U=UH и RЯ=5 Ом.

Принцип действия машины постоянного тока

Хотя в современном электроприводе преобладают машины переменного тока (асинхронные электродвигатели), двигатели постоянного тока все еще используют и не только в предыдущих решениях.

Устройство простейшего электродвигателя постоянного тока

На рисунке ниже приведена простейшая машина постоянного тока:

Схематическое отображение электродвигателя постоянного тока в осевом направлении показано ниже:

Неподвижная часть двигателя постоянного тока называется индуктором или статором. Состоит он из полюсов и круглого стального ярма, к которому крепятся полюса. Главным назначением индуктора является генерация постоянного (основного) магнитного потока машины. Индуктор простейшей машины, отображенный выше, имеет два полюса 1 (ярмо индуктора не показано).

Вращающаяся часть машины состоит из цилиндрического якоря 2, укрепленного на валу, и коллектора 3. Якорь состоит из набранного из листов электротехнической стали сердечника и обмотки, укрепленной на сердечника якоря. Обмотка якоря в показанном на рисунке простейшем двигателе имеет один виток. Концы витка соединяются с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. Две неподвижные щетки 4 налегают на коллектор. С помощью щеток обмотка якоря соединяется с внешней цепью.

Основной магнитный поток в электродвигателях постоянного тока создается обмоткой возбуждения, которая запитывается постоянным напряжением и располагается на сердечниках полюсов. Магнитный поток «идет» через якорь от северного полюса N к южному полюсу S, а от него через ярмо снова к северному. Ярмо и сердечники полюсов также изготавливаются из ферромагнитных материалов.

Генераторный режим двигателя постоянного тока

Предположим, что в нашем случае якорь электрической машины (рисунок 1 и рисунок 2 а)) движется по часовой стрелке. Тогда в проводниках обмотки якоря будет индуцироваться ЭДС, направление которой можно определить используя правило правой руки (рисунок 3 а)), что и показано на рисунках 1 и 2а). Поскольку поток полюсов является неизменным, то ЭДС сможет индуцироваться только в случае вращения якоря электродвигателя постоянного тока и называется ЭДС вращения.

Величина индуктируемой в проводнике обмотки якоря ЭДС будет равна:

Где: B – магнитная индукция воздушного зазора между якорем и полюсом в месте расположения проводника; l – активная длина проводника с током, то есть это длина, на протяжении которой проводник расположен в магнитном поле; υ – скорость движения проводника в магнитном поле (линейная).

В обоих проводниках из-за симметрии индуктируются одинаковые ЭДС, которые складываются по контуру витка, и поэтому полная ЭДС якоря двигателя постоянного тока будет равна:

ЭДС Еа является величиной переменной, так как проводники якорной обмотки попеременно проходят под южным и северным полюсами, в результате чего направление ЭДС в проводниках изменяется. Кривая ЭДС проводника по форме повторяет кривую распределения индукции B вдоль воздушного зазора в зависимости от времени t (рисунок 4 а)).

В двухполюсной машине частота ЭДС f равна скорости вращения якоря n, выраженной в оборотах в секунду: f = n. А вот в общем случае, когда двигатель постоянного тока имеет p пар полюсов с чередующеюся полярностью:

Обмотка якоря с помощью щеток замыкается через внешнюю цепь и, соответственно, в этой цепи начинает протекать ток Ia. В обмотке якоря будет протекать переменный ток и его кривая аналогична кривой ЭДС (рисунок 4). Однако во внешней цепи протекает постоянный ток, это объясняется действием коллектора. При повороте коллектора и якоря на 90 0 (рисунок 1) происходит смена коллекторных пластин под щетками и изменение направления ЭДС в проводниках. Вследствие чего под верхней щеткой всегда будет находиться пластина соединенная с проводником северного полюса, а под нижней щеткой пластина соединенная с проводником южного полюса. В результате такого соединения направление тока и полярность щеток для внешней цепи остаются неизменными.

Читать еще:  Ваз 2114 с какими двигателями выпускались

Таким образом, коллекторный узел является механическим выпрямителем, который преобразовывает переменный ток якоря в постоянный ток внешней цепи.

Изменив знак второго полупериода кривой на рисунке 4 а), получим форму кривой напряжения и тока внешней цепи (рисунок 4 б)). Пульсирующий ток внешней цепи малопригоден для практических целей. Для избавления от пульсаций применяют более сложные по своему устройству коллектор и якорь двигателя постоянного напряжения, однако основные свойства машины постоянного тока могут быть рассмотрены на примере рассматриваемого нами простейшего двигателя постоянного тока.

Постоянное напряжение на зажимах якоря генератора будет меньше Еа на величину падения напряжения в сопротивлении обмотки якоря ra:

Поскольку проводники якоря находятся в магнитном поле и через них протекает ток Ia, то на них будут действовать электромагнитные силы (рисунки 1, 2 а)):

Направление этих сил определяют с помощью правила левой руки (рисунок 3 б)). Данные силы и создают электромагнитный вращающий момент, который будет равен:

Здесь Da это диаметр якоря машины. Из рисунков 1-2 а) можно увидеть, что в генераторном режиме данный момент действует против направления вращения якоря и является тормозящим.

Режим двигателя

Простейший двигатель постоянного напряжения может работать не только в режиме генератора, но и в режиме двигателя, если к обмотке якоря подвести напряжение от внешнего источника. На проводники обмотки якоря будут действовать электромагнитные силы Fпр в результате чего создается электромагнитный момент Мэм. Как и для режима генератора, величины Fпр и Мэм вычисляются из равенств (4) и (5). При достаточной величине Мэм якорь электрической машины придет в движение и будет развивать механическую мощность. Момент Мэм в таком случае будет являться движущим, и приводить в движение якорь в направлении вращения.

Если мы хотим, чтобы при той же полярности полюсов направление вращения генератора (рисунок 1-2 а)) и двигателя (рисунок 1-2 б)) были одинаковы, то направление действия Мэм, а также тока Iа у электродвигателя постоянного напряжения должны быть обратными по сравнению с генератором (рисунок 1-2 б)).

Коллектор превращает постоянный ток из внешней цепи в переменный ток якоря в режиме двигателя, что смело можно назвать механическим инвертором тока.

Проводники обмотки якоря электрической машины тоже вращаются в магнитном поле, из-за чего в обмотке якоря двигателя индуцируется ЭДС Еа, величину которой можно определить из формулы (1). В электродвигателе направление этой ЭДС (рисунок 1-2 б)) такое же, как и в генераторе (рисунок 1-2 а)). Таким образом, ЭДС якоря Еа в двигателе направлена против тока Ia и приложенного напряжения Ua к зажимам якоря. Поэтому довольно часто ЭДС якоря называют противоэлектродвижущей силой.

Напряжение, приложенное к якорю электрической машины, уравновешивается падением напряжения на обмотке якоря и ЭДС Еа:

Если сравнить уравнения (3) и (6) можно увидеть одну очень важную особенность – в режиме генератора Ua Ea.

Принцип обратимости электродвигателя

Из изложенных выше формул и описаний следует вывод, что каждая машина постоянного тока (и не только постоянного) может работать как в режиме двигателя, так и в режиме генератора. Такое свойство имеют все электрические машины, и оно носит название обратимость.

Для перехода двигателя постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности щеток и полюсов, а также при неизменном направлении вращения необходимо всего лишь изменить направление тока в обмотке якоря (что сейчас легко делается с помощью тиристорных преобразователей и других управляемых выпрямителей).

В современных системах такой переход осуществляется автоматически.

Преобразование энергии в двигателе постоянного тока

На рисунке 5 показаны направления действия электрических и механических величин в якоре двигателя и генератора постоянного тока.

В соответствии с первым законом Ньютона в применении к вращающемуся телу, действующие на это тело тормозящие и вращающие моменты уравновешивают друг друга. Поэтому в установившемся режиме работы генератора электромагнитный момент будет равен:

Здесь Мв – момент на валу генератора, который развивает приводной двигатель, Мтр – момент трения на коллекторе электрической машины и в подшипниках, а также сопротивления воздуха, Мс – тормозящий момент, вызываемый потерями на вихревые токи и гистерезис в сердечнике якоря. Данные потери мощности возникают вследствие вращения сердечника якоря в неподвижном магнитном поле полюсов. Электромагнитные силы, возникающие при вращении ротора электрической машины постоянного тока, оказывают на ротор тормозящее действие и в таком представлении ведут себя подобно силам трения.

Электромагнитный момент двигателя постоянного тока в установившемся режиме работы будет равен:

Здесь Мв – развиваемый рабочей машиной (насос, тележка, кран…) тормозящий момент на валу электродвигателя.

В режиме генератора электромагнитный момент Мэм является движущем, а в режиме двигателя наоборот, тормозящим. При этом в обеих случаях Мв и Мэм противоположны по направлению.

Электромагнитная мощность Рэм, развиваемая электромагнитным моментом Мэм, будет равна:

В данном случае ω – это угловая скорость машины постоянного тока.

Подставив значения Мэм и ω в формулу (8) из формул (5) и (9) и учтем, что линейная скорость на окружности якоря:

Или же на основании выражения (1):

Под действием тока Ia и ЭДС Еа в обмотке якоря развивается внутренняя электрическая мощность:

Исходя из формул (10) и (11), Рэм = Ра, то есть внутренняя электрическая мощность якоря равна электромагнитной мощности, которую развивает электромагнитный момент, что довольно наглядно демонстрирует процесс преобразования электрической энергии в механическую в режиме двигателя, и процесс преобразования механической энергии в электрическую в режиме генератора.

Умножив соотношения (3) и (6) на Ia получим следующие выражения для генератора:

Левые части приведенных выше формул представляют собой электрическую мощность на зажимах якоря, первые члены первых частей электромагнитную мощность все того же якоря, и последние выражение мощность потерь в якорной цепи.

Хотя полученные формулы приведены для простейшей машины постоянного тока (рисунок 1), они все равно будут действовать и в более сложной обмотке якоря, так как моменты отдельных проводников и ЭДС складываются. Данные формулы являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.

Подведем итоги

Развиваемая на валу генератора приводным электродвигателем механическая мощность, за вычетом магнитных и механических потерь, превращается в электрическую мощность (с вычетом потерь в обмотке) и передается во внешнюю цепь. В режиме двигателя электрическая мощность, подающаяся на якорь электрической машины, частично расходуется на потери, а остальная ее часть преобразуется в мощность электромагнитного поля – потом в механическую мощность, которая после вычета потерь в стали якоря и сил трения с помощью вала передается рабочей машине (лифт, станок, тяговый привод электротранспорта и другие).

Общие закономерности превращения энергии для двигателей постоянного тока также актуальны и для двигателей переменного тока.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector