Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как собрать реактивный двигатель: суровое развлечение

Как собрать реактивный двигатель: суровое развлечение

В прошлой статье (читайте по ссылке) мы рассказали об истории и принципах работы пульсирующего воздушно-реактивного двигателя, а также о том, как мы вырезали из листового металла и сварили корпус гигантского китайского ПуВРД. Настало время смонтировать на нем систему зажигания.

Внимательный читатель может возразить нам, что, по нашим же собственным словам, система зажигания для работы ПуВРД не требуется. Формально это действительно так: как только двигатель выходит на рабочий режим, зажигание выключается, так как тепла несгоревших газов вполне достаточно для воспламенения новой порции смеси. Однако для запуска ПуВРД необходима искра, причем надежная и постоянная.

Напомним, что во время рабочего такта смесь в камере сгорания интенсивно расширяется в результате дефлаграции — дозвукового горения. Горючие газы вырываются и из выходной, и из входной трубы, однако из-за небольшой длины входной трубы давление в ней падает быстрее. Движущиеся по выходной трубе газы создают разрежение в двигателе, засасывая новую смесь в камеру сгорания. Разрежение возрастает настолько быстро, что часть газов возвращается по выхлопной трубе обратно в камеру, поджигая новую порцию топлива.

Как видите, весь цикл начинается с интенсивного расширения горючего состава. Чтобы положить начало череде скачков давления, самая первая порция смеси должна иметь идеальное соотношение газа и воздуха. В противном случае газ загорится, но не расширится, и вся конструкция превратится из двигателя в жалкое подобие огнемета.

Чтобы добиться идеального состава смеси на старте, опытные моделисты давно придумали специальную последовательность запуска. Сначала в двигатель подается газ, который полностью заполняет камеру сгорания. Затем включается искровое зажигание. Искра высекается непрерывно, но она не в силах поджечь переобогащенную смесь.

И лишь затем во впускную трубу подается сжатый воздух из компрессора. Как только в камере становится достаточно воздуха, чтобы газ воспламенился, происходит запуск. Богатая смесь на грани воспламенения — то что надо для первого рывка. Затем компрессор можно убрать, а систему зажигания выключить.

Раздеваем «Муравья»

Вариантов системы зажигания для любительских ПуВРД придумано немало. Самый простой — установить в камере сгорания калильную свечу от дизельного двигателя и перед запуском разогревать ее до рабочей температуры таблеткой сухого спирта. Такая процедура имеет положительный побочный эффект в виде прогрева камеры сгорания. В более продвинутых вариантах калильная свеча запитывается от автомобильного аккумулятора.

Недостаток калильной свечи заключается в невозможности точно контролировать время зажигания. Подавая газ в камеру сгорания с уже работающей свечой, мы рискуем вместо дефлаграции получить обычный факел. Поэтому наиболее надежным и удобным считается искровое зажигание, которое можно включить после заполнения двигателя газом.

Новому реактивному двигателю не нужно топливо

Китайские инженеры испытали опытный образец двигателя, работающего благодаря воздушной плазме, которой передается индукция В конструкции двигателя микроволны используются для нагрева воздуха до высокой температуры, после чего раскаленный воздух выходит под давлением и создает тягу.

Чтобы измерить силу тяги и давление струи плазмы при разных параметрах мощности микроволн и скорости потока воздуха, разработчики применили самодельный прибор. В результате эксперимента было продемонстрировано, что при одинаковом потреблении электроэнергии тяговая сила нового плазменного двигателя сопоставима с тягой обычных реактивных двигателей, использующих горючее топливо. Следовательно, такой двигатель, работающий без загрязняющих атмосферу выбросов углерода, может найти применение в электросамолетах. Сейчас в них применяют винтовые двигатели. Результаты этой работы зафиксированы в журнале AIP Advances.

Новый двигатель работает без выбросов углерода в атмосферу

Принцип работы обычного реактивного двигателя основан на законе сохранения импульса: масса воздуха выталкивается назад, поэтому рабочее тело с ускорением движется вперед. Традиционный воздушно-реактивный двигатель функционирует за счет сжигания топлива в кислороде воздуха под высоким давлением: смесь воздуха и топлива раскаляется и под давлением выталкивается из двигателя.

В электросамолетах горючее топливо не используется — здесь нужен другой вариант двигателя. В плазменных двигателях, которые разрабатывались для этой цели, тело ускоряется за счет давления плазмы, полученной при помощи ионизации воздуха электрическим разрядом. Проблема подобных двигателей заключалась в их габаритах: чтобы выдавать высокую тягу, двигатель должен быть очень громоздким.

Читать еще:  Датчик давления и температуры воздуха на впуске двигателя 21127

Инженеры из Уханьского университета попробовали нагреть воздух микроволнами в конструкции, которая включает в себя кварцевую трубку, магнетрон (источник микроволн) мощностью 1 кВт при частоте волн 2,45 ГГц, циркулятор и плоский волновод. Микроволны, поступающие от магнетрона, в трубке греют воздух, который превращается в плазму и под высоким давлением выбрасывается наружу, генерируя тягу. Охлаждение циркулятора и магнетрона происходит за счет водяного контура конструкции.

Схема конструкции воздушно-реактивного двигателя. Изображение: Dan Ye, Jun Li, Jau Tang // AIP Advances

Чтобы оценить уровень давления горячей плазмы при температуре более 1000 °C, когда обычный прибор может быть поврежден, ученые разработали методику, основанную на использовании стального шарика с регулируемой массой. Давление определялось в соответствии с той массой, при которой шарик начинал греметь. На основе полученных данных разработчики высчитали тяговую силу и давление потока плазмы.

При мощности в 1 кВт тяга составляет 28 Н, и на площадь сечения 1 кв.м удельная тяга равна 24 кН. А эти показатели уже сопоставимы с современными керосиновыми двигателями, то есть новое устройство способно работать в самолетах.

В будущем тягу и эффективность разработки можно значительно повысить, если увеличится температура потока выходящей плазмы. Для этого потребуются материалы с хорошей термостойкостью.

Беседы о ракетных двигателях

Просто о том, что кажется сложным

  • Привет!
  • Статьи
  • Ссылки
  • Об авторах
  • Карта сайта

Импульсный ракетный двигатель

Автор публикации: Редколлегия · 12 января 2016 · Комментариев нет

ИМПУЛЬСНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — работает в режиме кратковременных периодических включений (импульсов), суммарное число которых составляет обычно многие тысячи. Характерным является режим импульсной модуляции с импульсами тяги постоянной амплитуды и переменной длительности (ширины) и частоты (от нескольких десятков импульсов в секунду до 1 в несколько суток). По значению суммарного импульса тяги, развиваемого за определённое время, импульсный ракетный двигатель равноценен РД, работающему непрерывно при меньшей тяге. Однако достоинством импульсного ракетного двигателя является возможность путём изменения режима работы двигателя быстро и с большой точностью получать различные значения суммарного импульса тяги, что неосуществимо при использовании РД, работающего непрерывно. К импульсному ракетному двигателю предъявляются требования быстродействия, стабильности характеристик, выдачи минимального значения единичного импульса тяги, малого потребления электроэнергии управляющими клапанами. Идеальный импульсный ракетный двигатель должен выдавать импульсы тяги прямоугольной формы, совпадающие по времени с электрическими командами. В реальном импульсном ракетном двигателе импульсы тяги имеют трапецеидальную или колоколообразную форму; они шире командных импульсов и запаздывают относительно их. Неэкономное расходование ракетного топлива в процессе многократных режимов запуска и останова снижает результирующий удельный импульс РД. Импульсные ракетные двигатели развивают малую тягу, большинство их относится к ракетным микродвигателям. Импульсные ракетные двигатели применяются в индивидуальных ракетных двигательных установках и являются основным типом РД реактивных систем управления КА. Быстродействие импульсных ракетных двигателей обеспечивает управление полётом при малом расходе рабочего тела. При совершении манёвров, связанных с относительно большими затратами энергии, импульсные ракетные двигатели работают непрерывно (при изменении местоположения синхронных ИСЗ — до нескольких часов).

Импульсные ракетные двигатели работают как на двухкомпонентном самовоспламеняющемся топливе, так и на однокомпонентном топливе. Примером импульсного ракетного двигателя на двухкомпонентном топливе может служить Р-4Д, созданный для реактивных систем управления космического корабля «Аполлон». В качестве однокомпонентного топлива широко используется гидразин. В частности, типичная реактивная система управления связного ИСЗ, стабилизируемого вращением (обычно с частотой

1 с -1 ), содержит несколько пар гидразиновых импульсных ракетных двигателей тягой

20 Н каждый. Недостатками гидразиновых импульсных ракетных двигателей являются разрушение и потеря качества катализатора при большом числе «холодных» включений. Увеличение ресурса импульсных ракетных двигателей достигается поддержанием катализатора при повышенной температуре (например, 600 К) путём электрообогрева ДУ. Созданы гидразиновые импульсные ракетные двигатели с числом включений свыше 1 миллиона.

Импульсный режим работы характерен для газовых ракетных двигателей, отличающихся хорошими динамическими характеристиками. К импульсным ракетным двигателям относятся также некоторые ЭРД.

Читать еще:  Что растворяется в бензине и вредно для двигателя

6 первых реактивных самолетов мира

20 июня 1939 года совершил полёт первый в истории экспериментальный реактивный самолёта He.176, созданный немецкими авиаконструкторами. С некоторым отставанием реактивные машины выпустили страны антигитлеровской коалиции, а также Япония.

1. Первый блин

Работы по созданию первого реактивного самолета были начаты в компании Heinkel в 1937 году. А через два года He.176 совершил свой первый вылет. После пяти полетов стало понятно, что пойти в серию у него нет ни малейших шансов.

Конструкторы в качестве двигателя выбрали для него жидкостно-реактивный двигатель с тягой 600 кгс, в котором используются в качестве горючего и окислителя метанол и перекись водорода. Предполагалось, что машина будет развивать скорость 1000 км/ч, однако разогнать ее удалось лишь до 750 км/ч. Громадный расход топлива не позволял самолету удаляться от аэродрома более чем на 60 км. Единственное достоинство по сравнению с обычными истребителями заключалось в громадной скороподъемности, равной 60 м/с, что было втрое выше чем у машин с поршневыми двигателями.

На судьбу He.176 повлияло и субъективное обстоятельство — во время показа самолет не понравился Гитлеру.

2. Первый серийный

Германия опередила всех и по созданию первого серийного реактивного самолета. Им стал Me.262. Свой первый полет он совершил в июле 1942 года, а на вооружение был принят в 1944 году. Самолет выпускался и как истребитель, и как бомбардировщик, и как разведчик, и как штурмовик. Всего в армию поступили почти полторы тысячи машин.

В Me.262 были использованы два турбореактивных двигателя Jumo-004 с тягой 910 кгс, имевших 8-ступенчатый осевой компрессор, одноступенчатую осевую турбину и 6 камер сгорания.

В отличие от He.176, который преуспел в пожирании топлива, реактивный «Мессершмит» был удачной машиной, обладавшей прекрасными летно-техническими характеристиками:

Максимальная скорость на высоте — 870 км/ч

Дальность полета — до 1050 км

Практический потолок — 12200 м

Скороподъемность — 50 м/с

Размах крыла — 12,5 м

Площадь крыла — 21,8 кв.м.

Масса пустого — 3800 кг

Масса снаряженного — 6000 кг

Вооружение — до 4-х 30-мм пушек, от 2 до 14 точек подвески; масса подвесных ракет или бомб до 1500 кг.

За период боевых действий Me.262 сбили 150 самолетов. Потери составили 100 самолетов. Такая аварийность в значительной степени была связана как с недостаточной подготовкой пилотов к полетам на принципиально новом летательном аппарате, так и с недоработками двигателя, имевшего невысокий ресурс и низкую надежность.

3. Билет в один конец

Жидкостно-реактивный двигатель был использован лишь в одном серийном самолете периода Второй мировой войны. В японском пилотируемом самолете-снаряде Yokosuka MXY7 Ohka, предназначенном для камикадзе. С конца 1944 года и до конца войны их было произведено 825 штук.

Самолет был построен по принципу «дешево и сердито». Деревянный планер с 1,2 т. аммонала в носовой части оснащался тремя ЖРД, работавшими 10 сек и разгонявшими самолет до скорости 650 км/ч. Ни шасси, ни взлетных двигателей не было. Бомбардировщик доставлял Ohka на подвеске на расстояние визуальной видимости до цели. После чего происходил поджиг ЖРД.

Однако эффективность такой схемы была невысока. Потому что бомбардировщики обнаруживались локаторами американских кораблей ВМФ до того, как камикадзе наводились на цель. В результате на дальних подступах бессмысленно гибли и бомбардировщики, и начиненные аммоналом самолеты-снаряды.

4. Британский долгожитель

Gloster Meteor — единственный реактивный самолет союзников, принимавший участие в сражениях Второй мировой войны. Свой первый полет он совершил в марте 1943 года, поступил на вооружение Королевских ВВС в июле 1944 года, производился до 1955 года включительно, находился на вооружении ВВС ряда военных союзников Великобритании до конца 70-х годов. Всего было выпущено 3555 машин различных модификаций.

В военный период были выпущены две модификации истребителя — F. Mk I и F. Mk III. Эскадрилья F. Mk I сбила 10 немецких Фау-1. F. Mk III ввиду их особой засекреченности на территорию противника не выпускали. И они должны были отражать атаки Люфтваффе, базируясь под Брюсселем. Однако начиная с февраля 1945 года, немецкая авиация занималась исключительно обороной. Из 230 произведенных до середины 1945 года Gloster Meteor были потеряны лишь два: они столкнулись при заходе на посадку в условиях сильной облачности.

Читать еще:  Ваз 2104 проблемы при запуске двигателя

ЛТХ Gloster Meteor F. Mk III:

Размах крыла — 13,1 м

Площадь крыла — 34,7 кв.м.

Взлетная масса — 6560 кг

Максимальная скорость — 837 км/ч

Потолок — 13400 м

Дальность — 2160 км

Вооружение — 4 пушки 30-мм

5. Опоздавший с призывом

Американский Lockheed F-80 Shooting Star начал поступать на британские аэродромы непосредственно перед окончанием военных действий в Европе — в апреле 1945 года. Повоевать он не успел. F-80 широко использовался в качестве истребителя-бомбардировщика несколько лет спустя во время Корейской войны.

На Корейском полуострове произошло первое в истории сражение между двумя реактивными истребителями. F-80 и более современным околозвуковым советским МиГ-15. Победу одержал советский пилот.

Всего было выпущено 1718 этих первых американских реактивных самолетов.

ЛТХ Lockheed F-80 Shooting Star:

Размах крыла — 11,85 м

Площадь крыла — 22,1 кв.м.

Взлетная масса — 5300 кг

Тяга — 1×1746 кгс

Максимальная скорость — 880 км/ч

Скороподъемность — 23 м/с

Потолок — 13700 м

Дальность — 1255 км, с ПТБ — 2320 км

Вооружение — 6 пулеметов 12,7-мм, 8 неуправляемых ракет, 2 бомбы 454 кг.

6. Тендер по-советски

Первый советский экспериментальный самолет БИ-1 проектировали весной 1941 года двадцать дней и делали месяц. Деревянный планер, к которому прикрепили ЖРД — это было чисто по-стахановски. После начала войны самолет эвакуировали на Урал. И в июле приступили к испытаниям. По замыслам конструкторов БИ-1 должен был развивать скорость, равную 900 км/ч. Однако когда прославленный испытатель Григорий Яковлевич Бахчиванджи подошел к рубежу в 800 км/ч, самолет потерял управление и рухнул на землю.

Нормальным образом к созданию реактивного истребителя подошли лишь в 1945 году. И даже не одного, а двух. К середине года были спроектированы двухмоторный МиГ-9 и одномоторный Як-15. В воздух они поднялись в один день — 24 апреля 1946 года.

МиГу в отношении использования его в ВВС повезло больше. В результате сравнения характеристик двух машин, в котором принимал участие и Сталин, Як-15 было предписано сделать учебным самолетом для подготовки пилотов реактивной авиации.

МиГ-9 стал боевой машиной. И уже в 1946 году начал поступать в части ВВС. За три года было выпущено 602 самолета. Однако на его судьбе сильно сказались два обстоятельства, в связи с чем МиГ-9 был снят с производства.

Во-первых, его разработка велась ускоренными темпами. В результате до 1948 года в конструкцию самолета регулярно вносили изменения.

Во-вторых, пилоты с большим подозрением относились к новой машине, требовавшей больших усилий для освоения и не прощающей даже незначительных ошибок пилотажа. Им куда привычнее был Як-15, который был максимально приближен к Як-3, всем прекрасно знакомый. Собственно, он и был построен на его базе с необходимыми минимальными отклонениями.

И в 1948 году на смену первому реактивному истребителю, оказавшемуся сыроватым, пришел более совершенный МиГ-15.

Размах крыла — 10,0 м

Площадь крыла — 18,2 кв.м.

Взлетная масса — 4990 кг

Максимальная скорость — 864 км/ч

Скороподъемность — 22 м/с

Потолок — 13500 м

Продолжительность полета на высоте 5000 м — 1 час

Вооружение — 3 пушки.

Фото: ИТАР-ТАСС/PA Wire.

Читайте новости «Свободной Прессы» в Google.News и Яндекс.Новостях, а так же подписывайтесь на наши каналы в Яндекс.Дзен, Telegram и MediaMetrics.

21 августа 1991 года свершилась одна из первых успешных цветных революций с подачи США

Размышления о 30-летии провалившегося путча и исторических развилках, на которых оказывается страна в очередной раз

Без защиты Москвы соседние страны «сожрут» более сильные игроки

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector