Avtoargon.ru

АвтоАргон
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тормозные режимы двигателя постоянного тока с независимым возбуждением

Тормозные режимы двигателя постоянного тока с независимым возбуждением. Механические характеристики ДПТ с НВ в тормозных режимах

Кроме двигательных режимов электродвигатели также могут работать в тормозных режимах. Тормозной режим характеризуется тем, что скорость вращения и момент двигателя имеют разные знаки. Быстрота и точность, с какой будут протекать переходные процессы остановки или реверса во многом определяют производительность механизма, а иногда и качество вырабатываемого продукта. Возможны три варианта электрического торможения:

1) рекуперативное торможение;

2) динамическое торможение;

3) торможение противовключением.

Каждый тормозной режим является генераторным, так как энергия поступает в машину с вала, преобразуется в электрическую и либо отдаётся в сеть, либо затрачивается на нагрев элементов якорной цепи, обладающих активным сопротивлением, и рассеивается в окружающую среду.

3.5.1. Рекуперативное торможение

Такой режим возникает, когда скорость двигателя больше скорость идеального холостого хода двигателя, то есть выполняется условие

.

При этом ЭДС двигателя становится больше напряжения сети ( ), и ток двигателя меняет направление. При этом двигатель работает генератором и отдает энергию в сеть. Электромагнитный момент двигателя при этом противодействует внешнему вращающему моменту.

Данный вид торможения является наиболее экономичным, так как энергия возвращается в сеть. Применение этого способа является эффективным энергосберегающим средством. Этот режим целесообразен, когда привод работает с частыми пусками и остановками. Например, электротранспорт. При движении под уклон также возникают благоприятные условия для возникновения этого режима торможения.

Схема включения двигателя для данного режима показана на рис. 3.6, а, а характеристики представлены на рис. 3.7 (характеристика 1).

3.5.2. Динамическое торможение

Необходимость в таком торможении возникает, когда после отключения двигателя от сети его якорь продолжает вращаться под действием запаса кинетической энергии. Если по технологии требуется более быстрый останов двигателя, чем время остановки на выбеге, используется динамическое торможение.

При данном способе торможения якорь двигателя замыкается на тормозное сопротивление, а обмотка возбуждения остаётся подключенной в сеть для создания тормозного момента. Вырабатываемая при этом энергия переходит в тепловую и рассеивается в окружающее пространство. В этом режиме ток двигателя меняет знак, так как он начинает протекать под действием ЭДС двигателя, которая направлена всегда встречно напряжению сети

.

Величину тормозного сопротивления можно определить из формулы

.

При этом слишком малое значение тормозного момента ведет к затягивания процесса торможения, а слишком большой ток отрицательно сказывается на работе щеточно-коллекторного аппарата двигателя.

Схема включения двигателя для данного режима показана на рис. 3.6, б, а характеристики на рис. 3.7 (характеристика 2).

абв
Рис. 3.6. Схемы включения двигателя в тормозных режимах работы (а-рекуперативное, б-динамическое, в-противовключение)
Рис. 3.7. Механические характеристики ДПТ с НВ в тормозных режимах

3.5.3. Торможение противовключением

Для уменьшения времени торможения или реверса иногда применяют данный режим. Реализация этого режима возможна на работающем двигателе при смене полярности питающего напряжения. В этом случае направления ЭДС двигателя и напряжения сети совпадает

,

что без ограничения тока якоря приводит к большим величинам тока якоря, что является недопустимым.

Величина тормозного сопротивления выбирается по формуле

.

Торможение противовключением применяется в основном для реверса двигателя. Для точного останова двигателя данным режим не удобен, так как требуется довольно точная настройка аппаратуры для того, чтобы остановить двигатель в точке нулевой скорости. Если же двигатель не отключить от сети, то он перейдет в двигательный режим, и в дальнейшем разгонится до номинальной скорости при наличии номинального момента на валу двигателя. Для точной остановки двигателя используется режим динамического торможения.

Схема включения двигателя для данного режима показана на рис. 3.6, в, а характеристики на рис. 3.7 (характеристика 3).

Дата добавления: 2016-12-26 ; просмотров: 4059 ;

Что такое рекуперативное торможение двигателем постоянного тока

Электрические машины обладают уникальным свойством обратимости, т.е. при некоторых условиях они могут работать как электродвигатель, а при других как генератор электрической энергии. Обладают этим свойством и тяговые двигатели электровозов и тепловозов.

Применение электродинамического торможения (ЭДТ)

Электродинамическое торможение – это режим когда кинетическая энергия поезда преобразуется в электрическую и далее передается другим потребителям при рекуперативном торможении или гасится на тормозных резисторах при реостатном торможении.

Рекуперативное торможение возможно только на электровозах, при этом генерируемая энергия возвращается в контактную сеть, где может быть потреблена другими электровозами следующими в тяговом режиме, а при отсутствии таковых возвращена в электрическую сеть энергосистемы страны. Существуют локомотивы с функцией рекуперативного торможения, как для постоянного тока, так и для переменного. Реостатное торможение применяется в основном на тепловозах, а также на некоторых сериях электровозов (ВЛ-80т, ЧС-4т). При данном виде торможения электрическая энергия, вырабатываемая тяговыми электродвигателями, расходуется на специальных тормозных резисторах, где она преобразуется в тепловую энергию.

Необходимость применения электродинамического торможения

Применение электродинамического торможения целесообразно с многих точек зрения. Его применение позволяет повысить безопасность движения поездов – поскольку при применении ЭДТ пневматические тормоза не задействованы, то тормозная система поезда всегда готова к применению. В связи с этим отсутствует опасность следования на запрещающий сигнал светофора с истощённой, незаряженной тормозной магистралью.

Применение электродинамического торможения позволяет повысить скорость движения. Так, при использовании пневматического торможения скорость движения сначала возрастает до максимальной, а затем при торможении ее необходимо существенно снизить, чтобы успеть зарядить тормозную систему до повторного возрастания скорости до максимальной. Таким образом, средняя скорость движения будет существенно ниже допустимой скорости движения по данному участку, особенно на участках с большими уклонами. При электродинамическом торможении можно следовать при скорости максимально приближенной к допустимой длительное время. Также необходимо отметить возможность выхода со спуска на площадку или на подъем с максимально допустимой скоростью. Применяя пневматические тормоза такого добиться более затруднительно. Кроме того применение рекуперативного торможения может существенно уменьшить расход электрической энергии затраченной на проведение поезда по участку. Особенно существенное снижение происходит на участках с горным профилем, на котором существуют «вредные спуски».

Порядок применения рекуперативного торможения

При приемке локомотива необходимо убедиться в исправности электрической схемы рекуперативного торможения. Проверяется работа возбудителей, плавность нарастания тока возбуждения при увеличении позиций. Работу электроблокировочного клапана и клапана замещения . Электроблокировочный клапан препятствует наполнению тормозных цилиндров локомотива от воздухораспределителя при собранной схеме рекуперации. Это необходимо для предупреждения юза колесных пар, поскольку при рекуперативном торможении создается большая тормозная сила и если к ней добавить тормозную силу тормозных колодок, то суммарно они могут стать больше чем сила сцепления колеса с рельсом. Электроблокировочный клапан, как правило, дополняется еще одним пневмоэлектрическим датчиком, контролирующим давление в ТЦ создаваемое краном вспомогательного тормоза. Поскольку исключить действие вспомогательного тормоза локомотива в режиме рекуперативного торможения невозможно, то для предупреждения юза колесных пар давление в ТЦ ограничивается на уровне 1,2-1,5 Атм. При превышении данного значения происходит автоматический разбор схемы рекуперативного торможения. Клапан замещения играет роль защиты для предупреждения от разрыва поезда в случае внезапного отключения схемы рекуперации. Поскольку при рекуперативном торможении вся тормозная сила сосредоточена на локомотиве и наибольшее ее значение приложено между локомотивом и первым вагоном, то демпферные устройства первых вагонов имеют наибольшее сжатие. В случае если происходит внезапное отключение рекуперативного торможения, то сжатые пружины резко разжимаются и при этом локомотив получает значительное ускорение. С учетом его значительной массы данный рывок может привести к обрыву автосцепки. Для исключения данных случаев на электровозах устанавливается клапан замещения – при срыве рекуперации он автоматически, без участия машиниста, производит наполнение тормозных цилиндров до давления 1,5 2 Атм. После разбора схемы рекуперативного торможения, действие данного клапана прекращается.

Читать еще:  Что происходит с двигателем если провернуло вкладыши

При следовании по участку необходимо заранее определить места, на которых будет применяться рекуперативное торможение и скорость его применения. Скорость следования в режиме ЭДТ в любом случае должна быть на 5-10 км/час ниже допустимой. Это требование необходимо из условий безопасности движения. Так, при срыве рекуперативного торможения, машинисту необходимо некоторое время для разбора схемы рекуперации и применения автотормозов поезда. Поскольку действие автотормозов происходит с задержкой, то за это время скорость может значительно увеличиться и превысить разрешенную.

При следовании по спуску сбор схемы рекуперации необходимо начинать на 5-10 км/час ниже, чем необходимо для длительного следования. Для этого сначала необходимо сжать головную часть поезда, для чего производят наполнение тормозных цилиндров до давления 0,5-1,0 Атм краном вспомогательного тормоза. Производится запуск мотор-генераторов (возбудителей), селективной рукояткой устанавливается соединение тяговых двигателей соответствующее планируемой скорости движения. Постепенно увеличивая ток возбуждения ТЭД, контролируют появление тормозного тока. После появления тормозного тока необходимо выдержать несколько секунд для более полного сжатия состава, после чего отпустив тормоза локомотива увеличивать тормозную силу увеличением тока рекуперации. Недопускается быстро увеличивать тормозную силу, поскольку это может привести к набеганию хвостовой части поезда и возникновению значительных продольно-динамических реакций. Если скорость ниже необходимой, то силу тока устанавливают несколько меньшей, чем необходимо для установившегося движения. По мере роста скорости ток ТЭД, а следовательно, и тормозная сила, будет возрастать что впоследствии приведет к стабилизации скорости. При дальнейшем движении по спуску необходимо контролировать изменения напряжения контактной сети и при необходимости производить корректировку тормозного тока. При наличии на спуске участков различной крутизны необходимо корректировать тормозной ток для поддержания стабильной скорости. Так при наличии впереди более пологого участка необходимо снижать тормозную силу, а после его проследования и выхода вновь на более крутой спуск ее увеличить. Изменения должны происходить плавно с выдержкой по несколько секунд на каждой позиции. Если пологий участок достаточно длинный, то допускается заблаговременное снижение тормозного тока. Это позволит увеличить скорость перед пологим участком и не допустить значительного замедления на нем.

При необходимости прекращения рекуперативного торможения тормозной ток плавно уменьшается, это позволяет демпферным устройствам головных вагонов «разжаться». После снижения тока якоря до 50-150 А, производят наполнение тормозных цилиндров краном вспомогательного тормоза до давления 0,8-1,0 Атм, после чего производят отключение рекуперативного торможения. После того как действие рекуперативного торможения прекратилось, увеличивают давление в ТЦ до 1,5-2,0 Атм и после выдержки 10-15 сек плавно, ступенями, производят отпуск вспомогательного тормоза. Выключают мотор-генератор, в случае если далее будет необходим тяговый режим, то производят соответствующие переключения, если же планируется вновь применять рекуперативный режим, то переключения можно не производить. Выключение режима ЭДТ лучше производить с таким расчетом, чтобы в конце спуска и переходе на подъем или площадку поезд развил максимально-допустимую скорость. Данный метод позволяет значительную часть подъема проследовать на выбеге или с уменьшенными токами, что позволит уменьшить расход электроэнергии и защитить ТЭД от перегрева.

Достоинства и недостатки видов ЭДТ

Для всех видов ЭДТ недостатком является то, что при следовании по спуску тяговые электродвигатели находятся в работе, в связи с чем их температура не снижается, либо снижается медленно, а при следовании с током выше часового – повышается. Поэтому, если за спуском расположен подъем, то на нем может произойти перегрев ТЭД. Возникновение данной ситуации конечно маловероятно, но, тем не менее, при вождении тяжелых поездов на затяжных подъемах и спусках необходимо учитывать данное обстоятельство. Еще одним недостатком является то, что при ЭДТ под воздействием реакции якоря существенно изменяется местоположение физической нейтрали. В данном случае коммутация в коллекторно-щеточном узле происходит в точке с ненулевым потенциалом, что ведет к увеличению искрения, опасности возникновения кругового огня по коллектору, повышенному износу щеток и коллектора. В современных двигателях устанавливаются компенсационные обмотки, которые несколько уменьшают данный недостаток.

Реостатное торможение

К достоинствам реостатного торможения можно отнести относительно простую схему, тормозные характеристики не зависят от внешних факторов (колебания напряжения контактной сети). На электровозах переменного тока не требуется сложное преобразование постоянного тока в переменный. Применение реостатного торможения возможно практически до полной остановки поезда.

К недостаткам данного вида можно отнести ограниченную мощность, которая определяется мощностью рассеивания тормозных резисторов, а также необходимость применения охлаждающих вентиляторов для них.

Рекуперативное торможение

Одним из основных достоинств рекуперативного торможения является возврат электрической энергии и снижение ее общего расхода на тягу поездов. Второе – это то, что рекуперативное торможение является более мощным по сравнению с реостатным, в данном случае она ограничена мощностью тяговых двигателей и наличием потребителей. К достоинствам также можно отнести автоматические тормозные характеристики. При правильно выбранном соединении и позиции происходит автоматическое поддержание выбранной скорости (относительно небольшие изменения) при изменениях профиля пути. Так, если по каким-то причинам произошло снижение скорости, то в ответ на это уменьшается ток рекуперации и как следствие – замедляющие усилие. Тем самым скорость прекращает снижаться и стабилизируется на новом уровне. При росте скорости ток рекуперации наоборот возрастает, а вместе с ним и замедляющее усилие, что также приводит к ее стабилизации.

Читать еще:  Бмв м62 двигатель и его характеристики

К недостаткам рекуперативного торможения можно отнести более сложную схему работы ТЭД, зависимость тормозных характеристик от напряжения в контактной сети. От нее также зависит и отдаваемая мощность в рекуперативном режиме, и даже сама возможность его применения. Поскольку для возникновения эффекта рекуперации необходимо превышение напряжения вырабатываемого ТЭД над напряжением в контактной сети, то при повышенном напряжении в ней применение рекуперативного торможения становится невозможным. Также к недостаткам можно отнести невозможность применения рекуперативного торможения при малых скоростях движения, поскольку даже последовательно соединенные ТЭД не вырабатывают достаточного напряжения для возникновения рекуперативного эффекта. Необходимо также отметить тот фактор, когда при значительном изменении напряжения контактной сети изменяется ток рекуперации и соответственно тормозная сила электровоза. При возникновении таких ситуаций машинисту необходимо самому корректировать ток рекуперации. В 80-е годы ХХ века производились работы по улучшению работы схемы рекуперативного торможения. Так на электровозах ВЛ-11 впервые была применена система автоматического управления рекуперативным торможением (САУРТ). Данная система производила стабилизацию якорного тока ТЭД независимо от изменения напряжения в контактной сети или скорости движения. Однако в данном виде пропадал эффект автоматических тормозных характеристик. Так, например, при снижении скорости снижалось напряжение, вырабатываемое ТЭД, и как следствие снижение якорного тока. Система САУРТ для поддержания тока якоря на заданном уровне производила повышение тока возбуждения, таким образом, при снижении скорости ток якоря оставался постоянным, а ток возбуждения возрастал, что приводило к усилению замедляющей силы и к еще большему снижению скорости. С данной системой отпала необходимость контролировать ток рекуперации при колебаниях напряжения в контактной сети, но появилась необходимость контролировать скорость движения и при необходимости корректировать ток якоря. Тем не менее, несмотря на имеющиеся недостатки, применение рекуперативного торможения наиболее желательно.

ЭДТ на современных локомотивах

Современные локомотивы оборудуются микропроцессорными системами управления локомотива, которые позволяют в значительной степени улучшить работу электродинамического торможения. В этих системах могут быть реализованы функции автоматического поддержания заданной скорости или тормозного усилия, производится стабилизация замедляющей силы при изменениях напряжения в контактной сети. На новых локомотивах реализованы оба вида торможения. Так, в основном диапазоне скоростей применяется рекуперативное торможение, а на малой скорости происходит автоматический переход на реостатное торможение и диапазон его применения распространяется практически до остановки. Возможно подключение тормозных реостатов и в рекуперативном режиме. Оно производится, когда напряжение в контактной сети приближается к максимально-допустимому и при этом требуется усиление замедляющей силы. В данной ситуации тормозные сопротивления потребляют часть мощности вырабатываемой электровозом, позволяя тем самым сохранить или усилить замедляющий эффект. Кроме того на современных локомотивах отсутствует электромашинный преобразователь необходимый для возбуждения тяговых электродвигателей. Этот громоздкий и металлоемкий агрегат, со сложными схемами возбуждения заменили полупроводниковые преобразователи. Они гораздо эффективнее регулируют ток возбуждения, обладают высоким быстродействием и не требуют большого обслуживания.

Рекуперативное торможение

Описание электропоездов и электровозов, расписание поездов, фотографии

§ 94. Рекуперативное торможение

Электроподвижной состав постоянного тока с машинными преобразователями.

Для осуществления рекуперативного торможения используют схемы со стабилизирующими резисторами и с возбудителями встречного смешанного возбуждения.

Схема со стабилизирующими резисторами В схеме рис. 251, а стабилизирующий резистор /?ст сопротивлением гст является общим для цепей якоря и обмотки возбуждения тягового двигателя.

Уравнение напряжения для цепи тока возбуждения в установившемся режиме

= Свп,Фа = /„ (лст + г„ + г„) + /гст,

где £„, С„, га„, Ф„ и гяв — соответственно э. д с, постоянная, частота вращения, поток и сопротивление обмотки якоря возбудителя В, I, гае — соответственно ток и сопротивление двигателя М1.

Из этого выражения следует, что

/ _ £в — 1г„ ^ Сяп„Фв — 1г„

В цепи тока якоря двигателя М1

Еа = vCaФл = ис + /(лдя + г„) + /„/•„,

откуда можно получить уравнение для скорости:

Ц с + А>дя + Г„) + /.Гст

Из уравнения для /в вытекает, что при увеличении тока якоря / ток возбуждения

Рис. 251 Схемы силовых цепей при рекуперации иа электровозах постоянного тока со стабилизирующими резисторами (а) и с возбудителями встречного смешанного возбуждения (б, в, г, д)

уменьшается и наоборот. Чем больше сопротивление гст, тем резче проявляется эта зависимость и тем круче падает характеристика 1>(/), обеспечивая малую чувствительность системы к колебаниям напряжения в контактной сети При увеличении скорости движения V ток якоря / возрастает из-за увеличения э д. с. £д, а следовательно, уменьшаются ток возбуждения /„ и магнитный поток Фд. Поэтому тормозная сила В « 0,367СДФД/ будет возрастать лишь до определенного максимума, наступающего при некоторой скорости о„. В зоне скоростей выше ик тормозная характеристика оказывается механически неустойчивой

С увеличением сопротивления г„ уменьшаются величины Вт„ и ч„ Область возмож-

ного использования рекуперации ограничена минимальной скоростью:

«шн. = (V, — 2£д)/(СдФдт>х) » 1/с/(СжФЖП1М). т. е. ограничена по току /вга,х

Вид характеристики v(l) и для схемы рис. 251, а (так как Фдтах = /втах) определяется внутренними нагрузочными характеристиками СДФД(/В), реакцией якоря и насыщением возбудителя [характеристикой С„Фв(ів)], изменением частоты вращения двигателя Д возбудителя в зависимости от его нагрузки.

При рекуперации суммарная э. д. с двигателей 2£д должна быть больше напряжения сети £/с; с уменьшением скорости 2£д уменьшается. Следовательно, для расширения зоны рекуперации и снижения рт1П необходимо с понижением скорости движения поддерживать 2£д > > £/с. Это осуществляют в первую очередь, увеличивая число последовательно соединенных якорей двигателей, т. е. применяя переход с параллельного на последовательно-параллельное, а с последовательно-параллельного на последовательное соединения якорей двигателей. Жесткость характеристик увеличивается при переходе с параллельного на последовательное соединение якорей тяговых двигателей.

При использовании стабилизирующих резисторов в рекуперативном режиме необходимо иметь специальный возбудитель, мощность которого значительно превосходит мощность, необходимую непосредственно для питания обмоток возбуждения; кроме того, ограничивается область применения рекуперативного торможения и уменьшается максимальная тормозная сила. При рекуперативном торможении, например по схеме рис. 251, а, на электровозе ВЛ22М мощность, потребляемая обмотками возбуждения при токе возбуждения /„ = 200 Л, составляет 23,2 кВт. В действительности из-за наличия стабилизирующих резисторов применяют возбудитель мощностью 57 кВт, а для его привода — двигатель мощностью 67 кВт. В стабилизирующих резисторах теряется также и некоторая часть энергии, вырабатываемой двигателями в генераторном режиме, что уменьшает отдачу энергии в сеть. Поэтому на современных электровозах постоянного тока с тяговыми двигателями последовательного возбуждения применяют схемы рекуперации с возбудителями встречного смешанного возбуждения.

Читать еще:  Электронный регулятор оборотов двигателя для чего

Схема с возбудителями встречного смешанного возбуждения. В схеме рис. 251, б применен возбудитель В с двумя обмотками возбуждения: независимой НО и встречной ВО. Через обмотку ВО протекает ток якоря тягового двигателя /. Во время рекуперации м. д с. обмоткн ВО направлена навстречу м д. с. обмоткн НО. По

мере увеличения тока рекуперации / э. д. с. £в возбудителя, а следовательно, и ток возбуждения /„ уменьшаются. При уменьшении тока / э. д. с. £в и ток /в увеличиваются. Следовательно, обмотка ВО возбудителя сглаживает толчки тока и тормозной силы при изменениях напряжения в контактной сети.

Форма рекуперативных характеристик при возбудителе встречного смешанного возбуждения будет иной, чем в схеме с возбудителем независимого возбуждения и стабилизирующими резисторами. Тре-бумая крутизна характеристик рекуперативного торможения по схеме рис. 251, б достигается изменением соотношения м. д. с. обмоток возбуждения возбудителя при заданном токе /нв. Чем больше

Отношение /И’воАкв^’но. тем больше ВЛИЯет

ток в якоре на э. д. с. возбудителя £в и тем круче характеристики и(/). Однако одновременно уменьшается максимальное значение тормозного усилия Втах.

В схемах со стабилизирующими резисторами в каждой параллельной цепи токи возбуждения определяются только токами якорной цепи. Поэтому, возможно, н отклонения токов в цепи якорей будут частично компенсированы отклонениями токов возбуждения. При одном возбудителе встречного смешанного возбуждения на локомотивах с двумя и большим числом параллельных цепей тяговых двигателей не может быть обеспечено удовлетворительное распределение токов по этим цепям. Неравномерность токов в параллельных цепях можно ограничить, если для каждой цепи установить свой возбудитель, э: д. с. которого уменьшалась бы только при увеличении тока в цепи своих якорей. Однако иметь на электровозе большое число возбудителей (например, на электровозах ВЛ8, ВЛ10У и ВЛ10 по четыре) нежелательно. Поэтому на э. п. с. постоянного тока с числом параллельных цепей двигателей две и больше применяют один или два возбудителя встречного смешанного возбуждения, а для выравнивания токов в параллельных цепях — схемы с циклической стабилизацией, включая в каждую параллельную цепь якорей уравнительные резисторы Яу (рис. 251, и ( 2 трансформатора приложенные к тиристорам прямое и обратное напряжения выше расчетного напряжения питания, что учитывают прн выборе тиристоров.

Инвертор, выполненный по схеме рис. 252, а, устойчиво работает на партии электровозов ВЛ10 и на опытных электровозах ВЛ12. Однако поочередное протекание тока через полуобмотки коммутирующего реактора !

Генераторное (рекуперативное) торможение. Если сторонним устройством разогнать ДПТ с НВ до скорости выше скорости холостого хода, то он начинает работать генератором

Если сторонним устройством разогнать ДПТ с НВ до скорости выше скорости холостого хода, то он начинает работать генератором, включенным параллельно с сетью, отдавая ей электрическую энергию.

Ток якоря при этом изменяет свой знак, т. к. и ДПТ переходит в тормозной режим с тормозным моментом = .

В этом случае уравнение механической характеристики приобретает вид

. (3.11)

Нетрудно видеть, что графически зависимость в данном случае является продолжением механической характеристики двигательного режима и изображается во 2 или 4 (при противоположном направлении вращения) квадрантах (рис. 3.7).

Данный тормозной режим весьма экономичен, широко применяется в промышленности и на транспорте при некоторых способах регулирования скорости, например при регулировании скорости вращения изменением питающего напряжения .

Рис. 3.7. Механические характеристики двигательного режима и режима генераторного (рекуперативного) торможения при

При переводе ДПТ из двигательного режима в режим динамического торможения необходимо ограничивать величину максимального тормозного тока в момент переключения.

Торможение противовключением

Этот режим по существу соответствует работе ДПТ генератором последовательно с сетью и имеет место тогда, когда обмотки двигателя включены для вращения в одну сторону, но под действием внешнего момента или сил инерции ротор вращается в противоположную сторону. Такой режим работы двигателя можно получить двумя способами: так называемым «тормозным спуском» и изменением на ходу полярности подводимого к якорю напряжения.

Тормозной спуск

Данный вид торможения имеет место при превышении активным моментом сопротивления величины пускового момента, что приводит к изменению направления вращения якоря двигателя и соответственно знака ЭДС. Из первого уравнения системы (3.1) следует, что в этом случае ток якоря определяется как

, (3.14)

т. е. ток якоря превышает значения токов короткого замыкания (3.4). Поэтому для реализации этого режима необходимо ограничивать ток якоря введением добавочного сопротивления .

Графически механические и электромеханические характеристики в этом случае являются продолжением соответствующих характеристик в 4 квадрант.

Режим тормозного спуска широко применяется в грузоподъемных механизмах для опускания грузов.

Противовключение изменением полярности подводимого напряжения

Если у ДПТ, работающего в двигательном режиме на ходу изменить полярность напряжения на обмотке якоря на противоположную, то знак тока якоря изменится на противоположный в соответствии с выражением

. (3.15)

Двигатель переходит в тормозной режим, и его механическая характеристика изображается во 2 квадранте. При этом происходит интенсивное торможение и скорость вращения двигателя падает до нуля. Если в этот момент времени обмотку якоря не отключить от сети, то направление вращения изменяйся на противоположное (график механической характеристики размещен в 3 квадранте), т.е. двигатель реверсируется. Это, безусловно, накладывает определенные ограничения на применимость данного способа торможения.

С энергетической точки зрения данный способ не экономичен, т.к. большое количество энергии выделяется на добавочном сопротивлении, которое необходимо включать в якорную цепь для ограничения бросков тормозного тока.

Механические характеристики для этого режима торможения представлены на рис.3.10.

Рис. 3.10. Механические характеристики ДПТ с НВ, соответствующие режиму торможения противовключением путем изменения полярности подводимого напряжения при

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector