Avtoargon.ru

АвтоАргон
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности пуска асинхронных электродвигателей

Особенности пуска асинхронных электродвигателей

На сегодняшний день асинхронные электродвигатели являются самыми распространёнными потребителями электроэнергии в мире и используются повсеместно, начиная от бытовых устройств, таких как пылесос, холодильник или вентилятор и заканчивая крупными промышленными установки, в которых мощность электродвигателей измеряется в мегаваттах. Это насосные станции, конвейеры, горнодобывающие установки, системы вентиляции или дымоудаления и т.д. Согласно статистики в мире используется около 300 миллионов трехфазных асинхронных электродвигателей с напряжением 380В.

Ежегодно около 10% из этих электродвигателей выходят из строя из-за неправильной эксплуатации, перегрузок или аварийных режимов работы. Часто выход из строя связано с процессом пуска асинхронного электродвигателя, когда он должен набрать номинальную скорость вращения в механизмах с большим моментом инерции. Соответственно момент пуска для асинхронного электродвигателя является тяжелым режимом работы с большой механической и электрической нагрузкой. Пусковые токи асинхронного электродвигателя могут превышать номинальные в 10 – 12 раз.

Виды пуска электродвигателей и их особенности

Прямой пуск асинхронного электродвигателя – это наиболее традиционный способ пуска, который используется с момента появления электродвигателей и до настоящего времени. Это наиболее технически просто реализуемое и экономически выгодное решение, позволяющее запустить электродвигатель при номинальном напряжении. При таком способе пуска используется минимальный набор коммутационного оборудования, однако в настоящее время он в основном применяется для пуска электродвигателей небольших мощностей в связи с определенным количеством недостатков, который можно разделить на 2 категории: электрические и механические.

При прямом пуске асинхронного электродвигателя происходит довольно большой бросок тока, который приводит к падению напряжения в питающей сети. А также может привести к срабатыванию защиты, особенно в случаях, когда не применяется специальные аппараты для защиты электродвигателя. Кроме того, в случае затяжного пуска, длительное протекание тока превышающего номинальный в 6 -8 раз оказывает значительное тепловое и электродинамическое воздействие как на кабель подключенный к электродвигателю, так и на обмотки асинхронного электродвигателя, что приводит к их повышенному износу.

Высокий начальный пусковой момент может привести к значительному толчку и, следовательно, к существенной нагрузке на механизмы электропривода, такие как ремни или крепления узла подшипника. Это вызывает их сокращение срока службы или полный выход из строя. В случае особо ответственных производств простои оборудования в течение времени пока будет производиться ремонт могут привести к значительным убыткам. При останове, как и при пуске, возникают сильные механические вибрации, вызванные переходными процессами. Они не позволяют осуществить синхронную работу нескольких независимых узлов в сложных станках линиях или установках.

Пуск по схеме звезда-треугольник, также является одним из известных способов пуска асинхронных электродвигателей. Этот метод используется для снижения механических нагрузок и ограничения пускового тока. Но и у него есть несколько недостатков. Во-первых, электродвигатель обязательно должен иметь 6 клемм для подключения питания. Во-вторых, для пуска по данной схеме необходимы 3 контактора, что опять же увеличивает стоимость и габариты установки. При переключении со схемы звезда на схему треугольник все равно происходит, пусть и кратковременный, но большой по амплитуде бросок тока. В-третьих, требуется использование двух кабелей от пункта управления до электродвигателя, что в случае длинных линий достаточно дорого. И последний недостаток заключается в том, что останов электродвигателя при подобной схеме подключения точно такой же как и при прямом пуске.

Третий способ пуска – использование устройств плавного пуска.

Устройство плавного пуска – это механическое, электронное или электромеханическое устройство, используемое для плавного пуска или останова электродвигателей. Благодаря применению устройства плавного пуска можно одновременно обеспечить плавный разгон и останов асинхронного электродвигателя, добиться улучшения стабильности электрических сетей, то есть уменьшить броски тока при пуске и значительно уменьшить просадки напряжения в сети при тяжелом пуске. Кроме того, использование систем плавного пуска минимизируют механические перегрузки оборудования при пуске и останове, уменьшает износ механизмов и тем самым увеличивает срок службы асинхронных электродвигателей, редукторов, муфт и других деталей привода. Поэтому самым оптимальным решением по соотношению функционал – стоимость для пуска асинхронных электродвигателей, в случае если нет необходимости постоянного регулирования скорости, являются устройства плавного пуска.

Асинхронный двигатель

Если поместить во вращающееся магнитное поле короткозамкнутую медную или алюминиевую рамку на валу электродвигателя, то она вместе с валом придет во вращение по направлению вращения поля. Явление это объясняется следующим образом. Пусть угловая скорость вращения рамки n несколько меньше угловой скорости вращения поля no (асинхронное вращение). В этом случае рамка «проскальзывает» относительно поля. Величину s = (no-n)/no называют скольжением. Относительно магнитного поля рамка вращается с угловой скоростью, пропорциональной скольжению. Поэтому в ней возникает индукционный ток, пропорциональный относительной скорости вращения рамки, т. е. скольжению. По закону Ленца, индуцированный ток взаимодействует с полем так, что рамка увлекается полем.

А так как магнитное поле вращается, то это приводит к вращению рамки. Вращающий момент, действующий на рамку, пропорционален индуцированному току и тем самым скольжению. Этот вращающий момент уравновешивается внешней нагрузкой. Таким образом, в установке данного типа рамка всегда вращается несколько медленнее вращения поля. Такое вращение называют асинхронным (т. е. неодновременным, несогласованным). Сам двигатель получил название асинхронного.

Дополнительно по теме
  • Активные и индуктивные сопротивления обмоток
  • Расчет магнитной цепи
  • Основные уравнения, схемы замещения и векторная диаграмма
  • Основные энергетические соотношения и механическая характеристика
  • Потери и КПД
  • Круговая диаграмма, рабочие характеристики
  • Определение главных размеров двигателей

Асинхронный двигатель наиболее распространен в качестве электропривода различных механизмов благодаря своей простоте и надежности. . Их применяют для привода машин и механизмов, не требующих строго постоянной частоты вращения и ее регулировки. Важнейшими достоинствами данного двигателя являются простота его устройства и большая надежность, вызванная отсутствием скользящих контактов. Двигатель имеет достаточный пусковой момент, легко реверсируется (т. е. в нем легко меняется направление вращения ротора). В результате этого асинхронные двигатели являются самыми распространенными в технике электрическими машинами. Более 60 % всей вырабатываемой в мире энергии преобразуется в механическую, в основном, с помощью асинхронных двигателей. Мощность двигателей колеблется от десятков ватт до сотен киловатт.

Асинхронный двигатель изготавливается в однофазном, двухфазном и трехфазном исполнении.

Рассмотрим вращающееся поле переменного тока трехфазной цепи короткозамкнутого асинхронного двигателя с тремя обмотками, сдвинутыми по окружности на 120° и соединенными звездой .

Обмотки статора питаются симметричным трехфазным напряжением. Начальную фазу тока в обмотке А-х принимаем равной нулю. Тогда:

Асинхронный двигатель состоит из статора и ротора. Статор представляет собой литой корпус (стальной или чугунный) цилиндрической формы. Внутри статора располагается магнитопровод с вырубленными пазами, в которые укладывается статорная обмотка. Концы обмоток выводятся в клеммную коробку и могут быть соединены как треугольником, так и звездой. Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессовываются подшипники вала ротора. Ротор состоит из стального вала с напрессованным на него магнитопроводом.

Читать еще:  В чем отличия двигателей приоры от ваз 2112

По конструкции роторов двигатели делятся на две группы. Первая — с короткозамкнутым ротором и вторая — с фазным. У двигателя с короткозамкнутым ротором в пазы заливаются алюминиевые стержни и накоротко замыкаются по торцам. У фазового ротора имеются три обмотки, соединенные в звезду. Выводы обмоток присоединены к кольцам, закрепленным на валу. К кольцам при пуске прижимаются неподвижные щетки, к которым подключаются сопротивления. В начальный момент пуска ротор находится в заторможенном состоянии, затем сопротивление уменьшается и двигатель плавно запускается, что позволяет снизить пусковой ток.

К обмоткам статора подводится трехфазное напряжение, а ротор вращается посредством вращающегося магнитного поля, создаваемого системой трехфазного тока.

В момент времени t1: . Если ток фазы А положителен, т.е. течет от начала к концу, то, пользуясь правилом правоходового винта, можно найти картину распределения магнитного поля для времени t1.

В момент времени t2 вектор результирующей магнитной индукции Вm развернется на угол a1 и далее по часовой стрелке с периодом обращения 360°. Для данного примера угол a1 = 60°.

Таким образом, магнитная индукция представляет собой вращающееся поле с амплитудой

За период поле делает один оборот, , (где f = 50 Гц), и является промышленной частотой питающего переменного напряжения и тока.

При синусоидальном характере вращающегося поля его скорость no равна отношению af/p (где р — число пар полюсов). В рассматриваемом примере р = 1 и частота вращения равна соответственно 3000 оборотам в минуту. Если число катушек в каждой фазе увеличить в два раза, а сдвиг фаз между токами сохранить 120°, то частота вращения уменьшится в два раза за счет увеличения числа пар полюсов. Особенностью короткозамкнутого асинхронного двигателя является наличие постоянной частоты вращения поля статора, определяемой числом пар полюсов.

Если поменять местами любые две фазы, то возникнет поле обратной последовательности и ротор начнет вращаться в другую сторону. Еще одной особенностью асинхронных двигателей является разность частоты вращения полей статора no и ротора n, что делает возможным их электромагнитное взаимодействие. При этом поле ротора будет как бы скользить относительно поля статора

где s — скольжение, при номинальной мощности двигателя скольжение составляет 0,01-0,03.

Основное вращающееся магнитное поле индуцирует в обмотках статора и ротора ЭДС, аналогично трансформатору, так как при разомкнутом роторе асинхронный двигатель представляет собой трансформатор в режиме холостого хода:

где индекс 1 относится к параметрам статора, а 2 — к параметрам ротора; Кобм — обмоточные коэффициенты, определяемые способом укладки обмоток (петлевая или волновая). Кобм=0,92-0,98; Е2s=E2S; Е2 — действующее значение ЭДС неподвижного ротора при s = 1; f2=f1S.

В асинхронном двигателе кроме основного магнитного потока создаются потоки рассеяния. Один охватывает проводники статора, другой — ротора. Потоки рассеяния характеризуются соответствующими индуктивными сопротивлениями Х1 и Х2s.

Уравнения электрического состояния фаз обмоток статора и ротора:

Момент асинхронного двигателя

Вращающий электромагнитный момент двигателя в соответствии с законом электромагнитных сил

См — конструктивная постоянная;

j2s- фазовый сдвиг между током и магнитным потоком.

Отношение максимального момента Мmax к номинальному Мн определяет перегрузочную способность двигателя и составляет 2,0-2,2 (дается в каталожных данных). Максимальный момент соответствует критическому скольжению sк, определяемому активными и индуктивными сопротивлениями двигателя, и пропорционален активному сопротивлению цепи ротора.

Потери в асинхронном двигателе

Потери делятся на потери в статоре и в роторе. Потери в статоре состоят из электрических потерь в обмотке Рэ1 и потерь в стали Рст, а потери в роторе — из электрических Рэ2 и механических Рмех плюс добавочные потери на трение и вентиляцию Рдоб.

где К = 2,9-3,6 определяется диаметром статора D1.

Потери в стали в рабочем режиме во много раз меньше электрических потерь в роторе и ими обычно пренебрегают.

КПД асинхронного двигателя составляет от 0,75 до 0,95.

Рабочий момент двигателя пропорционален квадрату напряжения, что необходимо учитывать при включении двигателя в протяженных распределительных сетях. Номинальному моменту соответствует номинальное скольжение, а пусковому — sп.

Зависимость момента двигателя от скольжения М=f(s) приведена на рисунке.

На участке от 0 до Мmax двигатель работает в устойчивом режиме, а участок от Sk называется режимом опрокидывания двигателя, при котором двигатель в результате перегрузки останавливается и не может вернуться в рабочий режим без очередного запуска. Пусковые свойства двигателя определяются соотношением пускового момента Мп и номинального. В соответствии с каталожными данными оно составляет 1,6-1,7. При пуске асинхронного двигателя cosj очень мал и пусковой ток в обмотке статора может возрастать в 5-7 раз по сравнению с номинальным. Ограничение его осуществляется изменением частоты питающего напряжения для двигателя с короткозамкнутым ротором и увеличением активного сопротивления в цепи ротора для двигателя с фазовым ротором. Для механизмов, имеющих тяжелые условия пуска, где желательно использовать асинхронный двигатель с короткозамкнутым ротором, применяются двигатели с улучшенными пусковыми свойствами: с большим пусковым моментом и меньшим пусковым током, чем у двигателей общего назначения.

Механическая характеристика асинхронного двигателя

Зависимость скорости вращения от нагрузки на валу двигателя называется механической характеристикой асинхронного двигателя.

Участок АВ механической характеристики соответствует устойчивому режиму работы асинхронного двигателя. Увеличение нагрузки (тормозного момента) ведет к некоторому снижению частоты вращения ротора, что вызывает увеличение вращающего момента. При превышении тормозным моментом критического, двигатель останавливается. Точка В на графике соответствует точке критического или опрокидывающего момента.

Регулирование частоты вращения

Регулирование частоты вращения может быть осуществлено тремя способами: изменением частоты питающего напряжения, переключением числа пар полюсов и изменением скольжения.

Для регулирования частоты вращения двигателей с короткозамкнутым ротором в настоящее время широко используются частотные преобразователи с микропроцессорным управлением.

Тормозные режимы возникают в машине при определенных условиях или создаются искусственно с целью ускорения процесса остановки двигателя. Торможение может быть:

  • генераторное с отдачей энергии в сеть;
  • противовключением;
  • динамическое.

Генераторным тормозным режимом называется режим работы двигателя, когда под действием внешнего момента ротор двигателя вращается в том же направлении, что и магнитное поле, но с большей скоростью.

Тормозной режим противовключения возникает в том случае, когда под действием внешнего момента, приложенного к валу двигателя, ротор вращается в противоположную сторону относительно вращающегося магнитного поля.

Читать еще:  Внешняя скоростная характеристика двигателя это зависимость

Динамический тормозной режим получается при отключении обмотки статора от сети трехфазного тока и подключении ее на время торможения к источнику энергии постоянного тока.

Расчетные формулы для выбора двигателя имеют вид:

Выбор двигателя по каталогу осуществляется следующим образом. По заданному моменту рабочего механизма и частоте вращения определяется необходимая мощность. После этого определяются условия окружающей среды, выбирается исполнение по типу монтажа и высоте оси рабочего вала двигателя. Зная эти параметры, по каталогу проверяют необходимую перегрузочную способность, КПД, массу и момент инерции.

Для шахтных условий используются двигатели взрывозащищенного исполнения; для крановых механизмов — двигатели с повышенным скольжением и т.д.

В бытовых приборах используются однофазные двигатели. Однофазный двигатель отличается от трехфазного тем, что его статорная обмотка подключается к однофазному источнику питания. Ротор выполняется короткозамкнутым. На статоре размещаются две обмотки, оси которых смещены друг относительно друга на 90 электрических градусов. Одна называется рабочей, а другая -пусковой.

Рабочие характеристики асинхронного двигателя

Рабочими характеристиками асинхронного двигателя являются зависимости от мощности на валу Р2 таких параметров, как момент, частота вращения, ток статора, КПД и cosj.Анализ характеристик показывает, что частота вращения ротора падает с увеличением нагрузки, а момент пропорционален ей. Ток статора изменяется по нелинейному закону, что связано с магнитной системой двигателя и при Р2=0 определяется током холостого хода, составляющего до 40% его номинального значения.

В системах управления используются двигатели, в которых одна из обмоток статора постоянно подключена к сети переменного тока (обмотка возбуждения), а ко второй (обмотка управления) подводится напряжение управления. Такие двигатели относятся к классу микромашин.

Микромашины используются в информационных системах, где они выполняют функции первичных преобразователей для вычислительных операций в системах автоматики и телемеханики.

Одним из примеров является сельсин, предназначенный для передачи на расстояние угловых перемещений валов, механически не связанных друг с другом. По конструкции сельсины делятся на контактные и бесконтактные. Контактные сельсины выполняются в двух вариантах. В одном обмотка возбуждения располагается на роторе, а трехфазная обмотка, называемая обмоткой синхронизации, в пазах статора. В другом варианте наоборот. При включении обмотки возбуждения сельсина на однофазное напряжение ток создает пульсирующее магнитное поле, которое индуцирует в каждой фазе обмотки синхронизации переменную ЭДС. Действующее значение ЭДС каждой фазы зависит от расположения осей этих фаз относительно оси потока возбуждения.

В простейшем случае схема дистанционной передачи угловых перемещений состоит из двух одинаковых сельсинов, у которых одноименные зажимы обмоток синхронизации соединены проводами линии связи, а на обмотки возбуждения подается напряжение сети. Один из сельсинов называют сельсин-датчиком, другой — сельсин-приемником.

Влияние токовых перегрузок на электродвигатели

Токовые перегрузки электродвигателей – основная причина их выхода из строя. Чаще всего они приводят к перегреву изоляции, что ускоряет ее разрушение. На температуру нагрева обмоток движка влияют:

  • окружающая среда;
  • теплотехнические характеристики мотора (теплопотеря и теплоемкость).

Вырабатываемое двигателем тепло частично расходуется на нагрев обмоток, остаток тепла выделяется во внешнюю среду. При незначительной разнице температур окружающей среды и мотора и большом объеме производимой энергии основную ее часть поглощает обмотка, сталь ротора и статора, корпус агрегата и другие его узлы. Это приводит к ускоренному росту температуры изоляции. Чем больше нагрев – тем больше теплоотдача, поэтому оптимальное соотношение температур устанавливается в момент, когда количество выделяемого тепла примерно равно количеству тепла, поглощаемого внешней средой.

Поскольку требуется достаточно большое время на то, чтобы ротор и статор нагрелись до предельной температуры, повышение тока, превосходящее допустимое значение, приводит к возникновению аварийной ситуации не сразу. Исходя из этого, защита рассчитывается таким образом, чтобы она не реагировала на малейшее превышение тока, а отключала двигатель только в случае опасности скорого износа изоляции.

На нагрев изоляции в большой степени влияют такие параметры, как длительности и величина протекания токов больше номинального значения, зависящие от характера технологических процессов.

Перегрузки электродвигателей могут быть вызваны разными причинами, которые мы рассмотрим ниже.

Перегрузки технологического происхождения

Они обычно вызваны периодически происходящим увеличением момента на валу рабочего устройства (станка, установки), мощность двигателя которого постоянно изменяется. Броски тока провоцируются кратковременными большими моментами сопротивления (они возникают периодически). Так как обмотки двигателя имеют достаточно большую тепловую инерцию, перегрев возникает не сразу, а после неоднократных и длительных перегрузок. Поэтому защита должна включаться не при кратковременных нагрузках, а при опасном нагреве агрегата.

В машинах определенного типа возникают длительные, но сравнительно небольшие нагрузки. При этом происходит постепенный нагрев обмоток движка до близкой к предельно допустимому значению температуры. Поскольку электродвигатель подбирается с запасом по нагреву, такие незначительные превышения показателя тока даже продолжительного действия не приводят к возникновению опасной ситуации. Отключения механизма в этом случае не происходит, так как защита «определяет» перегрузку такого характера как неопасную.

Аварийные перегрузки

Причиной аварийных перегрузок могут быть:

  • аварии на питающей линии;
  • резкое снижение напряжения;
  • заклинивание рабочих узлов агрегата и т.д.

Выбор средства защиты в этих случаях зависит от режима работы асинхронного двигателя. Ниже мы перечислим основные типы аварийных режимов.

Длительный режим работы с постоянной нагрузкой. В этом случае перегрузки возникают при:

  • поломках;
  • нарушениях технологии эксплуатации;
  • заклинивании или заедании узлов рабочего устройства.

При отсутствии этих факторов возможность перегрузки очень низка, так как, покупая электродвигатель, обычно выбирают модель с достаточным запасом мощности, и агрегат работает с недогрузкой (когда ток движка намного ниже номинального значения) большую часть времени.

С постоянной или слабо изменяющейся нагрузкой работают центробежные насосы, вентиляторы, шнековые и ленточные транспортеры и т.д. В этих устройствах нагрев двигателя практически не изменяется при кратковременных изменениях подачи материала. Если же механизм работает с нарушением нормальных условий длительное время, перегрузки могут оказать пагубное влияние на состояние обмоток.

Поломка деталей провоцируется прежде всего механическими перегрузками. Определить, при каких обстоятельствах электродвигатель окажется перегруженным, не представляется возможным, так как характер возникновения поломок такого рода случаен. Например, перегрузка может возникнуть при изменении физико-механических свойств транспортируемых материалов (размер частиц, влажность и т.п.) – когда вследствие этих изменений требуется большая мощность на их перемещение. Двигатель отключается защитой при перегрузках, которые могут вызвать опасный перегрев обмоток.

Главное требование к защите от перегрузок – ее срабатывание только при недопустимых значениях тока и определенной длительности его протекания. Ложные срабатывания (например, при пуске движка) должны быть исключены. Наряду с токовой защитой на агрегат устанавливается защита, действующая в функции температуры обмоток. Независимо от причины нагрева она отключает двигатель, когда температура обмоток достигает опасной величины.

Читать еще:  Что сделать из двигателя от муравья

По влиянию длительных превышений тока перегрузки подразделяются на небольшие и большие. Последствия первых проявляются постепенно, но по мере увеличения температуры процесс разрушения изоляции намного ускоряется. При перегреве на 10 градусов срок службы изоляции обмоток сокращается вдвое, но последствия можно обнаружить только после нескольких месяцев эксплуатации. Перегрузки второго типа разрушают изоляцию очень быстро.

Переменный длительный режим работы. Рабочие узлы машин для измельчения и дробления и других подобных устройств создают изменяющуюся в больших пределах нагрузку. При таком режиме перегрузки могут чередоваться с недогрузками и работой вхолостую. Если увеличение тока происходит часто, оно носит накопительный характер, что приводит к разрушению изоляции.

Колебания температуры обмотки практически незаметны, если частота нагрузки высокая, но их амплитуда гораздо больше при низкой частоте нагрузки (сотые доли герца).

Изменение нагрузки моментально влечет за собой изменение температуры обмоток. Из-за разницы теплофизических параметров отдельных частей устройства их нагрев неравномерен, и внутри механизма происходит переток тепла из одних узлов в другие. Температура обмоток статора может расти даже после отключения двигателя за счет тепла, передающегося от ротора. То есть, в этом случае степень нагрева изоляции зависит не только от величины тока, но и от тепловых свойств узлов машины.

Контролировать нагрев электродвигателя достаточно трудно из-за сложности процесса теплообмена, но более или менее точный результат можно получить путем измерения температуры обмотки (но и тут возможна некоторая погрешность).

Повторно-кратковременный режим работы. Он считается самым неблагоприятным для сохранности изоляции обмотки, поскольку кратковременная перегрузка электродвигателя происходит при каждом включении в работу. Защита часто не справляется со своей ролью, так как ее действие основано на измерении тока, а в переходных режимах температура и ток часто не соответствуют друг другу.

Влияние на электродвигатели токовых перегрузок – сложное явление, изучение которого требует основательного подхода и тщательных расчетов.

Особенности скольжения асинхронного двигателя: описание и определение, как измеряется

Одним из главных параметров асинхронного электродвигателя является скольжение. Это переменная величина. Меняться может, исходя из того, в каких режимах работает мотор, величины напряжения, валовой нагрузки.

В статье мы рассмотрим, что собой представляет это явление, как вычисляется, от каких условий зависит.

Что это такое

Принцип действия 3-х фазного электродвигателя (асинхронного) достаточно простой. К статорной обмотке подаётся питание. В результате образуется магнитный поток, смещённый на сто двадцать градусов в фазах. Общий поток, при этом, будет вращаться.

Обмотка представляет собой замкнутый контур, в котором возникает электродвижущая сила. Магнитный поток вращает ротор по направлению статорного потока. Крутящийся электромагнит стремится выровнять вращающие скорости статорного и роторного полей.

Значение, показывающее разницу быстроты вращения статорного и роторного полей и есть скольжение. Поскольку в асинхронном электродвигателе ротор всегда крутится медленней статора, значение, обычно, не превышает единицы. Измеряется в процентах либо единицах.

Вычисляется по следующей формуле:

Здесь n1 – скорость статора, n2 – скорость ротора.

Скольжение – один из основных параметров, отображающий корректность функционирования асинхронного электродвигателя.

Параметры в различных рабочих режимах

Когда электродвигатель обесточен, вращение не происходит, потому что статорное поле не пересекается с роторным полем. В этом случае величина равна двум или трём процентам, т.е. колеблется около нуля.

Если даже параметр холостого хода идеален, процентное значение нулю равняться не будет. Величина может быть и отрицательной, если двигатель функционирует в режиме генератора. В таком режиме (ротор вращается против статора) значение S будет меньше нуля.

При электромагнитном торможении, величина Sпревышает единицу с положительным знаком. Величина токовой частоты в роторных обмотках равняется токовой частоте сети исключительно при пусковом моменте.

Роторная токовая частота пропорциональна сопротивлению индукции, поэтому роторный ток зависим от скольжения асинхронного двигателя.

Момент вращения АД находится в зависимости от значения S, поскольку определяется величинами токового и магнитного потоков, угловым смещением ЭДС и роторным током.

Для подробного изучения параметров электродвигателя определяется зависимость, показанная на графике вверху.

При разных показателях асинхронном двигателе момент вращения можно корректировать при помощи сопротивления, включённого в цепи роторных обмоток.

Если ротор замкнут «накоротко», вращающий момент изменяется либо частотными преобразователями, либо применением двигателей с изменяющимися параметрами.

При нагрузочном номинале двигателя показатель скольжения находится между двумя и восемью процентами. При добавлении нагрузки скольжение ускоряется, потому что роторное поле начнёт больше отставать от статорного поля.

Ускорение неминуемо приведёт к росту роторного тока и момента вращения. Параллельно с этим возрастает сопротивление, что связано с активными роторными потерями, токовые показатели снижаются, в связи с чем, вращение растёт гораздо медленней скольжения.

При определённой скорости скольжения момент вращения достигнет максимума и начнёт замедляться. Максимальное значение является критическим и обозначается Sкр.

В технической документации указываются параметры асинхронного двигателя. По ним строится график, отвечающий на вопросы, связанные с работой асинхронного электрического двигателя, применяемого в качестве привода.

Критический максимум задаёт параметр мгновенного допустимого перегруза двигателя. Когда этот параметр превышается, происходит остановка двигателя (опрокидывание). Это аварийный режим.

Методы измерений

Есть несколько методов произвести замер скорости скольжения двигателя. Когда скорость существенно разнится с синхронным вращением, её определяют тахометром либо тахогенератором, подключённым к валу асинхронного двигателя.

Метод определения стробоскопом с лампой неонового свет применим при скольжении меньше пяти процентов. На двигательном валу мелом рисуют отметку или ставят стробоскоп.

Подают свет от лампы и считают количество оборотов за определённый промежуток времени и, используя формулы, определяют значение.

Ещё для замера скорости скольжения применяют катушку индуктивности. Оптимальным вариантом будет катушка контактора тока постоянной величины. К ней подключают милливольтметр и помещают в окончание роторного вала.

По количеству колебаний стрелки за определённый промежуток времени с помощью формулы вычисляют скорость вращения.

Кроме того, у двигателя с ротором фазы величину скольжения определяют амперметром (магнитоэлектрическим). Прибор подсоединяют к одной из роторных фаз и по количеству стрелочных колебаний, опять-таки применяя формулу, получают результат.

Мы выяснили, что такое скольжение двигателя, способы его определения. Свои вопросы оставляйте в комментариях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector