Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое система облегчения пуска двигателя

Что такое система облегчения пуска двигателя

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

Для пуска двигателя в работу необходимо его коленчатый вал заставить вращаться с таким числом оборотов, которое обеспечило бы необходимые условия для нормального смесеобразования, сжатия и воспламенения. Это число оборотов для различных типов и кон­струкций двигателей не одинаково и зависит от способа смесеобразования и зажигания, от температуры поступающего воздуха и самого двигателя. У большинства дизелей пусковое число оборотов находится в пределах 100—200 в минуту.

Часто для облегчения и ускорения пуска двигателей применяют вспомогательные средства. При пуске во время раскручивания вала для уменьшения работы сжатия применяют декомпрессионные е устройства. Они могут представлять собой специальные кла­паны, сообщающие полости цилиндров с атмосферой, или устрой­ства, удерживающие впускные и выпускные клапаны в приоткрытом положении.

Прогрев с целью уменьшения вязкости масла и снижения потерь тепла в процессе сжатия облегчает пуск двигателя. Для этой цели в стационарных двигателях можно пропускать пар через рубашку охлаждения.

Пуск может быть облегчен запальными приспособлениями. К ним относятся тлеющие бумажные, пропитанные селитрой, патроны и свечи накаливания. Запальные патроны применяются в пред- камерных дизелях. Ввернутые перед пуском в предкамеру и соприка­саясь со впрыснутым распыленным топливом, запальные патроны способствуют вспышке топлива. Электрические свечи накаливания (фиг. 131) представляют собой нихромовую спираль 1 , вставленную одним концом в сердечник 2, а другим в корпус 3 .

Между сердечником и корпусом проложена слюдяная изоляция. Свечи накаливания устанавливаются в крышках цилиндров. Электри­ческий ток, проходя от сердечника к корпусу через спираль, нагре­вает ее до красного каления.

Для пуска калоризаторных двигателей обязателен предвари­тельный разогрев калоризатора.

В некоторых случаях для облегчения пуска вводят в поток вса­сываемого воздуха этиловый эфир, имеющий сравнительно низкую температуру самовоспламенения. Эфир испаряется и во время сжатия воспламеняется. Эфир может быть использован также в качестве при­садки к дизельному топливу, что понижает температуру его само­воспламенения.

Если дизели работают на тяжелых сортах топлива, то часто запуск производится на более легком дизельном топливе с последую­щим переводом па тяжелое.

В двигателях внутреннего сгорания применяются следующие способы проворачивания при пуске их в ход:

Система обеспечения холодного пуска двигателя

В экстренных случаях при отрицательных температурах окружающего воздуха и машины до минус 20°С, когда по времени не представляется возможным разогреть силовую установку, пускать двигатель можно без предварительного разогрева (холодный пуск).

Пуск холодного двигателя БМП возможен при условии, если система смазки двигателя заправлена маслом МТЗ-10п, трансмиссия – маслом ТСЗп-8, а давление воздуха в воздушном баллоне не менее 100 кгс/см 2 .

Система бесфорсуночного факельного подогрева (БФП) впускного воздуха (рис. 2.53) предназначена для обеспечения холодного пуска двигателя.

Тип подогревателя – бесфорсуночный факельный подогреватель

(БФП) впускного воздуха

Система БФП включает:

— четыре электрофакельные свечи;

— электромагнитный клапан (ЭК);

Электрофакельные свечи служат для дозировки и воспламенения топлива в момент прокрутки коленчатого вала двигателя при пуске и для обеспечения горения топлива при последующей работе двигателя.

Свечи попарно установлены во впускных коллекторах двигателя и состоят из нагревательного элемента, металлокерамического фильтра, жиклера, сетки и экрана.

Электромагнитный клапан предназначен для включения и отключения подачи топлива к электрофакельным свечам. С помощью кронштейна закреплен на двигателе. Клапан открывается при подаче на него напряжения и отключается при снятии напряжения.

Электрооборудование системы предназначено для управления БФП и включает в себя щиток управления, коробку управления, коробку сопротивлений и соединительные провода.

Щиток управления закреплен над щитком механика-водителя. На нем размещены кнопка ПУСК, лампы СВЕЧИ 1, 2, 3, 4, лампа ЭК и кнопка ВЫКЛ.

Коробки управления и сопротивлений размещены в нише левого борта слева от сиденья механика-водителя. На коробке управления расположены пять предохранителей и два штепсельных разъема для подключения коробки к бортовой сети. На коробке сопротивлений имеется также два разъема для аналогичных целей.

Работа системы

Для пуска в работу системы БФП необходимо нажать и отпустить кнопку ПУСК на щитке управления. В результате срабатывания коммутационной аппаратуры системы будет подано питание на цепи свечей и реле времени РВ-1.

Читать еще:  Шарарам что будет если собрать вечный двигатель у пина

Рис. 2.53.Система БФП:

1, 10, 12, 15 — трубопроводы; 2 — двигатель; 3 — свеча; 4 — впускной коллектор; 5 — экран; 6 — сетка; 7 — нагревательный элемент; 8 — фильтр; 9 — жиклер; 11 — планка; 13 — тройник; 14 — клапан.

Свечи подключаются через низкоомные сопротивления, находящиеся в коробке сопротивлений. О подаче питания на свечи сигнализируют лампы СВЕЧИ 1, 2, 3, 4, которые загораются. По истечении 90с реле времени РВ-1 срабатывает. Через его контакты запускается реле времени РВ-2, подается питание на электроклапан и его сигнальную лампу ЭК. Загорание лампы ЭК сигнализирует об окончании разогрева свечей и начале подачи топлива к свечам.

После загорания лампы ЭК производится пуск двигателя. При нажатии кнопки СТАРТЕР шунтируются дополнительные сопротивления цепей свеч, включается БЦН, подкачивающий топливо в топливную систему двигателя и подающий топливо к свечам, где оно воспламеняется. Горячие продукты сгорания, подогревая впускной воздух, всасываются в цилиндры двигателя, облегчая его пуск.

Послe пуска двигателя в течение 180с после загорания лампы ЭК работа двигателя будет сопровождаться работой БФК. После указанного времени сработает реле времени РВ-2, отключая всю схему управления БФП. Все сигнальные лампы на щитке управления БФК гаснут. Подача питания на свечи и электромагнитный клапан прекращается.

Для отключения системы БФП при аварийных ситуациях или с целью сокращения времени сопровождения работы двигателя системой БФК на щитке управления системой БФП имеется кнопка ВЫКЛ. При нажатии на эту кнопку электрическая схема системы приходит в исходное состояние. Для повторного включения системы нужно вновь нажать кнопку ПУСК.

Дата добавления: 2016-10-26 ; просмотров: 4167 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Система облегчения пуска холодного двигателя с эфу

Электрофакельное устройство (ЭФУ) предназначено для облегчения пуска холодного двигателя при температуре окружающего воздуха ниже минус 5°С. Применение ЭФУ эффективно при температуре окружающего воздуха до минус 22°С, при более низких температурах следует применять предпусковой подогреватель.

Принцип действия ЭФУ4 основан на подогреве воздуха, поступающего в цилиндры двигателя, факелом свечей. Топливо, поступающее к свече, сгорает не полностью. Несгоревшая часть его в виде паров и газа поступает в цилиндры, способствуя возникновению в камере сгорания дополнительных очагов воспламенения. Факельные свечи подсоединены к магистрали низкого давления системы питания двигателя топливом на участке фильтр тонкой очистки топлива — ТНВД.

При пуске двигателя топливоподкачивающий насос подает топливо через фильтр тонкой очистки 16 (рис. 37) к свечам 17. Перепускной клапан ТНВД 24 и клапан-жиклер фильтра тонкой очистки топлива 23 закрыты и топливо под давлением поступает на свечи ЭФУ с минимальной задержкой от момента открытия электромагнитного клапана 15. При давлении больше 25—45 кПа (0,25—0,45 кгс/см 2 ) клапан-жиклер открывается, поддерживая оптимальное давление перед жиклером свечи ЭФУ для устойчивого горения факела.

Сила тока, потребляемого ЭФУ, не превышает 24 А. Такое значение потребляемого тока не оказывает отрицательного влияния на последующий стартерный разряд аккумуляторных батарей. При этом в 4-6 раз снижается сила тока, потребляемого стартером, вследствие более ранних вспышек в цилиндрах двигателя.

При включении кнопки ЭФУ напряжение от аккумуляторных батарей через амперметр, реле включения ЭФУ и термореле подается на факельные свечи. Одновременно с разогревом свечей нагревается и срабатывает термореле, включая электромагнитный клапан и сигнализатор в блоке сигнализаторов. При этом клапан открывается и топливо поступает к свечам, а загорание сигнализатора указывает на готовность устройства к пуску двигателя.

Кроме того, при включении кнопки ЭФУ напряжение подается на реле, которое разрывает цепь обмотки возбуждения генератора, что необходимо для защиты свечей от напряжения, вырабатываемого генератором, когда выход двигателя на устойчивый режим сопровождается работой ЭФУ. Сохранение факела при малой частоте вращения коленчатого вала двигателя после пуска способствует быстрому выходу его на самостоятельный режим работы и уменьшению дыма, возникающего у непрогретого двигателя.

Сопротивление спирали термореле выбрано таким, чтобы на выводах свечей обеспечивалось напряжение 19В (номинальное напряжение свечи).

При пуске двигателя выключателем приборов и стартера через дополнительное реле включается стартер. Одновременно срабатывает реле, контакты которого шунтируют термореле, т. е. на выводы свечей подается напряжение минуя спираль термореле, так как при проворачивании коленчатого вала двигателя стартером напряжение на выводах батарей снижается.

Во избежание повышения напряжения на свечах после пуска двигателя, при работе ЭФУ так же предусмотрено отключение обмотки возбуждения генератора.

Читать еще:  Электрическая схема тягового двигателя постоянного тока

Способы пуска электродвигателей

Содержание

  1. Прямой пуск
  2. Пуск «звезда — треугольник»
  3. Сравнение DOL и пуска «звезда — треугольник»
  4. Пуск через автотрансформатор
  5. Плавный пуск
  6. Пуск с помощью преобразователя частоты
  7. Пусковые периоды

Источник статьи Книга «Электродвигатели» — результат совместной работы специалистов GRUNDFOS. (www.grundfos.com). В ней подробно рассмотрены основные элементы электродвигателя, принципы его работы, стандарты, способы защиты и вопросы технического обслуживания.

В настоящее время используются различные способы пуска электродвигателей. Современные энергоэффективные двигатели, имеющие более высокие пусковые токи, заставляют уделять большее внимание способам пуска.

Когда на электродвигатель подается напряжение, возникает скачок тока, который называют пусковым током или током при заторможенном роторе. Пусковой ток обычно превышает номинальный в 5-10 раз, но действует кратковременно. После разгона электродвигателя ток падает до минимального.

В соответствии с местными нормами и правилами, для того чтобы снизить пусковой ток, используются различные способы пуска. Вместе с этим необходимо принять ряд мер по стабилизации напряжения питания.

Пусковой ток понижается с разгоном электродвигателя до номинальной частоты вращения

Прямой пуск

Что такое прямой пуск

Как следует из названия, прямой пуск означает, что электродвигатель включается прямым подключением к источнику питания при номинальном напряжении. Прямой пуск (direct-online starting — DOL) применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса.

Прямой пуск от сети DOL является самым простым, дешёвым и самым распространённым методом пуска. Кроме того, он даёт наименьшее повышение температуры в электродвигателе во время включения по сравнению со всеми другими способами пуска. Если поступающий ток от сети не имеет специальных ограничений, такой метод является наиболее предпочтительным.

На электростанциях в разных странах действуют различные правила и нормы; например, в Дании для трёхфазных электродвигателей с током при заторможенном роторе около 60 А нельзя всегда использовать прямой пуск от сети. В таких случаях, очевидно, необходимо выбирать другие методы пуска. Электродвигатели, предназначенные для частых пусков/отключений обычно оборудованы системой управления, которая состоит из контактора и устройства защиты от перегрузок (термореле).

Для электродвигателей небольшой мощности, работающих без частых пусков/остановов, необходимо самое простое пусковое оборудование, чаще всего это расцепитель, управляемый вручную. Напряжение подается непосредственно на клеммы электродвигателя. Для небольших электродвигателей пусковой момент будет составлять от 150 до 300 % от номинального, тогда как пусковой ток будет составлять от 300 до 800 % от номинального значения или даже выше.

Пуск «звезда — треугольник»

Что такое пуск переключением «звезда — треугольник»

Целью данного метода пуска, используемого для трёхфазных индукционных электродвигателей, является понижение пускового тока. В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y). Электропитание переключается на схему «треугольник» (Δ), как только электродвигатель разгонится.

Обычно электродвигатели низкого напряжения мощностью больше 3 кВт рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (Δ) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при меньшем напряжении. Соединение по схеме «звезда — треугольник» дает низкий пусковой ток, составляющий всего одну треть тока при прямом пуске от сети. Пускатели «звезда — треугольник» особенно подходят при вращении больших масс, когда нагрузка «подхватывается» после того, как достигается частота вращения при номинальной нагрузке.

Подобные пускатели также понижают и пусковой момент, приблизительно на 33 %. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник».

Если переключение «звезда — треугольник» происходит при слишком низкой частоте вращения, это может вызвать сверхток, который достигает почти такого же уровня, что и ток при «прямом» пуске DOL. Во время небольшого периода переключения «звезда — треугольник» электродвигатель очень быстро теряет скорость вращения, для восстановления которой также требуется мощный импульс тока.

На иллюстрациях справа показана схема работы пускателя Y — D. Пускатель сначала соединяет электродвигатель по схеме «звезда» (контакты K1 и K3). По истечении определённого периода времени, который зависит от конкретной задачи, он переключает двигатель на «треугольник», размыкая контакт K3 и замыкая контакт K2.

Насосы и электродвигатели Grundfos, обозначенные 3 x 380-415 В Δ (но НЕ 690 В Y), могут быть пущены при помощи пускателей «звезда — треугольник», при этом фактическое напряжение на электродвигателе не должно превышать 400 В.

Читать еще:  406 двигатель подклинивает при запуске

Пусковой момент и ток значительно ниже при пуске «звезда — треугольник», чем при прямом пуске: одна третья тока при DOL.

На примере ниже электродвигатель медленно ускоряется до уровня, приблизительно, 50 % от номинальной частоты вращения, вследствие несогласованности зависимости частоты вращения электродвигателя от вращающего момента и зависимости нагрузки от вращающего момента.

Сравнение DOL и пуска «звезда — треугольник»

В следующих диаграммах представлены токи для насоса Grundfos CR, приводимого в действие электродвигателем Grundfos MG мощностью 7,5 кВт посредством прямого пуска (DOL) и пуска «звезда — треугольник», соответственно. Как Вы можете видеть, способ пуска DOL характеризуется высоким пусковым током, который с течением времени выравнивается и становится постоянным. Способ пуска «звезда — треугольник» характеризуется более низким пусковым током, однако, в процессе пуска при переходе от «звезды» к «треугольнику» наблюдаются пики.

При пуске по схеме «звезда» (t = 0,3 с), ток уменьшается. Однако, во время перехода от «звезды» к «треугольнику» (в точке t = 1,7 с), импульс тока достигает того же уровня, что и пусковой ток при прямом пуске. Скачок тока может стать ещё больше, так как в период переключения на двигатель не подаётся питание. Значит, двигатель теряет скорость перед подачей полного напряжения (фазового напряжения).

Пуск через автотрансформатор

Что такое пуск через автотрансформатор

Как видно из названия, такой пуск осуществляется с помощью автотрансформатора, последовательно соединённого с электродвигателем во время пуска.

Автотрансформатор понижает напряжение (приблизительно 50-80 % от полного напряжения), чтобы обеспечить пуск при низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента, но данный способ пуска даёт самый высокий вращающий момент электродвигателя. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как и в случае с пуском переключением «звезда — треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать.

Помимо уменьшения пускового момента, способ пуска через автотрансформатор имеет ещё один недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока.

Вращающий момент в зависимости от напряжения

Значения пускового момента пропорциональны квадрату напряжения.

Плавный пуск

Преимущества «плавного» пуска

Принцип «плавного» пуска основан на полупроводниках. Через энергетическую цепь и цепь управления данные полупроводники понижают начальное напряжение электродвигателя. Это приводит к уменьшению вращающего момента электродвигателя. В процессе пуска мягкий пускатель постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого вращающего момента или пиков тока. Плавные пускатели могут использоваться также для управления торможением электродвигателя. Плавные пускатели не так дороги, как преобразователи частоты.

Тем не менее, у них те же проблемы, что и у преобразователей частоты: они могут добавить в систему синусоидальные токи (помехи), что может повлиять на ее функционирование.

Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время пуска. Плавный пускатель включает электродвигатель при пониженном напряжении, которое затем увеличивается до полной величины. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Пусковой период и пусковой ток можно задать.

Пуск с помощью преобразователя частоты

Преобразователи частоты предназначены для пуска и управления электродвигателем.

Преобразователь частоты позволяет снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом.

Преобразователи частоты всё ещё дороже устройств плавного пуска, кроме того, как и устройства плавного пуска, они добавляют в сеть синусоидальные токи.

Пусковые периоды

Говоря о способах пуска, которые уменьшают пусковой ток, следует отметить, что период пуска не должен быть долгим. Слишком продолжительные периоды пуска могут вызвать перегрев обмоток.

Заключение

Задача любых способов пуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы пуска, каждый из которых имеет свои особенности. В следующей таблице в краткой форме представлены сравнительные характеристики наиболее распространённых способов пуска.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector