Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Беседы о ракетных двигателях

Беседы о ракетных двигателях

Просто о том, что кажется сложным

  • Привет!
  • Статьи
  • Ссылки
  • Об авторах
  • Карта сайта

Потери в камере ЖРД

Приветствую всех читателей нашего блога. Сегодня мы поговорим о способах учёта потерь в камерах ЖРД. Зачастую этому вопросу уделяется недостаточно внимания, и многие студенты, даже на старших курсах, путаются или не до конца понимают смысл тех или иных коэффициентов. Надеюсь, нижеследующий материал поможет в этом разобраться.

Системы коэффициентов потерь в ЖРД

Для оценки качества протекания процессов в ЖРД можно использовать различные системы коэффициентов.

Энергетические коэффициенты (к.п.д.). Коэффициенты полезного действия оценивают совершенство преобразования исходной энергии в полезную работу. Совершенство процессов горения в камерах сгорания ракетного типа, широко используемых в различных технологиях, оценивают внутренним к.п.д. камеры. Этим коэффициентом оценивают величину действительной температуры газа в камере сгорания.

Импульсные коэффициенты. Коэффициенты, оценивающие потерю удельного импульса тяги вследствие некачественного протекания процессов преобразования энергии. В ЖРД более распространены импульсные коэффициенты, которые оценивают не потерю энергии, а потерю скорости истечения или удельного импульса, так как для двигателя важной характеристикой является его силовое воздействие на летательный аппарат.

Покажем смысл импульсных к.п.д. и связь их с энергетическими. Запишем скорость истечения wa следующим образом

Используя соответствующие обозначения запишем

где ηoi и ηt — внутренний и термический к.п.д. соответственно.

Более удобной исходной величиной, чем теплота сгорания топлива Hu, является теоретическая скорость истечения wa ид, определяемая термодинамическим расчетом. Тогда можно записать

Переходя к удельному импульсу тяги, запишем, используя также импульсный коэффициент

Отсюда видна связь между энергетическим к.п.д. и импульсным коэффициентом потерь. Для определения действительного удельного импульса тяги обычно используют значение удельного импульса тяги в пустоте, которое можно получить, как и скорость истечения, термодинамическим расчётом.

Потери удельного импульса тяги определяются потерями в камере сгорания и в сопле. Эти потери оценивают соответственно коэффициентом потерь в камере φк, коэффициентом сопла φс. Коэффициент суммарных потерь импульса определяется произведением этих коэффициентов

Таким образом, импульсные к.п.д. однозначно связаны с соответствующими энергетическими к.п.д., но предпочтительнее их по соображениям практического удобства. Они широко используются в теории и расчётах ракетных двигателей.

Оценка потерь в камере сгорания

Для определения коэффициента, характеризующего совершенство процессов смешения и сгорания, используют характеристическую скорость.

где pкр 0 — полное (заторможенное) давление в критическом сечении, μс — коэффициент расхода.

Коэффициентом камеры сгорания φк называют отношение действительной характеристической скорости в камере и идеальной, вычисленной при тех же значениях соотношения компонентов и давления в камере сгорания

Наряду с характеристической скоростью часто применяется непосредственно расходный комплекс. В отличие от характеристической скорости расходный комплекс представляет собой произведение давления в некотором сечении камеры сгорания на площадь критического сечения, отнесённое к секундному расходу топлива через камеру

Для оценки эффективности камеры сгорания используется относительная величина

Введением в формуле (7) полного давления в критическом сечении и коэффициента расхода учитывается неидеальность процессов в камере сгорания и в сужающейся части сопла при течении продуктов сгорания. Идеальные значения характеристической скорости и расходного комплекса равны между собой и определяются термодинамическим расчётом.

Действительное значение расходного комплекса достаточно просто можно определить в эксперименте, измеряя давление в камере и расход топлива через камеру. Согласно стандарту давление в камере сгорания измеряют в сечении у форсуночной головки, где измеренное статическое давление равно полному давлению (pк = pк 0 ). Для определения значения характеристической скорости необходимо провести дополнительно довольно сложные расчеты. Выражение для коэффициента потерь в камере сгорания запишется уравнением

где σf = pc 0 /pк — коэффициент потерь полного давления на участке от форсуночной головки до входа в сужающуюся часть сопла; σc = pкр 0 /pc 0 — коэффициент потерь полного давления на участке от входа в сопло до критического сечения.

Оценка потерь на тепловое сопротивление камеры.

Очень большое влияние на параметры камеры сгорания оказывает соотношение между площадями камеры сгорания Fк и критического сечения Fкр. Отношение Fк/Fкр = F к называют безразмерной площадью камеры. В уравнениях тяги и удельного импульса, полученных теоретически, предполагалось, что скорость движения газов в камере равна нулю, а полное давление газов по длине камеры неизменно. Эти условия реализуются при очень больших значениях безразмерной площади камеры. Реальная камера сгорания имеет конечные геометрические размеры, и процесс в ней представляет собой течение сжимаемого газа в цилиндрической трубе с подогревом. При этих условиях возникает тепловое сопротивление, приводящее к потерям полного давления в камере сгорания и снижению её тяги и удельного импульса.

Потери полного давления зависят от безразмерной площади камеры. При F к = 1,0 (полутепловое сопло) потери полного давления достигают максимальной величины σf = 0,78…0,82. При выборе площади камеры сгорания необходимо учитывать потери на тепловое сопротивление. С увеличением безразмерной площади потери полного давления уменьшаются: при F к = 2…3, σf = 0,94…0,98, а при F к > 3 коэффициент восстановления полного давления σf → 1, тогда ими можно пренебречь.

Существенным ограничением при выборе малых значений F к является сложность процесса смесеобразования. Так как с уменьшением F к растёт величина расходонапряжённости r = ṁ /Fк. Для современных камер сгорания расходонапряжённость с ростом рк увеличивается.

Для определения расходонапряжённости камеры [кг/(c·м 2 )] можно принять эмпирическую формулу r = (0,8…1,3)·10 -4 рк. В этой формуле давление в Паскалях. По величине расходонапряжённости можно скорректировать или определить площадь камеры сгорания.

На величину потерь в камере оказывает влияние коэффициент расхода сопла (см. (10)). Коэффициент расхода учитывает толщину вытеснения пограничного слоя и неоднородность поля скоростей в критическом (минимальном) сечении камеры. Основная составляющая коэффициента расхода при различной форме дозвукового сопла мало зависит от показателя изоэнтропы, но зависит от радиуса входной части (r2 = R2/Rкр). При r2 = 1,5…2,0 μс = 0,993…0,998. Уменьшение коэффициента расхода сопла, связанное с толщиной вытеснения пограничного слоя, зависит от показателя изоэнтропы, величины r2 и числа Рейнольдса. Расчёты и эксперименты показывают, что при Re > 10 5 …10 6 это уменьшение составляет 0,001…0,002. Низкие числа Re характерны для двигателей малой тяги.

При научных исследованиях процессов в камерах сгорания и при опытной отработке вновь создаваемых двигателей для оценки их совершенства применяют, как правило, характеристическую скорость, а при испытаниях серийных двигателей, когда его конструкция уже отработана, в целях определения эффективности камер сгорания применяют расходный комплекс.

Читать еще:  Волга с двигателем крайслер заводится и глохнет

При проектировании камер сгорания обычно используют статистические данные значений коэффициента потерь в камере φк = 0,96…0,99, полученные на многообразии двигателей с различными параметрами и топливными компонентами.

Оценка потерь в сопле

Для оценки совершенства процессов в сопле, а также вклада его доли в создание тяги используются такие относительные показатели как тяговый комплекс и коэффициент тяги.

Тяговым комплексом KP называют отношение тяги камеры к произведению давления в камере на площадь критического сечения сопла

Знаменатель этой формулы представляет первую составляющую тяги камеры. Если разделить числитель и знаменатель на расход топлива через камеру, то получим следующее выражение тягового комплекса

Физический смысл тягового комплекса – во сколько раз тяга камеры больше её первой составляющей. Тяговый комплекс является характеристикой сопла. Чем больше его величина, тем больше роль сопла в создании тяги. Характерный диапазон значений KP = 1,2…2,0.

Наряду с тяговым комплексом используется коэффициент тяги KT:

Отношение действительного коэффициента тяги в пустоте к идеальному есть не что иное, как коэффициент сопла. Покажем это, используя уравнения (4), (5) и (7)

Так же как и характеристическую скорость, коэффициент тяги можно определить теоретически и в эксперименте. Сравнение экспериментальных значений с теоретическими значениями используется для анализа совершенства процессов в сопле.

Основные составляющие потерь в соплах следующие: потери тяги из-за трения; газодинамические потери, связанные с формой и особенностью профиля сопла; потери термодинамического характера, которые зависят от степени неравновесности, степени расширения газов в сопле и рода топлива.

При хорошо спрофилированных и изготовленных соплах потери в них составляют от 2,5 до 6,0%, то есть полный коэффициент сопла может принимать значения в диапазоне. φc = 0,940…0,975.

Понятие тяги двигателя 1025

Для правильного решения методических вопросов, связанных с измерением тяги воздушно-реактивных двигателей на наземных и высотных стендах, важно конкретизировать понятие тяги двигателя. В расчетных и экспериментальных исследованиях используется значение тяги по внутренним параметрам, соответствующее уравнению

В этом уравнении GвVп — входное количество движения, остальные члены образуют так называемую тягу сопла

которую можно выразить в другой форме, через импульс потока в выходном сечении сопла:

Нетрудно убедиться, что выражение (5.3) соответствует тяге гипотетической силовой установки (рис. 5.4, б), которая отличается следующими особенностями. Площадь входа в воздухозаборник равняется площади невозмущенного потока Fн, при этом статистическое давление в этом сечении равняется давлению окружающей среды рн, а скорость — скорости полета Vг.

Рис. 5.4. Гипотетическая силовая установка: a — при H=0, М=0; б — при полетных условиях

Наружный поток не создает сил трения, а давление на наружной поверхности равняется давлению рн. При этом предполагается, что воздухозаборник с полностью внутренним сжатием имеет коэффициент сохранения полного давления реального или стандартного воздухозаборника sв=f(М).

Определение тяги при Н=0 и М=0

Применительно к условию М=0 схема гипотетической силовой установки преобразуется к виду, показанному на рис. 5.4, а. Площадь входа становится бесконечно большой, а скорость потока на входе — нулевой. Тогда уравнение для определения тяги имеет вид

При этом предполагается, что потери полного давления в воздухозаборнике отсутствуют и полное давление на входе в двигатель равняется давлению окружающей среды, которое для условий Н=0, М=0 обозначается р, т.е. равняется атмосферному давлению.

Компоновку, показанную на рис. 5.4, а, на практике осуществить нельзя, поэтому она заменяется компоновкой с лемнискатным входом (рис. 5.5), в которой воздух на вход в двигатель подается из всего окружающего пространства. Выбрав площади контрольных сечений 1, 2 бесконечно большими и применяя уравнение количества движения для контура, ограниченного сечениями 1, 2, с, найдем, что и в этом случае сила, действующая на силоизмерительное устройство стенда, находится по уравнению (5.7).

Компоновка, показанная на рис. 5.5, реализуется на открытом стенде с коротким хорошо спрофилированным входным устройством, потери полного давления в котором близки к нулевым. На таком стенде сила, измеряемая силоизмерительным устройством стенда, равняется тяге двигателя. При этом важно отметить, что полное давление на входе в двигатель равняется давлению окружающей среды p.

Открытые стенды из-за трудностей обслуживания и вредного шумового излучения не получили широкого распространения. Как правило, испытания проводятся на закрытых стендах, воздух к двигателю подается через входную шахту, а выхлопные газы выбрасываются через выхлопную шахту (рис. 5.6). Условия течения во входном устройстве двигателя и условия его обтекания на таком стенде отличаются от условий работы на открытом стенде.

Расход воздуха через бокс складывается из расхода воздуха через двигатель Gв и расхода воздуха Gобд, обдувающего двигатель, входное устройство, подмоторную раму, коммуникации со скоростью до 15 м/с, что приводит к появлению дополнительных сил и усложнению определения тяги на таких стендах. Давление в начальном сечении бокса р1 и конечном сечении р3 из-за потерь в шахте меньше атмосферного, при этом может наблюдаться градиент давления по длине бокса и давления р1 и р3 не равны друг другу. Скорости обдувающего воздуха в сечениях 1, 3 также могут различаться между собой.

Рис. 5.6. Схема установки двигателя на закрытом стенде

Выберем контур, ограниченный начальным сечением бокса и сечением, проходящим через выходную плоскость сопла. При таком выборе контура учитываются все силы, действующие на двигатель, входное устройство, защитную сетку, коммуникации, подмоторную раму, динамометрическую платформу со стороны воздуха, проходящего через двигатель и бокс. Эти силы воспринимаются силоизмерительным устройством. Их сумму обозначим Рст. Применив уравнение количества движения для выбранного контура, ограниченного сечениями 1. 3, получим

(5.8)

Силой трения о стенки Ртр можно пренебречь или при необходимости вычислить ее по скорости и коэффициенту трения на стенке. Первые два члена в уравнении (5.8) по форме представляют собой тягу двигателя на открытом стенде при давлении окружающей среды p, равном полному давлению на входе р*в:

Количественно указанное соответствие будет выполняться, если отличие давления в окрестности реактивного сопла р3 на закрытом стенде от полного давления на входе р*в не оказывает влияния на внутренние параметры двигателя, что справедлива, если степень понижения давления в сопле выше критической. Тогда из (5.8) и (5.9) следует

Читать еще:  Двигатель ваз 2110 16 клапанов где находится датчик температуры двигателя

Поправка к измеренной величине силы Fс(р*в3) учитывает отличие давления р3 от р*в. Поправка DРаэр связана с аэродинамикой стенда и учитывает отличие условий работы двигателя на закрытом стенде от условий открытого стенда:

Если степень понижения давления в сопле докритическая, то необходимо учитывать поправку DРреж, связанную с изменением режима работы двигателя вследствие отличия полного давления на входе от давления окружающей среды рн, в итоге

Поправка DРаэр находится при аттестации испытательного стенда путем подробного измерения полей давлений и скоростей в характерных сечениях бокса. Поправку DРреж можно найти либо расчетным путем по математической модели двигателя, либо экспериментальным при испытаниях двигателя на высотном стенде, где можно произвольно менять отношение давлений р*в/ р3. Сравнительными испытаниями одного и того же экземпляра двигателя на открытом и наземном стендах можно определить суммарную поправку

В качестве эталонного стенда вместо открытого можно использовать также и высотный стенд.

Тяга поездов: Учебное пособие. Часть 1 , страница 19

Сила тяги является управляющим воздействием поезда (входом), скорость движения — регулируемой величиной (выходом), сопротив­ление движению поезда— возмущающим воздействием (входом) 1241.

Тяговые характеристики локомотивов являются статическими пото­му, что получены экспериментально при равновесном взаимодействии управляющих и возмущающих воздействий и движении с равномерной

скоростью. Если расчет скорости движения поездов производится с ис­пользованием тяговых характеристик, то переходные процессы не учитываются.

В эксплуатации преобладают динамические процессы тяги, при ко­торых переменные состояния поезда и локомотива изменяются во вре­мени. Однако динамические процессы определяются местными усло­виями движения: профилем пути, массой и ходовыми свойствами по­езда, организацией движения поездов и т. д. Построить динамическую тяговую характеристику с учетом всех эксплуатационных факторов не­возможно. Поэтому использование статических характеристик в тяго­вых расчетах является упрощающим допущением.

Тяговые характеристики тепловозов и электроподвижного состава (ЭПС) имеют принципиальные различия. Тепловозы имеют автоном­ный источник энергии — дизель, мощность которого ограничена, и по­этому возникает ограничение силы тяги по дизелю. Мощности дизеля и внешней нагрузки соизмеримы, и поэтому переменные состояния по­езда в процессе движения оказывают существенное влияние на режим, параметры и энергетическую эффективность работы тепловоза.

Для повышения провозной и пропускной способности дорог при ог­раниченной мощности генератора энергии необходимо иметь гипербо­лическую тяговую характеристику тепловозов. В таком случае мощ­ность дизеля используется более полно при различных скоростях дви­жения. Графический вид тяговой характеристики тепловоза определя­ется типом, параметрами тяговой передачи и ее ограничениями.

У электровозов нет ограничения в получаемой энергии, а перемен­ная внешняя нагрузка не оказывает влияния на режим и параметры ге­нераторов энергии — электростанций.

Магистральные тепловозы и электровозы переменного тока имеют только параллельное соединение двигателей, и поэтому тяговые харак­теристики при соединениях С и СП отсутствуют.

Регулирование скорости и силы тяги изменением возбуждения тя­говых двигателей у тепловозов производится автоматически, а у боль­шинства электровозов — изменением позиции контроллера при ско­ростях, установленных нормативами ПТР.

У электровозов постоянного тока скорость движения зависит от напряжения на зажимах двигателей и не зависит от тока нагрузки, по­этому их тяговую характеристику строят по электромеханическим ха­рактеристикам двигателя. У электровозов переменного тока напряже­ние на зажимах двигателя зависит от тока нагрузки, и поэтому тяговую характеристику электровоза необходимо строить с учетом внешней ха­рактеристики выпрямительной установки.

Таким образом, тяговые характеристики локомот-ивов имеют огра­ничения по ресурсам и по надежности работы: у тепловозов по дизелю, по тяговой передаче, по сцеплению и конструкционной скоро­сти; у электровозов — по тяговым двигателям, по сцеплению и по конструкционной скорости. 46

Локомотивы проектируют из условия равенства мощности указан­ных сил тяги в расчетном режиме. При отклонении режимов от расчет­ных происходит рассогласование сил тяги на ступенях передачи мощно­сти вследствие различной физической природы процессов. В результа­те какая-то из перечисленных сил окажется наименьшей. Очевидно, локомотив в состоянии реализовать только наименьшую из ограничи­тельных сил тяги.

Имеются и другие ограничения силы тяги и режимов работы локо­мотивов: по нагреванию обмоток электрических машин, по коммута­ции тока, по прочности автосцепок и т. д. Параметры этих ограниче­ний зависят не только от конструкции и характеристик соответствую­щих агрегатов, но и от режимов работы. Поэтому их нельзя показать на тяговых характеристиках. Предельные величины таких параметров установлены нормативами ПТР, а фактические значения бпределят-ся тяговыми расчетами в конкретных условиях эксплуатации.

К тяговым свойствам и характеристикам локомотивов предъявля­ют следующие требования: высокая мобильность (постоянная готов­ность локомотива к движению); реверсирование без изменения направ­ления вращения коленчатого вала дизеля; небольшая продолжитель­ность переходных процессов; изменение силы тяги и скорости движе­ния в широком диапазоне. Магистральные тепловозы должны иметь высокие секционную мощность и силу тяги для вождения поездов боль­шой массы с высокой скоростью, а также возможность работы по систе­ме многих единиц для рациональной организации использования тяго­вых средств в разнообразных условиях эксплуатации. Быстрый раз­гон поезда — «резкость» имеет большое значение для увеличения про­пускной способности станций, сокращения времени и числа остановок поездов у запрещающих сигналов по неприему станций, своевремен­ного выхода на расчетные значения силы тяги и скорости перед входом на подъем, прилегающий к станции. Разгон поезда производится при сравнительно низких скоростях и полном использовании силы тяги по сцеплению. При этом коэффициент сцепления движущих колес с рель­сами изменяется незначительно, а ток нагрузки достигает большей ве­личины.

Отсюда следует, что тепловоз должен обладать высокими пусковыми характеристиками: обеспечивать плавный разгон поезда с постоянным ускорением, иметь силу тяги, предельную по сцеплению, и автомати­ческую защиту тяговых генераторов от перегрузочных токов. Совре­менные грузовые тепловозы обеспечивают ускорение до 0,2 м/с2, манев­ровые -•• до 0,3 м/с2, пассажирские — до 0,4 м/с2. Высокоскоростные пассажирские поезда имеют ускорение до 0,6 м/с2, более высокие уско­рения недопустимы по биологическому дискомфорту.

Тепловозы относятся к автономным видам тяги, имеющим собствен ный генератор энергии, преобразуемой в энергию движения поезда. Мощность дизель-генератора ограничена. При движении поезда на перевалистом профиле пути скорость и сопротивление движения могут

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читать еще:  Датчик холостого хода двигателя лада приора

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Лучшие авиадвигатели для истребителей с точки зрения их тяги

Тяга – один из ключевых параметров двигателя боевого самолета

В авиации тягой называют силу, толкающую самолет в воздушной среде. Ей противостоит лобовое сопротивление. Если машина летит прямолинейно и горизонтально с постоянной скоростью, то тяга будет примерно равна лобовому сопротивлению.

Чаще всего тягу измеряют в килоньютонах (кН) или килограмм-силах (кгс). Грубо на одну килограмм-силу приходится 10 ньютонов. А если точно, то 1 кгс = 9,80665 Н.

Используя этот показатель, отберем три самых лучших двигателя по тяге. Чтобы упростить задачу, будем сравнивать их тягу по максимальному показателю в режиме форсажа.

Двигатели для семейства истребителей Су-27

Российские истребители Су-27, Су-30 и Су-35 относятся к единому семейству. Основой для проектирования конструкции более поздних Су-30 и Су-35 стал Су-27.

В боевом самолете Су-27 используется турбореактивный двухконтурный двигатель АЛ-31Ф с форсажной камерой. На каждый истребитель устанавливают по два таких двигателя. Их также используют для оснащения истребителей Су-30. Такой двигатель в режиме форсажа способен развивать максимальную тягу 122,6 кН.

В более новом истребителе Су-35 применен уже другой двигатель – АЛ-41Ф1С, обладающий управляемым вектором тяги. Это изделие, как и предыдущее, имеет длину 4,9 метра и диаметр 1,2 метра. Несмотря на то, что новый агрегат имеет такие же габариты, он способен развивать гораздо большую тягу, чем предшественник. Она составляет уже 142,2 кН.

Американский чемпион F-22

Истребители F-22, выпускаемые в США, оборудованы двигателями Pratt&Whitney F119-PW-100. На сегодняшний день их выпущено более 500 единиц. Это изделие представляет собой двухвальный двигатель, оснащенный роторами высокого и низкого давления с противовращением.

По тяге, которая составляет почти 155 кН, F119-PW-100 имеет полное право на звание лидера среди двигателей для истребительной авиации. Правда с некоторыми оговорками.

Как говорилось ранее, тяга является далеко не единственной характеристикой. Поэтому из-за большей массы максимальная скорость, развиваемая F-22, ниже, чем скорость Су-35, хоть американец и развивает большую тягу, чем россиянин.

Помимо этого, как оказалось, двигатели F119-PW-100 вырабатывают свой ресурс быстрее, чем рассчитывали. Поэтому ВВС США уже начинают испытывать дефицит этих изделий.

С другой стороны, если ресурс двигателей подходит к концу, это говорит об их интенсивной эксплуатации. А активное использование изделий свидетельствует о том, что он нашел свое место в американской военной авиации и вполне устраивает по своим характеристикам своих пользователей.

Унифицированный российский авиадвигатель

В июле этого года управляющий директор Опытно-конструкторского бюро имени Люльки при Уфимском моторостроительном ПО Евгений Семивеличенко рассказал агентству РИА Новости о начале разработки нового универсального авиадвигателя для истребителей Су-27, Су-30 и Су-35. При этом изделие можно устанавливать на любой из трех типов самолетов без доработки планера.

Планируется улучшение технических характеристик двигателя по сравнению с предшественниками, причем в нем будут задействованы узлы, уже задействованные в предыдущих моделях.

Унификация двигателей для истребителей разных типов является положительным фактором с точки зрения экономики их производства. При этом станет дешевле и проще обслуживать эту технику в частях.

И когда создадут первый прототип нового двигателя, будет интересно узнать его технические характеристики, в том числе и развиваемую тягу.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector