Дизельный двигатель: устройство, принцип работы, преимущества
Дизельный двигатель: устройство, принцип работы, преимущества
Дизельный двигатель
Дизельный двигатель (дизель) представляет собой поршневой ДВС, принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.
Конструкция дизеля в целом мало чем отличается от бензинового двигателя, за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).
Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива – на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.
Принцип действия дизельного двигателя
Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.
Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.
Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.
Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени 🙂 ) виды топлива, снижая уровень затрат на его обслуживание и заправку.
Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.
Типы дизельных двигателей
По конструкционным особенностям камер сгорания дизели можно разделить на три типа:
- С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
- С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем. Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны – повышают уровень шума при работе двигателя.
- Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.
Топливная система в дизельном двигателе
Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.
Важными элементами топливной системы в дизельном двигателе являются:
- насос высокого давления для подачи топлива (ТНВД);
- топливный фильтр;
- форсунки
Топливный насос
Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива – рядные (плунжерные) и распределительные.
Топливный фильтр
Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.
Форсунки
Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок – с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.
Холодный пуск и турбонаддув дизельного двигателя
Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов – свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.
Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.
Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель, не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.
76. Классификация тракторных и автомобильных двигателей. Основные механизмы, системы двигателей и их назначение.
Тракторные и автомобильные двигатели внутреннего сгорания классифицируются по следующим признакам:
1. По способу смесеобразования — на двигатели с внешним и внутренним смесеобразованием. К двигателям с внешним смесеобразованием относятся карбюраторные и газовые двигатели, а к двигателям с внутренним смесеобразованием — дизели и калоризаторные двигатели.
2. По способу воспламенения рабочей смеси — электрической искрой, запальным шаром и без постороннего источника воспламенения (дизели). Воспламенение рабочей смеси в карбюраторных и газовых двигателях, имеющих низкие степени сжатия, осуществляется электрической искрой; в дизелях из-за больших степеней сжатия и высокой температуры сжатого воздуха топливо, подаваемое в их цилиндры с помощью насоса и форсунки, воспламеняется от горячего воздуха без постороннего источника зажигания.
3. По виду применяемого топлива — на двигатели легкого или светлого топлива (бензин, лигроин, керосин), на двигатели тяжелого топлива (дизельное топливо, соляровое масло, нефть) и двигатели газообразного топлива (генераторный и природные газы).
4. По способу осуществления рабочего цикла — на двигатели четырехтактные и двухтактные.
5. По числу цилиндров — на двигатели одноцилиндровые и многоцилиндровые (двух-, трех-, четырех-, шести и восьмицилиндровые и т. д.).
6. По расположению цилиндров — на двигатели вертикальные, горизонтальные и V-образные с цилиндрами, расположенными под углом. При угле расположения цилиндров 180° двигатель называется оппозитным.
7. По охлаждению — на двигатели с водяным или воздушным охлаждением.
8. По назначению — на двигатели транспортные и стационарные.
Четырехтактные карбюраторные и газовые двигатели имеют следующие механизмы и системы: кривошипно-шатунный механизм, механизм газораспределения, систему питания, механизм регулирования, систему зажил систему смазки, систему охлаждения и систему пуска.
Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Кривошипно-шатунный механизм состоит из следующих деталей: цилиндра 7 (рис. 9), закрытого головкой 16, поршня 10 с кольцами, поршневого пальца 77, шатуна 18, коленчатого вала 1 с маховиком. Механизм газораспределения обеспечивает своевременный впуск в цилиндр свежей горючей смеси (в дизелях — воздуха) и выпуск из цилиндра отработавших газов. Механизм газораспределения состоит из впускного 6 и выпускного 8 клапанов (рис. 9), пружин 9, толкателей 11, распределительного вала 2 и приводных шестерен 3. Система питания в карбюраторном двигателе служит для приготовления горючей смеси необходимого состава. Она состоит из топливного бака, топливопроводов, фильтра-отстойника, насоса, карбюратора, воздухоочистителя, впускных и выпускных труб. Механизм регулирования обеспечивает ручное и автоматическое регулирование числа оборотов коленчатого вала в зависимости от нагрузки двигателя.
Система зажигания служит для зажигания рабочей смеси в цилиндре двигателя. Она состоит из источника электрического тока низкого напряжения, приборов для преобразования тока низкого напряжения в ток высокого напряжения и для распределения тока высокого напряжения, проводов и свечей. Система смазки обеспечивает надежную смазку трущихся поверхностей деталей. Система смазки состоит из масляного насоса, фильтров, маслопроводов и каналов, масляного радиатора, контрольных и измерительных приборов. Система охлаждения предназначена для охлаждения нагревающихся деталей двигателя. Она состоит из водяной рубашки, радиатора, патрубков, вентилятора, водяного насоса и термостата, паровоздушного клапана и термометра. Четырехтактные дизели имеют те же механизмы и системы, что и карбюраторные двигатели, за исключением системы зажигания. Кривошипно-шатунный механизм, система смазки и система охлаждения дизелей в принципе ничем не отличаются от механизмов и систем карбюраторных двигателей. Механизм газораспределения имеет декомпрессионное устройство, которое выключает компрессию для облегчения вращения коленчатого вала дизеля при пуске. В системе питания дизелей имеются насос и форсунка, при помощи которых топливо впрыскивается в камеру сгорания в конце хода сжатия в мелко- распыленном виде. Система пуска дизелей состоит из пускового двигателя или стартера, силовой передачи и приспособлений для подогрева охлаждающей воды и засасываемого воздуха.
77.ЗЕРНОВАЯ СУШИЛКА , зерносушилка, машина для сушки зерна. Нек-рые 3. с. применяют также для сушки семян подсолнечника, трав, овощных культур. В с. х-ве СССР 3. с. используют назерноочистительно-сушильных пунктах индивидуально или в составе зерноочистительно-сушильных комплексов. Наиб. распространены прямоточные 3. с. (шахтные, барабанные и др.), к-рые м. 6. стационарными и передвижными, а также рециркуляционные 3. с. Шахтные 3. с. рекомендуются для сушки семенного, продовольств. и фуражного зерна во всех зерновых р-нах СССР. Сушильной и охладит, частями шахтных 3. с. являются вертикальные прямоугольного сечения шахты с горизонт, рядами коробов, по к-рым подводится свежий или отводится отработанный теплоноситель (смесь топочных газов с воздухом либо воздух) и охлаждающий воздух. Темп-ра теплоносителя в шахтных 3. с. при сушке семенного зерна не должна превышать 70 — 80° С, продовольственного — 100 — 110° С. Производительность шахтных 3. с. 8 — 50 т/ч. Стационарные шахтные 3. с. (СЗШ-16А и СЗШ-8) используют для сушки зерна с влажностью до 28%. В 2 шахтах сушильной камеры зерно высушивается при параллельном пропуске по шахтам или последовательном по обеим шахтам. После каждого пропуска зерно охлаждается в колонке. Передвижные шахтные 3. с. (ЗСПЖ-8 и К4-УСА) смонтированы на шасси автомобильного прицепа. За 1 пропуск через шахтную 3. с. влажность зерна снижается на 4 — 6% (при параллельной работе шахт) или на 6 — 12% (при последоват. работе шахт). Сушке в шахтных 3. с. должна предшествовать очистка зерна от крупных и соломистых примесей. Бара анные 3. с. рекомендуются для сушки продовольств. и фуражного зерна во всех зонах СССР. Реже применяются на сушке семян. Сушильной частью барабанных 3. с. является вращающийся барабан с продольными полками (лопастями) внутри для подъёма и перемешивания материала. 3. с. этого типа не требовательны к чистоте исходного материала и могут сушить его без предварит. очистки. В барабанных З.с. при сушке семенного зерна влажностью до 25% темп-ра теплоносителя не должна быть более 145 — 165° С, а при сушке продовольств. зерна влажностью более 25% — 180 — 200° С. Производительность барабанных 3. с. 2 — 8 т/ч. Стационарные барабанные 3. с. сушат зерно любой влажности. Применяемые 3. с. (СЗСБ-8) оборудованы 6-лопастным барабаном с подъёмно-лопастной системой. Зерно, поступающее во вращающийся барабан, поднимается его лопастями и крестовинами, а затем сбрасывается вниз. При этом под напором теплоносителя оно перемещается вдоль барабана. Агент сушки омывает ссыпающееся и лежащее >на полочках зерно и высушивает его. Передвижная барабанная 3. с. (СЗПБ-2,5) смонтирована на раме с пневматич. колёсами и буксирным устройством. Влажность зерна за 1 пропуск его через барабанную 3. с. снижается на 5 — 8%. В рециркуляционных 3. с. зерно после кратковременного нагрева газовоздушной смесью, имеющей темп-ру до 300° С, попадает в зону тепломассообмена, затем в камеры промежуточного и окончат, охлаждения. Из камеры окончат, охлаждения выходит высушенное зерно, а из камеры промежуточного охлаждения подсушенное зерно поступает вместе с сырым зерном в камеру нагрева. В зоне тепломассообмена происходит частичное выравнивание темп-ры и влажности сырого и рециркулирующего зерна. За один пропуск через рециркуляционные 3. с. зерна влажность его снижается до кондиционной. Производительность рециркуляционных 3. с. до 50 т/ч. В с. х-ве используют также 3. с. с неподвижным зерновым слоем — напольные или с камерами треугольной, ромбовидной и цилиндрич. формы. В качестве топлива для всех типов 3. с. используются дрова, уголь, торф, жидкое топливо, природный газ. За рубежом в осн. применяют 3. с. шахтные производительностью от 0,5 до 50 т/ч и лотковые (непрерывного и периодич. действия) производительностью от 0,5 до б т/ч.
78. КАРТОФЕЛЕХРАНИЛИЩЕ , здание или сооружение для хранения картофеля. К. различают: по назначению — хранилища семенного, фуражного и продовольств. картофеля; по способу хранения — россыпью, в таре; по способу поддержания температурно-влажностного режима — с механич. общеобменной _вентиляцией (общее вентилирование помешения с активной вентиляцией (принудит, подача воздуха в массу картофеля), с искусств, охлаждением (с механич. общеобменной или активной вентиляцией. В К., помимо хранения, семенной картофель сортируют, калибруют, проращивают и производят товарную обработку прод. картофеля перед реализацией. Как правило, К. строят одноэтажными. В городах или на огранич. по площади земельных участках иногда строят многоэтажные К.В р-нах с зимней темп-рой наруж. воздуха ниже — 20 °С и при условии отсутствия грунтовых вод на глуб. 3 м иногда строят заглублённые или полузаглублённые К., обвалованные грунтом; в р-нах с более тёплым климатом или в условиях более высокого стояния грунтовых вод — наземные. К. строят преим. каркасными, бесчердачными с применением сборных несущих и ограждающих конструкций; полы устраивают из бетона, асфальтобетона, в закромах иногда земляные. Общая вместимость К. обычно 1000—20000т, при этом макс, вместимость секций 1500 т. Доставляют картофель в К. автомашинами или тракторными прицепами. Далее с помощью машин и механизмов картофель укладывают в местах хранения россыпью (вые. насыпи 5—6 м) или в таре (вые. хранения 5,5м). На протяжении всего периода хранения в К- поддерживают необходимые параметры микроклимата. Постоянство режима хранения поддерживается системами автоматизации, к-рые регулируют темп-ру приточного воздуха, а также темп-ру в массе картофеля. Кроме того система автоматически защищает картофель от переохлаждения и подмораживания, включает и выключает вентиляц. установки в зависимости от показателей тер-мо- и влагорегуляторов. Для загрузки и выгрузки картофеля используют систему машин, обеспечивающих комплексную механизацию трудоёмких работ. Транспортёры , подъёмники , погрузчики, подборщики, поточные линии, состоящие из переборочных, сортировочных, моечных, сушильных и фасовочных машин, полностью исключают ручной труд. Если в х-ве К. нет или оно недостаточной ёмкости , сооружают временные К. (бурты, траншеи). При правильном устройстве и эксплуатации они обеспечивают удовлетворит, режим хранения, но требуют большого кол-ва утеплит, материала и не позволяют реализовать картофель зимой. • Общесоюзные нормы технологического проектирования зданий и сооружений для хранения и обработки картофеля и овощей. ОНТП 6-80, М., 1981.
79.Классификация тормозных систем. Тормозная система предназначена для снижения скорости движения авто вплоть до полной остановки и обеспечение его неподвижности во время стоянки. В процессе торможения кинетическая энергия авто переходит в работу трения между фрикционными накладками и тормозным барабаном или диском, а также между шинами и дорогой. Современные авто и автопоезда должны иметь рабочую, запасную и стояночную тормозные системы. Грузовые авто и автопоезда полной массой свыше 12т.дополнительно должны иметь вспомогательную тормозную систему. К тормозным системам предъявляют следующие требования: обеспечение эффективного торможения; сохранение устойчивости авто при торможении; стабильные тормозные свойства; удобства и легкость управления. Рабочая тормозная система предназначена для управления скоростью автотранспортного средства(АТС) и его остановки с необходимой интенсивностью. Запасная тормозная система предназначена для уменьшения скорости и остановки АТС при отказе рабочей тормозной системы. Стояночная тормозная система служит для удержания АТС в неподвижном состоянии. Вспомогательная тормозная система предназначена для уменьшения энергонагруженности тормозных механизмов рабочей тормозной системы, например при движении на длинных спусках. Тормозная система состоит из тормозных механизмов и тормозного привода.
80. По средством зрения чел. воспринимает до 90%необход.для работы информации. Сост.зрения опр.след .св-вами глаза: острота зрения ,скорость зрительн. восприятия, контрастная чувствительность ,зрительная адаптация. Пр.освещение характеризуется качественными(фон, видимость) и количественными(световой поток, сила света, яркость поверхности) показателями. Световой поток-лучистая энергия, вызыв. световое осущение (люмин). Естеств. освещ.- основной нормированной величиной принят коэф. естеств. освещения e=(Евнутр. помещ./Еосвещ. Снаружи здания)*100.Расчет:площадь оконFo=Fn(площадь пола)*α(световой коэф.0,2..0,3);высота оконho=h-(h1+h2),h-высота помещения,h1-выс.от пола доподоконника1,2м,h2-выс.от верха окна до потолка0,5м; Приведенная ширина оконL=Fo/ho;число оконn=L/bo-ширина окна по нормам строит.
проектирования. Нормы требуемого уровня искусств. освещения устан. СНиП в завис. отпринятых источников света. Расчет: выбирается тип источника света, система освещения, по таблицам СНиП определяет норму освещенности; выбирается тип светильника и способ освещения, размещение их в помещении и рассчитывается освещенность в интересующих точках.
81. Чистый свежий воздух представляет собой смесь, состоящую из 77% азота,21% кислорода,1% углекислого газа и других активных газов. В производственных усл-ях воздух, как правило, загрязняется вредными и опасными для человека парами, газами,а также пылью. Основные источники загрязнения: авто, метеллургич. и химзаводы. Вред. в-ва по степени опасности делятся на 4 класса: чрезвычайно опасные, высоко опасные, умеренно опасные, малоопасные. Контроль: для вредных в-ств 1кл.контроль осуществляется непрерывно, автоматически. Для 2,3,4кл.-переодически.Меры защиты: ограничение концентрации, применение местных отсосов и вентиляции, использования СИЗ и спецодежды, использование влажных способов переработки, проведение предварительных медосмотров.
Двигатель в прогрессе: для чего делают новые российские дизели
Кому нужны дизели
По данным аналитического агентства «Автостат», каждый десятый автомобиль в Москве ездит на дизельном двигателе. Но в некоторых регионах доля еще выше — например, на Чукотке она составляет 26,1% от всего регионального парка.
Автомобилистов привлекает в первую очередь экономичность в использовании топлива. Дизельные двигатели имеют КПД около 40–45%. Это ощутимо больше, чем в бензиновых, где показатель не превышает 30%, то есть две трети топлива сгорает, не превращаясь в механическую энергию.
Однако легковой автопром — далеко не главный потребитель дизельных двигателей. Их используют для тяжелой грузовой и промышленной техники, железнодорожных локомотивов, судов. Кроме того, дизельные агрегаты применяют в энергетике — например, на атомных станциях устанавливают резервные дизель-генераторы.
Дизели — это поршневые двигатели внутреннего сгорания. Здесь смесь топлива и воздуха подвергается сильному сжатию, в результате разогревается и воспламеняется. Механизм отличается от бензиновых двигателей, где сжатая смесь топлива и воздуха поджигается электрической искрой.
Первым новый агрегат построил и описал немецкий инженер Рудольф Дизель в конце 1890-х годов. Уже тогда изобретение превосходило по КПД существующие двигатели внутреннего сгорания, паровые машины и паровые турбины.
Разработкой заинтересовалась промышленность и энергетика, и спустя почти полтора века дизели по-прежнему пользуются спросом в этих отраслях. Помимо КПД, такие двигатели отличаются от бензиновых долговечностью и большим крутящим моментом, который тесно связан с показателями мощности.
Общий объем глобального рынка дизелей в 2020 году достиг $207 млрд, подсчитали в компании IMARC Group. Аналитики прогнозируют, что в ближайшие пять лет показатель вырастет почти до $265 млрд. По их словам, ситуацию определяет растущий спрос на коммерческие автомобили и машины большой грузоподъемности. Вдобавок рост автопрома и быстрая урбанизация, особенно в развивающихся странах, стимулируют создание эффективной энергетической инфраструктуры, а для этого тоже нужны дизель-генераторы.
В РФ есть устойчивый спрос на дизели, и он увеличивается с каждым годом. Причем, как отмечают эксперты, спрос растет как за счет развития промышленности и экономики, так и на фоне западных санкций, которые ограничивают поставки в Россию зарубежного оборудования.
Что случилось с рынком
Собственное двигателестроение было хорошо развито в СССР, но имело особенности, которые до сих пор влияют на состояние рынка. На создание и развитие отрасли были направлены серьезные ресурсы. Но планово-директивный тип ведения хозяйства привел к полному отсутствию внутренней конкуренции и безусловному «закреплению» видов и семейств двигателей внутреннего сгорания за производителями. По сути, каждый вид или семейство «принадлежали» одному предприятию и были для потребителей безальтернативны. Например, Челябинский тракторный и Алтайский моторный заводы делали дизели для тракторов, а завод «Звезда» — судовые.
Ситуация обострилась с переходом страны на рыночную экономику: большинство российских предприятий не смогли расширить портфолио и освоить новые для себя виды продукции. В итоге сегодня отечественные поставщики практически не конкурируют между собой. Зато конкуренция с иностранными производителями очень сильна, объясняет Денис Тарло, замгендиректора «ТМХ Энергетические решения». Эту компанию в прошлом году создал один из крупнейших участников рынка дизелей — «Трансмашхолдинг». В ней объединены компетенции по разработке и производству комплексных решений в области энергетики, прежде всего, транспортной.
В России пока выпускаются не все виды двигателей, которые нужны рынку. Но просто импортировать их — не лучшая идея, уверен директор Ассоциации развития поршневого двигателестроения России, профессор кафедры Э-2 МГТУ им. Н.Э. Баумана Дмитрий Онищенко. Причем дело не только в санкциях, но и в экономике проектов.
В качестве примера он приводит легкий коммерческий транспорт. Сейчас на «Газели» ставят либо старые и немного модернизированные бензиновые моторы, спроектированные 60 лет назад, либо китайские агрегаты.
«С одной стороны, в этом ничего страшного нет. Но с другой, если посмотреть на структуру стоимости автомобиля, то примерно 30–40% приходится на энергетическую установку. То есть, устанавливая иностранный двигатель, мы большую часть добавленной стоимости, которая получается в результате продажи автомобиля, отдаем за рубеж», — подчеркивает Онищенко.
Как возрождают разработку и производство
Новые конструкции двигателей в России почти не создавались вплоть до 2010-х годов. Но при поддержке государства процесс постепенно возобновили, а для крупных отраслевых предприятий дизели стали одним из приоритетов. К примеру, общий объем инвестпрограммы с 2018 года по 2022 год составляет около ₽12 млрд. Эти деньги пошли в том числе на создание производств по выпуску топливной аппаратуры и эталонной линии сборки дизелей, участков для испытания двигателей.
По словам представителей ТМХ, основная задача сегодня — создать продукты, не уступающие иностранным, в тех целевых нишах, где традиционно присутствовали советские заводы. «Такой подход позволяет получить современную технику, удовлетворяющую требованиям потребителей, с минимальной или полностью отсутствующей зависимостью от заграницы, а также восполнить появившиеся в 1990-е пробелы в инженерной и производственной школах», — отмечает Денис Тарло.
Конечно, сейчас уже никто не собирается выпускать ту же продукцию, что советские предприятия. Речь идет о создании новых видов и семейств дизелей. Это двигатели внутреннего сгорания на различных видах топлива, силовые установки на водороде и агрегаты, в основе которых лежат электрохимические генераторы и системы накопления энергии. Они предназначены для тепловозов и судов, малой и атомной энергетики, нефтегазовой промышленности.
Часть новых двигателей рассчитана на газ. Он позволяет снизить объем вредных выбросов и повысить экологичность транспорта и производств. В ТМХ, в частности, уже создали новый двигатель-генератор 9ГМГ для маневровых локомотивов, которые используются на ж/д станциях и подъездных путях. Потенциально его можно применять не только на железной дороге, но и на электростанциях.
«Дизельные двигатели на газе использовались уже в начале прошлого века, никаких технических препятствий для этого нет», — уверен основатель компании «Болотин и партнеры «Индустриальный консалтинг» Михаил Болотин. Однако переход на газовое топливо будет не быстрым, прогнозирует он.
Откуда берутся кадры
Современный дизель — это намного более сложный и инновационный продукт по сравнению с теми моделями, которые считались продвинутыми 20 лет назад, говорит Онищенко из МГТУ им. Н.Э. Баумана. «Чтобы создать его, необходимо привлечь огромное количество не только инженеров-конструкторов, но и специалистов в различных научных областях — по газовой и термодинамике, теплообмену, материаловедению. А для этого нужны большие ресурсы», — считает эксперт.
Дело осложняет тот факт, что наработки советской школы оказались частично утрачены, указывает Михаил Болотин. «Практически все отраслевые институты, которые занимались фундаментальными исследованиями, уже не существуют, многие превратились в офисные центры», — напоминает он.
По мнению Онищенко, отрасль действительно понесла кадровые потери, но нельзя сказать, что прошлые достижения совсем обнулены. «Мы общаемся с зарубежными коллегами из ведущих университетов мира, и могу сказать, что наша научно-инженерная школа точно не хуже, чем западные», — подчеркивает профессор «Бауманки».
В ТМХ профильные кадры, которые преимущественно готовит базовая кафедра «Двигатели внутреннего сгорания» Московского Политехнического университета, работают в Инжиниринговом центре двигателестроения, который создан на базе конструкторских подразделений компании. Именно здесь проектируют и испытывают новые продукты, в том числе двигатели на новых видах топлива.
Центр уже разработал несколько агрегатов для энергетического комплекса и новых модификаций дизель-генераторов для тепловозов. Сейчас инженеры занимаются созданием нового продукта — 16-цилиндрового двигателя мощностью 3,5 тыс. кВт. Он предназначен для перспективной разработки ТМХ — мощного локомотива 2ТЭ30. На базе этого двигателя в холдинге планируют создать газодизельный агрегат — он будет готов к концу 2022 года.
Что будет с отраслью дальше
Будущее отрасли эксперты связывают с развитием альтернативных источников энергии. Этот тренд опирается на все возрастающие требования к экологичности транспорта и производств.
«Уже сегодня широко распространены двигатели, работающие на газовом топливе, и двухтопливные двигатели. Особенно такие агрегаты востребованы в сфере малой энергетики», — говорит замгендиректора «ТМХ Энергетические решения» Денис Тарло. Он также подчеркивает, что для стационарных объектов использование газа даже выгоднее, чем на транспорте, поскольку ниже затраты на оборудование для подготовки и подачи газа и инфраструктуру для обеспечения топливом.
В дальнейшем компания планирует запустить производство поездов на водородных топливных элементах. Предполагается, что такой подвижной состав будут использовать для пассажирских ж/д перевозок на Сахалине. Потенциально на водород можно перевести и маневровые локомотивы — например, для работы в черте городов или на промышленных предприятиях.
Одновременно в ТМХ задумались и об установках на биодизельном топливе, которые позволяют обеспечить нулевой углеродный след.
«Перспективы развития связаны с переходом на экологически чистое синтетическое топливо, которое может быть получено из природного сырья — газа, нефти, торфа, продуктов жизнедеятельности или просто мусора. Москва генерирует 18 млн т отходов в год, и в них около 80% приходится на углеводороды. Если заправить этот мусор определенными бактериями, они сгенерируют грязный метан, который можно использовать для синтеза чистого топлива», — рассказывает Дмитрий Онищенко.
В то же время он уверен, что обычные дизели тоже не уйдут из-под капотов автомобилей и с предприятий. «Несмотря на все новые тренды, дизельные двигатели будут иметь свою нишу, — согласен Михаил Болотин. — Они обладают важным преимуществом — это большой крутящий момент. Для многих силовых установок это является основным критерием».
Двигатель внутреннего сгорания Отто
В первом тепловом двигателе — паровой машине — тепло производилось в топке и в паровом котле, вне цилиндра — рабочего органа машины. Топка и котёл делали двигатель громоздким и тяжёлым, годным только для стационарного использования или для установки на большие пароходы и паровозы. В поисках идеи компактного и лёгкого двигателя конструкторы пришли к мысли сжигать топливо внутри рабочего цилиндра — так появились прототипы двигателя внутреннего сгорания (ДВС). Первый ДВС, схожий с современным, создал в 1876 г. немецкий конструктор Николаус Отто.
Пробный вариант
Первый двигатель внутреннего сгорания (ДВС) создал французский изобретатель Ф.И. де Ривас в 1807 г. Смесь воздуха и водорода в рабочем цилиндре зажигалась электрической искрой от батареи Вольта, после подрыва смесь расширялась, создавая высокое давление в цилиндре и подбрасывая поршень. Отработанные газы выпускались, образуя под поршнем вакуум. Под воздействием давления атмосферы и своего веса поршень падал, возвращаясь в исходное положение, чтобы повторить цикл. Де Ривас использовал свой ДВС как привод передних колёс повозки. Но из-за низкой эффективности его двигатель не нашёл спроса. Впоследствии идеи де Риваса легли в основу дальнейших разработок ДВС.
Двигатель Ленуара
В 1860 г. другой француз, механик Э. Ленуар, сделал ДВС, похожий на горизонтальную паровую машину, но работающий на смеси воздуха со светильным газом (содержащим углеводороды). ДВС Ленуара был двойного действия — рабочий ход поршень совершал при движении в обе стороны. Это обеспечивалось тем, что смесь поджигалась искрой от двух электрических свечей по обе стороны от поршня, и впуск и выпуск газов проводился также с двух концов цилиндра с помощью золотников (таких же, как в паровых машинах).
Цикл работы ДВС Ленуара состоял из двух тактов (из двух ходов поршня — вперёд и назад). Оба хода обеспечивались расширением газовой смеси при сжигании, что требовало большого расхода топлива. Работа ДВС Ленуара обходилась в 7 раз дороже работы паровой машины той же мощности. Зато из-за отсутствия котла и топки ДВС был компактнее, и его, например, ставили на лодки, где не было места для паровой машины.
Первая победа Отто
Недостатки ДВС Ленуара учёл немецкий конструктор Н.А. Отто при создании своего двухтактного двигателя. Сделанный им в 1864 г. ДВС тоже работал на смеси воздуха со светильным газом. Отто поджигал смесь не электрической искрой, а пламенем газовой горелки, что было надёжнее при тогдашнем уровне развития электротехники. ДВС Отто совершал один рабочий ход. Сделав цилиндр вертикальным, Отто заставил поршень двигаться вниз без помощи давления газов, только под воздействием своего веса и давления атмосферы. Это позволило его ДВС при вдвое меньшем расходе топлива развивать мощность как у ДВС двойного действия. ДВС Отто оказался в 4-5 раз экономичнее двигателя Ленуара. Первые ДВС Отто широко использовались как приводы для типографских машин, грузовых лифтов-подъёмников, токарных и ткацких станков, прядильных машин и прочего оборудования.
Двухтактные ДВС, работающие по принципу ДВС Отто 1864 г., и сейчас используются как приводы сенокосилок и бензопил, в лодочных и мотоциклетных моторах.
Четыре такта успеха
Настоящий прорыв в создании ДВС Отто совершил в 1876 г. В новом двигателе Отто вернулся к горизонтальной конструкции. Для увеличения мощности ДВС Отто решил перед воспламенением сжать топливную смесь, а для этого цикл работы ДВС пришлось увеличить до 4 тактов — 4 ходов поршня, и этот двигатель стал называться четырёхтактным ДВС.
Мощный четырёхтактный ДВС Отто вытеснил все предыдущие модели ДВС — его схема стала образцом для создания всех последующих ДВС вплоть до нашего времени и открыла возможность применения ДВС на транспорте.
Развитие идеи
Производством всех ДВС Отто занималась компания «Ланген, Отто и Розен», созданная в 1869 г. Отто совместно с немецкими предпринимателями Э. Лангеном и Л. Розеном. Современные четырёхтактные ДВС сохранили принципиальную схему Отто, но топливо в них поджигается искрой от электрической свечи. Для увеличения мощности ДВС повышали объём его цилиндра, чтобы большим объёмом топлива усилить мощь его расширения. Но увеличение цилиндра не могло быть бесконечным, и тогда придумали усиливать двигатель путём увеличения числа цилиндров, поршни которых крутили один рабочий вал двигателя. Первые двухцилиндровые ДВС появились в конце XIX в., а четырёхцилиндровые — в начале XX в. Сейчас встречаются шести — , восьми — и 20 — цилиндровые ДВС. Светильный газ был довольно дорогим топливом, и в Европе, и в России его производили не так много. В поисках нового вида топлива для ДВС обратили внимание на другие вещества, содержащие углеводороды — продукты нефтепереработки.
Сотрудники компании Отто Г. Даймлер и В. Майбах в 1883 г. создали первый бензиновый ДВС, который в 1885 г. установили на первом мотоцикле, а в 1886 г. — на первом автомобиле.
Однако бензин при испарении плохо смешивался с воздухом, реакция при возгорании протекала неравномерно, и бензиновые ДВС, работая ненадёжно, не могли вытеснить газовые ДВС. Выход нашёл венгерский инженер Д. Банки — в 1893 г. он придумал устройство для распыления бензина в воздухе — карбюратор с жиклёром. Бензиновая взвесь, равномерно смешанная с воздухом, поступала в цилиндр, где при зажигании быстро превращалась в газовую смесь, обеспечивая хорошее протекание реакции и мощное расширение при взрыве. В России первый бензиновый двигатель с карбюратором сконструировал в 1880-х гг. О. С. Костович. В 1897 г. немецкий инженер Р Дизель придумал дизельный двигатель, в котором топливо воспламенялось не от огня или электрической искры, а от высокой температуры, которая возникает при сильном сжатии воздуха. В России производство дизельных двигателей, усовершенствованных российским инженером Г. В. Тринклером, началось в 1899 г. Эти дизели устанавливали на стационарных машинах (станках и пр.).