Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Турбореактивный двигатель вчера и сегодня

Турбореактивный двигатель вчера и сегодня

Турбореактивный двигатель является одним из важнейших механизмов, который изобрели в двадцатом столетии. Поговорим о том, что сопутствовало этому открытию, каковы модели этого устройства сегодня и можно ли изготовить его самостоятельно.

Немного истории

Когда в 1903 году первый самолет братьев Райт с поршневым ДВС поднялся в воздух, советский ученый Константин Циолковский написал труд о применении реактивной тяги для преодоления гравитации. В нем были приведены основные идеи теории реактивного движения. Как всегда бывает с гениальными открытиями, его работу не восприняли всерьез. Лишь десятки лет спустя суждено было сбыться тому, что ученый уже давно зафиксировал на бумаге.

Так случилось, что турбореактивный двигатель был принят к серийному производству в Германии в конце тридцатых годов. В проекте приняли участие такие известные компании, как «Хейникель», «БМВ», «Дэймлер-Бенс» и «Порш». Но главным производителем стал все-таки «Джанкерс».

Несмотря на успех, развиваться это направление в то время не стало.

В Советском Союзе разработкой начал заниматься авиаконструктор Архип Люлька. В первой половине сорокового года он запатентовал схему, на которой был двухконтурный турбореактивный двигатель. К сожалению, руководство страны тогда не поддержало ученого, хотя позже он и получил признание во всем мире. Архипу Люльке было предписано заниматься танковыми разработками. К турбореактивным двигателям он вернулся только после того, когда они появились в Германии.

Первые испытания двигателя были проведены в 1947 году.

Принцип работы

Турбореактивный двигатель функционирует как обычная тепловая машина. Не вдаваясь в подробности, его механизм можно описать как служащий для преобразования энергии в механическую работу. Газ внутри устройства имеет энергию. Сжимаясь, рабочее тело получает ее, а при расширении происходит преобразование в полезную работу.

Энергия и последующая работа для сжатия газа всегда должна быть меньшей по сравнению с той, что необходима для расширения. В противном случае преобразования не получится. Поэтому перед расширением газ нагревают, а перед сжатием — охлаждают. Тогда в результате нагрева появится некоторый излишек энергии, которым воспользуются для получения механической работы.

Устройство

Рабочее тело двигателя состоит из:

  • компрессора, служащего для сжатия воздуха;
  • камеры сгорания для нагревания;
  • турбины для расширения.

Охлаждающий эффект обеспечивается атмосферой.

В компрессоре имеются диски из металла, а на их венцах расположены лопатки, которые захватывают воздух снаружи и перемещают внутрь.

От компрессора воздух направляется в камеру сгорания, нагреваясь и смешиваясь с керосином, попадающим туда через ротор.

Далее действие переходит в турбину, где газ раскручивается подобно игрушке-пропеллеру. Обычно турбины имеют три-четыре ступени. Именно на этот механизм приходится наибольшая нагрузка. Турбореактивный двигатель вращается со скоростью до тридцати тысяч оборотов в минуту. Факел, выходящий из камеры сгорания, может иметь температуру до полутора тысяч градусов по Цельсию. Воздух, расширяясь здесь, начинает двигать турбину.

После этого в реактивном сопле рабочее тело достигает скорости большей, чем скорость встречного потока. Таким образом и получается реактивная тяга.

ТРД или турбореактивный двигатель, принцип работы которого описан выше, относится к классу газотурбинных. Он бывает:

  • ТРД;
  • ТРД с форсажной камерой;
  • двухконтурный ТРД;
  • двухконтурный ТРД с форсажной камерой.

В настоящее время известно пять поколений турбореактивных двигателей. К первому относятся еще те, которые использовались в годы войны английскими, а также фашистскими силами. Во втором поколении в нем появились осевой компрессор, форсажная камера и воздухозаборник с возможностью регулирования. В третьем — увеличилось сжатие, в четвертом — удалось поднять рабочую температуру. Пятое поколение в отечественной разработке имеет усиленную мощность и лучшую маневренность. Агрегаты, предназначенные для истребителей, выпускаются на уфимском заводе.

Турбореактивный двигатель своими руками

Любителям-моделистам, которые хотят собрать мотор самостоятельно, сегодня предлагается полный ассортимент всех запчастей. В продаже имеются специальные наборы для сборки (например, Kit). Турбину можно приобрести как готовую, так и сделать самим. Последний вариант довольно хлопотный и может также обойтись в копеечку. Это самая сложная часть для тех, кто собирает турбореактивный двигатель своими руками, так как здесь потребуются и токарно-фрезерная установка, и сварочный прибор.

Перед изготовлением стоит изучить теорию по микро-ТРД. Для этого существуют специальные руководства, где приводятся расчеты и чертежи.

А затем, можно начинать путь в авиамоделирование.

Как работает реактивный двигатель самолета

Путешествуя на самолетах, вы задумывались когда-нибудь о том, как работает двигатель реактивного самолета? О реактивной тяге, которая приводит его в действие, знали еще в Античные времена. Применить же ее на практике смогли только в начале прошлого века, в результате гонки вооружений между Англией и Германией.

Принцип работы двигателя реактивного самолета довольно прост, но имеет некоторые нюансы, которые строго соблюдаются при их производстве. Чтобы самолет смог надежно держаться в воздухе, они должны работать идеально. Ведь от этого зависят жизни и безопасность всех, кто находится на борту самолета.

Как работает реактивный двигатель?

Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона, который гласит: “Любое действие вызывает равное противодействие”.

У реактивного двигателя вместо жидкости применяется воздух. Он создает силу, обеспечивающую движение.

В нем используются горячие газы и смесь воздуха со сгораемым топливом. Эта смесь выходит из него с высокой скоростью и толкает самолет вперед, давая ему лететь.

Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:

  • компрессора;
  • камеры горения;
  • турбины;
  • выхлопа.

Компрессор состоит из нескольких турбин, которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.

Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.

Турбина соединена с компрессором в передней части двигателя, и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования. После этого воздух выходит из него.

Разработка самолетов с реактивным двигателем началась в 30х годах прошлого века. Англичане и немцы начали разрабатывать подобные модели. В этой гонке победили немецкие ученые. Поэтому первым самолетом с реактивным двигателем стала “Ласточка” в Люфтваффе. “Глостерский метеор” поднялся в воздух немного позднее. О первых самолетах с такими двигателями подробно рассказано в этой статье.

Читать еще:  Что происходит если в двигатель самолета попала птица

Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Турбореактивный двигатель самолета несет с собой лишь топливо, а окислитель — воздух — нагнетается турбиной из атмосферы. В остальном принцип его работы совпадает с тем же, что и у реактивного.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Что такое самолет с атомным двигателем?

Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.

Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.

Комбинированный турбреактивно-атомный двигатель.

В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.

В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:

  • безопасность летчиков во время полета;
  • выброс радиоактивных частиц в атмосферу;
  • в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

2. Турбореактивный двигатель (трд)

2.1. Принцип создания тяги трд

Принцип создания тяги ТРД основан на увеличении количества движения рабочего тела, проходящего по тракту двигателя. На входе в двигатель (сечение 0–0) (рис. 2.1) секундное количество движения рабочего тела – МвV, на выходе (сечение с–с) – Мгсс, где: сс – скорость истечения газа из ТРД; Мв и Мг – секундные массовые расходы воздуха и газа через входное (0–0) и выходное (с–с) сечения ТРД соответственно, связанные соотношением:

где Мт – секундный массовый расход топлива, поступающего в камеру сгорания; Мв.отб – масса воздуха, отбираемого в секунду на охлаждение узлов двигателя и другие цели.

Так как МгМв, а сс > V, то Мг сс > МвV, тогда тяга ТРД

Величина R является тягой, определенной по внутренним параметрам ТРД. Часть этой тяги тратится на преодоление внешнего сопротивления ТРД с мотогондолой Хвн, оставшаяся часть Rэф (эффективная тяга) расходуется на совершение полезной тяговой работы (увеличение скорости полета V):

Рис. 2.1. Изменение параметров рабочего тела по тракту ТРД

Из формулы (2.2) видно, что при V = 0 тяга имеет максимальное значение Мвсс. При увеличении скорости полета все большая часть кинетической энергии истекающей струи газапревращается в полезную тяговую работу по увеличению скорости полета и величина избыточной тягиR уменьшается . При достижении скорости полетаV = сс вся превратится в полезную тяговую работу, и дальнейшее увеличение скорости полета станет невозможным (R = 0). Скорость V = сс называется скоростью «вырождения ТРД». Однако необходимо помнить, что на полезную тяговую работу тратится толькоRэф = RХвн. Из этого следует, что скорость полета всегда меньше скорости истечения газа из сопла и скорость «вырождения ТРД» достижима только теоретически.

2.2. Изменение параметров рабочего тела и превращения энергии по тракту трд

ТРД включает в себя (см. рис. 2.1):

– осевой компрессор (ОК);

– камеру сгорания (КС);

– газовую турбину (ГТ);

– реактивное сопло (РС).

В cечении н–н – невозмущенный воздушный поток (см. рис. 2.1).

Далее по тракту двигателя происходят следующие процессы:

между сечениями н–0 – предварительное сжатие за счет торможения воздушного потока в свободно расширяющейся струе газа перед входом в ВЗ;

между сечениями 0–вх – предварительное сжатие (торможение), выравнивание и стабилизация воздушного потока в расширяющемся канале ВЗ;

между сечениями вх–к – основное сжатие воздуха за счет подвода к нему механической работы от вращающихся рабочих лопаток компрессора;

между сечениями к–г – подвод тепла к рабочему телу за счет сжигания в воздухе горючего (авиационный керосин);

между сечениями г–т – расширение газа в ГТ и превращение части энтальпии в крутящий (располагаемый) момент Мт.расп на валу турбины, передаваемый через общий вал на вращение компрессора и привод дополнительных агрегатов;

между сечениями т–с – расширение газа в сопловом канале РС и превращение части энтальпии в кинетическую энергию истекающей струи газа (создание реактивной тяги R).

Читать еще:  В масле двигателя желтый налет что это может быть

До сечения н–н (см. рис. 2.1) воздушный поток является невозмущенным. От сечения н–н до сечения вх–вх поток воздуха первоначально тормозится в свободно расширяющейся струе, а затем – в диффузоре ВЗ. Скорость потока с уменьшается, следовательно, уменьшается его кинетическая энергия c 2 /2. Так как на этом отрезке пути к воздуху не подводится и от него не отводится энергия, то, в соответствии с законом сохранения энергии, уменьшение кинетической энергии c 2 /2 приводит к возрастанию энтальпии i потока. Увеличение энтальпии сопровождается ростом давления и температуры рабочего тела (воздуха).

От сечения вх–вх до сечения к–к к потоку воздуха подводится механическая энергия от вращающихся лопаток ОК. Воздушный поток сжимается, следовательно, возрастает его давление и температура (энтальпия), но рост энтальпии, в основном, идет за счет подводимой механической работы и лишь частично за счет кинетической энергии самого потока, поэтому скорость потока с уменьшается незна­чительно.

Так как расход воздуха постоянный (Мв = const), а его объем уменьшается за счет существенного увеличения плотности при сжатии, для сохранения неразрывности потока необходимо уменьшать площадь проходного сечения тракта ТРДдля исключения значительного снижения скорости потока.

От сечения к–к до сечения г–г к рабочему телу, сжатому в ОК, подводится теплота QКС, выделяющаяся при сжигании в КС топливно-воздушной смеси (ТВС), состоящей из смеси воздуха и авиационного керосина.

Рабочий процесс в КС организован таким образом, что статическое давление остается постоянным, а температура резко возрастает , следовательно, резко возрастает энтальпия за счет подведенной извне энергии (теплоты).

От сечения г–г до сечения т–т рабочее тело (сжатый и нагретый воздух и газообразные продукты сгорания топлива) расширяется в ГТ. Часть энтальпии превращается в крутящий момент Мт.расп на валу ГТ, который необходим для привода ОК (благодаря ОК ТРД может создавать тягу при V = 0).

Так как ОК сжимает атмосферный (холодный) воздух, а в ГТ расширяется горячий газ, то располагаемая работа, совершаемая расширяющимся газом в ступени ГТ, значительно выше, чем потребная работа сжатия в ступени ОК. Это позволяет одноступенчатой ГТ вращать многоступенчатый компрессор.

От сечения т–т до сечения с–с происходит расширение рабочего тела (газа) в РС. Так как РС – энергоизолированная система (отсутствует подвод энергии извне и отвод энергии в окружающую среду), то при расширении газ совершает внешнюю механическую работу по разгону потока, то есть полная энергия рабочего тела не изменяется, но часть энтальпии превращается в кинетическую энергию .

Что смогут авиационные двигатели будущего?

Авиационные двигатели представляют собой, пожалуй, самый сложный компонент любого летательного аппарата

Их технология производства отличается большой сложностью, а время от начала разработки до начала серийного производства может превышать и 10 лет. Рассмотрим наиболее перспективные проекты в военном двигателестроении.

Перспективные двигатели для истребительной авиации

Современная истребительная авиация является сверхзвуковой, более того, для пятого поколения истребителей необходима также возможность выполнения полета на бесфорсажной сверхзвуковой крейсерской скорости. Естественно, это требует применения более мощных и эффективных двигателей. На истребителях как четвертого, так и пятого поколения на сегодняшний день применяются двухконтурные турбореактивные двигатели (ТРДД) c низкой степенью двухконтурности с форсажем. Рассмотрим перспективные силовые установки для истребителей.

«Изделие 30» для Су-57

Один из самых сложных и перспективных проектов в российском двигателестроении – разработка двигателя «второго этапа» для истребителя пятого поколения Су-57. Силовая установка, которая должна после 2020 года заменить АЛ-41Ф1 (двигатель, очень близкий к АЛ-41Ф1С, который устанавливается на серийные Су-35С), пока разрабатывается под временным названием «изделие 30». По доступной информации, разработку ведет ОКБ им. Люльки – московский филиал ПАО «ОДК-УМПО» («Уфимское моторостроительное производственное объединение»).

Из информации, в течение последних лет появляющейся в СМИ, известно, что двигатель, как и АЛ-41Ф1, имеет управляемый вектор тяги, а тяга на форсаже достигает 17 000 – 18 000 кгс, против 15 000 кгс у АЛ-41Ф1. В целом характеристики двигателя должны превосходить таковые у АЛ-41Ф1 на 20–25%, кроме того, можно предположить, что будет проделана работа и по снижению заметности в радиолокационном и инфракрасном спектрах [1]. Сочетание этих факторов должно позволить Су-57 достичь требуемых критериев истребителя пятого поколения.

«Трехконтурные» адаптивные двигатели в рамках программы Adaptive Engine Technology Development (AETD)

Еще в 2007 году стартовала программа министерства обороны США Adaptive Versatile Engine Technology (ADVENT), в которой участвовали General Electric (GE) и Rolls-Royce. В 2012 году ADVENT была завершена и перешла в программу Adaptive Engine Technology Development (AETD), в которой вместо Rolls-Royce оказалась Pratt & Whitney (P&W). С 2016 года с обеими компаниями были подписаны контракты на выполнение работ в рамках программы Adaptive Engine Transition Program (AETP). Обе компании получили по 1 млрд долларов, со сроком исполнения программы до 30 сентября 2021 года [2].

Перед обеими компаниями стоит цель разработать и испытать новый тип двигателей, которые в перспективе планируется устанавливать на истребителях F-35 и перспективных истребителях шестого поколения. Цель программы заключается в создании двигателя, который расходует на 25% меньше топлива и выдает на 10% больше тяги, чем доступные на сегодня силовые установки. Такое серьезное улучшение показателей достигается за счет добавления третьего контура к ТРДД, который включается в работу только в режиме экономичного полета, сильно повышая степень двухконтурности двигателя. К тому же более холодный воздух третьего контура используется для снижения температуры газов, покидающих двигатель, и, соответственно, снижения заметности в инфракрасном диапазоне. В боевом режиме достигается повышенная мощность двигателя за счет перехода на традиционный двухконтурный режим с низкой степенью двухконтурности.

Двигатель Adaptive Cycle Engine (ACE), или XA-100, который разрабатывается GE, согласно официальной информации, позволяет снизить потребление топлива на 25%, повысить максимальную дальность полета на 35% и увеличить тягу на 20% [3].

Что касается двигателя P&W под названием XA-101, он представляет собой глубокую модернизацию силовой установки F135, которая используется на истребителях F-35. В двигателе для программы AETP применяется внутренний контур (газогенератор) F-135 практически без изменений, идет разработка остальных компонентов, в том числе и третьего контура [4].

Отметим, что в открытых источниках информации о разработке аналогичных технологий в России пока нет.

Китайские проекты

В Китае, где активно развивается военное авиастроение, разработаны два истребителя пятого поколения – J-20 и J-31. Оба самолета поначалу полагаются на российские двигатели – АЛ-31Ф и РД-93, однако в перспективе должны получить китайские двигатели – WS-15 [5] и WS-19 [6] соответственно. Открытой информации о них немного, но ожидать какого-то технологического прорыва не стоит – это будет скорее локальным успехом и сокращением отставания от России и Запада.

Читать еще:  Щелчки при запуске двигателя опель вектра а

Авиационный высокотемпературный турбореактивный двухконтурный двигатель АЛ-41Ф1 («Изделие 117») с форсажной камерой и всеракурсно управляемым вектором тяги «первого этапа» для истребителя пятого поколения ПАК ФА на Международном авиакосмическом салоне МАКС-2011. (Doomych).
Источник: http://supercoolpics.com/

Прямоточные воздушно-реактивные двигатели

Несмотря на свою кажущуюся простоту, прямоточные воздушно-реактивные двигатели (ПВРД) – одно из самых многообещающих направлений развития военного двигателестроения. Прежде всего это касается ПВРД со сжиганием топлива в сверхзвуковом воздушном потоке или гиперзвуковых ПВРД (ГПВРД), а также двухрежимных вариантов – со сжиганием топлива как в дозвуковом, так и сверхзвуковом потоке воздуха. В первую очередь «чистый» ГПВРД интересен для установки на крылатые ракеты – в таком случае до минимальной для начала работы двигателя скорости ракету может довести твердотопливный ракетный ускоритель.

Российские работы в этой области засекречены, имеется лишь небольшое количество упоминаний в открытых источниках. Согласно им, авиационная гиперзвуковая крылатая ракета ГЗУР (гиперзвуковая управляемая ракета) получит ПВРД «Изделие 70», разработанный ПАО «ТМКБ «Союз» [7]. Он должен обеспечить полет ракеты на дальность 1500 км на скорости 6 M. Согласно данным того же источника, серийное производство ГЗУР должно начаться в 2020 году. О характеристиках двигателя ничего не известно.

С другой стороны, научный руководитель Государственного научно-исследовательского института авиационных систем академик Евгений Федосов в интервью «Интерфаксу» в 2017 году упоминал тему ГПВРД и сказал, что пока успехи в этой области не достигнуты [8]. Похожее мнение высказал и советник главы корпорации НПО «Машиностроения» по науке Герберт Ефремов в январе 2018 года [9]. Однако функционирование стандартного ПВРД на скорости 6 M видится маловероятным. Еще меньше известно о двигателе для противокорабельной ракеты «Циркон» разработки НПО «Машиностроения» [10]. Информации о реальных сроках готовности этой ракеты также нет.

Что касается стран Запада, там работы ведутся в более открытом режиме. Пока все известные работы были исключительно исследовательскими и направлены на изучение как тематики непосредственно ГПВРД, так и поведения летательных аппаратов на гиперзвуковой скорости в целом. На сегодняшний день ведутся работы в рамках программы Hypersonic Air-breathing Weapon Concept (HAWC), финансируемой DARPA и ВВС США [11]. Этим проектом занимаются как Lockheed Martin, так и Raytheon, получив контракты на 171,2 и 174,7 млн долларов соответственно. Еще 14,3 млн долларов было выделено в военном бюджете на 2019 год [12]. Работа заключается в создании прототипа гиперзвуковой крылатой ракеты с ГПВРД, другие детали пока неизвестны.

Есть проекты и в других странах, но менее конкретные и с размытыми перспективами. К примеру, европейская компания MBDA ведет исследования в направлении создания гиперзвуковой крылатой ракеты ASN4G, но ее появление «в металле» ожидается не ранее 2030 года [13]. Ведет работы и Индийская организация космических исследований: в 2016 году прошли успешные испытания ГПВРД – два двигателя были выведены на необходимую стартовую скорость с помощью ракеты-носителя Advanced Technology Vehicle (ATV) и успешно отработали в течение 5 секунд [14].

Комбинированные двигатели

Перспективная задача создания гиперзвуковых и атмосферно-космических самолетов требует разработки соответствующих двигателей. На гиперзвуковых скоростях использование традиционного ТРД/ТРДД невозможно, при этом применение исключительно прямоточного воздушно-реактивного двигателя (ПРВД) также не представляется возможным – он неэффективен на дозвуковых и низких сверхзвуковых скоростях. В связи с этим целесообразна разработка комбинированных двигателей – «турбопрямоточных» или же «турборакетных». Опыт создания и реального применения «турбопрямоточных» двигателей имеется в США – пара Pratt & Whitney J58 позволяла самолету-разведчику SR-71 разгоняться до скорости 3,2 М.

Сейчас в США на ранних стадиях ведутся работы по созданию как гражданских [15], так и военных гиперзвуковых самолетов. Как Boeing, так и Lockheed Martin стремятся создать гиперзвуковой самолет-разведчик, фактически «наследника» SR-71. В рамках программы DARPA Advanced Full Range Engine (AFRE) [16] идут работы по созданию комбинированного двигателя, включающего в себя два компонента – ТРД и двухрежимный ПРВД, со сжиганием топлива в дозвуковом воздушном потоке и со сжиганием топлива в сверхзвуковом воздушном потоке. На скорости, достаточной для запуска ПРВД, воздушный поток полностью перенаправляется во внешний контур, минуя газогенератор (турбина полностью отключается) и напрямую попадая в камеру сгорания ПРВД, расположенную за турбиной (вероятно, в форсажной камере). В англоязычной литературе такой двигатель получил название turbine-based combined cycle (TBCC). Работу ведут Boeing в сотрудничестве с Orbital ATK (ныне является частью Northrop Grumman) c 2016 года [17] и Lockheed Martin (отдел Skunk Works) с Aerojet Rocketdyne с 2009 года [18], [19].

Еще один перспективный тип комбинированного двигателя – это «турборакетный» двигатель. Такой двигатель, в отличие от «турбопрямоточного», может работать как в атмосфере, так и в безвоздушном пространстве. Наиболее интересным проектом в этой области является британский двигатель SABRE (Synergistic Air-Breathing Rocket Engine), разрабатываемый частной компаний Reaction Engines Limited [20]. Фактически в нем сочетаются три компонента – ТРД, ПВРД и ракетный двигатель.

Механизм работы двигателя достаточно сложный: воздух после попадания в воздухозаборник моментально охлаждается до –140 °С (примерно с 1000 °С) в теплообменнике. Происходит это за счет опосредованной передачи тепла от жидкого водорода (является топливом SABRE) через гелий, который находится в промежуточной петле. Нагревшийся гелий в дальнейшем применяется для обеспечения работы турбины компрессора, а водород сжигается как в камерах сгорания (всего их четыре), так и в дополнительных прямоточных камерах сгорания (на охлаждение гелия требуется больше водорода, чем для сжигания в основных камерах сгорания), расположенных кольцеобразно вокруг основных. На высоте 28,5 км и скорости 5,14 M двигатель переходит в ракетный режим – воздухозаборник закрывается, а в камеру сгорания начинает поступать жидкий кислород. За счет этого должен обеспечиваться вывод на орбиту одноступенчатого космического аппарата SKYLON [21].

Первые стендовые испытания двигателя планируется провести в 2020 году [22]. На раннем этапе подобные работы проходят и в России – в филиале Военной академии РВСН имени Петра Великого (Серпухов) ведутся работы над двигателем для перспективного воздушно-космического самолета [23].

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector