Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Авиационные двигатели

Авиационные двигатели

Содержание

  • 1 Классификация авиационных двигателей
  • 2 Поршневые двигатели (ПД)
  • 3 Газотурбинные двигатели (ГТД)
    • 3.1 Одновальные и многовальные двигатели
    • 3.2 Турбореактивный двигатель (ТРД)
      • 3.2.1 Турбореактивный двигатель с форсажной камерой (ТРДФ)
    • 3.3 Двухконтурный турбореактивный двигатель (ТРДД)
      • 3.3.1 Двухконтурный турбореактивный двигатель с форсажной камерой (ТРДДФ)
      • 3.3.2 Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)
      • 3.3.3 ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель
    • 3.4 Турбовинтовентиляторный двигатель (ТВВД)
    • 3.5 Турбовинтовой двигатель (ТВД)
      • 3.5.1 Турбовальный двигатель (ТВГТД)
  • 4 См. также
  • 5 Источники
  • 6 Ссылки

Классификация авиационных двигателей

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов «В-В», «В-3», «3-В», «3-3», авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД);
  • воздушно-реактивные (ВРД включая ГТД);
  • ракетные (РД или РкД).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД.

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные, т. е. включающие компрессор для механического сжатия воздуха;
  • бескомпрессорные:
    • прямоточные ВРД (СПВРД) со сжатием воздуха только от скоростного напора;
    • пульсирующие ВРД (ПуВРД) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД, ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции;
  • двигатели непрямой реакции.

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно — это все ракетные двигатели (РкД), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ), турбореактивные двухконтурные (ТРДД и ТРДДФ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД), пульсирующие (ПуВРД) и многочисленные комбинированные двигатели.

Газотурбинные двигатели непрямой реакции (ГТД) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые, турбовинтовентиляторные, турбовальные двигатели — ТВД, ТВВД, ТВГТД). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей, соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателейТРДП (ТРД или ТРДД + СПВРД);
  • ракетно-прямоточныхРПД (ЖРД или РДТТ + СПВРД или ГПВРД);
  • ракетно-турбинныхРТД (ТРД + ЖРД);

и многие другие комбинации двигателей более сложных схем.

Тяга ракетного двигателя

Тяга ракетного двигателя

Создание реактивной тяги есть назначение всякого ракетного двигателя; поэтому величина тяги является важнейшей характеристикой двигателя.

Тяга современных ракетных двигателей колеблется от нескольких килограммов до десятков тонн, в зависимости от назначения и размеров двигателя.

Двигатели тяжелых дальнобойных ракет развивают тягу, превышающую тягу наиболее мощных паровозов, с могучей силой увлекающих за собой железнодорожные составы в тысячи тонн.

Фиг. 7. Принципиальная схема ракетного двигателя.

Как определить величину реактивной тяги? Обратимся для этой цели к фиг. 7, на которой представлена принципиальная схема ракетного двигателя.

Тяга образуется потому, что из двигателя вытекают газы. Чтобы вытолкнуть газы, двигатель должен действовать на них с какой-то силой; обратная сила — сила воздействия газов на двигатель — и есть реактивная тяга. Поэтому направление тяги обратно скорости вытекающих газов, а величина тяги равна силе, с которой выталкиваются газы. Очевидно, что величина этой силы зависит от количества вытекающих газов и их скорости. Механика учит, что эта сила, а следовательно, и сила тяги, равна произведению массы выталкиваемых в секунду газов на скорость их истечения.

Так как масса равна весу, деленному на ускорение земного притяжения (g=9,81 м/сек 2 ), то для определения силы тяги служит следующая простая формула:

Каждый килограмм вытекающих в секунду газов создает тягу, численно равную, очевидно, 1/10 от скорости истечения. Эта тяга, носящая название удельной тяги или удельного импульса (размерность удельной тяги кг сек/кг), является основной характеристикой любого ракетного двигателя. Чем больше удельная тяга, т. е. чем большую тягу создает каждый килограмм газа, вытекающего в секунду из двигателя, тем совершеннее двигатель.

В современных ракетных двигателях скорость истечения колеблется от 1500 до 2500 м/сек, вследствие чего удельная тяга равна 150–250 кг сек/кг.

Какими же способами можно увеличить скорость истечения и вместе с нею удельную тягу проектируемого ракетного двигателя?

Скорость истечения газов из двигателя зависит от топлива, давления газов в двигателе и его конструкции.

Влияние топлива на скорость истечения сказывается в основном в том, что скорость истечения тем больше, чем больше теплотворная способность топлива, т. е. тепло, которое выделяет при сгорании каждый килограмм топлива.

Чтобы отчетливее представить себе влияние на скорость истечения теплотворной способности топлива, попробуем повнимательнее присмотреться к явлениям, происходящим в любом ракетном двигателе, т. е. к рабочему процессу двигателя.

Пусть в двигателе произошла химическая реакция (будем считать для определенности — сгорание), в результате которой выделилось какое-то количество тепла.

Вследствие этого газообразные продукты реакции — пары углекислоты, пары воды, азот и др. — сильно нагреваются, так что температура их достигает 2500 °C и более. Мы знаем из физики, что температура газа есть мера скорости движения его молекул; когда газ очень нагрет, то молекулы его движутся с очень большими скоростями. Однако непосредственно эту скорость движения молекул газа использовать для создания реактивной тяги нельзя, потому что молекулы внутри двигателя движутся беспорядочно, неорганизованно, во всех направлениях; имеет место так называемое тепловое движение молекул. Каждая молекула, отражаясь от стенок двигателя, создает, конечно, микроскопическую реактивную силу, но суммарная равнодействующая — результат бесчисленного множества таких молекулярных ударов, равна нулю. Благодаря хаотичности движения молекул давление на все стенки двигателя одинаково и никакого реактивного эффекта не получается.

Чтобы создать реактивную силу, необходимо обеспечить упорядоченное, организованное истечение молекул газа из двигателя в одном направлении; тогда реактивный эффект всех вытекающих молекул суммируется, давая в результате нужную нам реактивную силу. Поэтому всякий ракетный двигатель по идее представляет собой машину для извержения молекул газа с максимально возможной скоростью в одном, общем для всех молекул, направлении, следовательно, машину для преобразования химической энергии топлива сначала в тепловую энергию беспорядочного движения молекул, а затем в скоростную (кинетическую) энергию их упорядоченного истечения из двигателя.

Таким образом первая часть рабочего процесса ракетного двигателя заключается в преобразовании химической энергии топлива в тепловую. Это преобразование осуществляется в ходе химической реакции внутри двигателя, в той его части, которую называют камерой сгорания, и происходит обычно при постоянном давлении.

Вторая часть рабочего процесса двигателя заключается в преобразовании тепловой энергии хаотического движения молекул в скоростную энергию их организованного истечения, т. е. в скоростную энергию реактивной струи газов, вытекающих из двигателя. Это преобразование осуществляется в процессе расширения газов от давления, имеющего место в камере сгорания двигателя, до атмосферного давления, т. е. до давления на выходе из двигателя, и обычно происходит в той его части, которая носит название сопла.

В современных ракетных двигателях указанный выше рабочий процесс происходит непрерывно, хотя возможны двигатели прерывного действия, в которых подача топлива в камеру сгорания и все последующие процессы происходят периодически.

Таким образом общим результатом рабочего процесса ракетного двигателя является преобразование химической энергии топлива в скоростную энергию струи газов, вытекающих из сопла в атмосферу. Однако при этом далеко не вся химическая энергия топлива (теплотворная способность) переходит в скоростную энергию струи, а только определенная часть ее. Чем совершеннее рабочий процесс, тем больше эта полезно используемая часть теплотворной способности топлива. В современных; ракетных двигателях в скоростную энергию струи газов переходит меньше половины тепла, заключенного в топливе[2]. Большая часть (до 2/3) этого тепла представляет собой потери рабочего процесса. Часть тепла теряется из-за неполного сгорания топлива, а другая, большая, теряется вместе с газами, выходящими из двигателя, так как их температура очень высока (1000–1500 °C). Уменьшение этих потерь рабочего процесса приводит к увеличению скорости истечения и, следовательно, увеличению тяги. Однако, как учит термодинамика — наука о преобразовании тепла в работу, — все тепло не может перейти в скоростную энергию газов. Некоторая часть этого тепла представляет собой неизбежные потери.

Читать еще:  Шерхан 5 автозапуск кнопка запуска двигателя

Теперь ясно, как теплотворная способность топлива влияет на скорость истечения. Чем больше теплотворная способность, тем больше тепловой энергии, при данной степени совершенства рабочего процесса двигателя, переходит в скоростную энергию газов, т. е. тем больше скорость истечения. И физически очевидно, что чем больше скорость теплового движения молекул после сгорания, тем больше и скорость истечения газов из двигателя.

С другой стороны, чем совершеннее рабочий процесс двигателя, тем также больше скорость истечения. Поэтому, например, более удачная конструкция двигателя, в частности, сопла, позволяющая лучше организовать истечение, т. е. добиться, чтобы скорости молекул газа на выходе из двигателя имели одинаковое направление и были большими по величине, также приводит к увеличению тяги.

Такое же влияние оказывает давление газов в камере сгорания двигателя. Чем больше это давление по сравнению с атмосферным, т. е. с давлением газов на выходе из двигателя, тем большая доля тепла переходит в скоростную энергию газов и поэтому больше скорость истечения и тяга двигателя, рассчитанного на это увеличенное давление.

Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.

Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется — с увеличением высоты тяга растет.

Особенно важным является то, что тяга остается постоянной при изменении скорости полета.

Читайте также

ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ РАЗЛИЧНЫХ ТИПОВ РАКЕТ И РАКЕТНОГО ВООРУЖЕНИЯ. ВЕЛИКОБРИТАНИЯ

ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ РАЗЛИЧНЫХ ТИПОВ РАКЕТ И РАКЕТНОГО ВООРУЖЕНИЯ. ВЕЛИКОБРИТАНИЯ О разработках ракет и реактивных снарядов в Великобритании почти нет опубликованных данных. Однако нужно признать, что сделано не многое. Официально сообщается, что все разработки

КЛАССИФИКАЦИЯ РАКЕТНОГО ОРУЖИЯ

КЛАССИФИКАЦИЯ РАКЕТНОГО ОРУЖИЯ БАЛЛИСТИЧЕСКИЕ РАКЕТЫ (СУХОПУТНЫЕ И МОРСКИЕ)Межконтинентальные баллистические ракеты (МБР) Баллистические ракеты подводных лодок (БРПЛ) Баллистические ракеты средней дальности (БРСД) Баллистические ракеты оперативно-тактические и

Неисправности двигателя

Неисправности двигателя Якорь стартера не вращается при включении замка зажигания Неисправности системы пуска Проверить работу стартера одним из трех способов:1. Убедиться в надежности кабельных соединений наконечников на клеммах аккумуляторной батареи. Освободить

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного

2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ

2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ Основные свойства ракетного двигателя мы уже знаем.Первое свойство заключается в отсутствии специального движителя, назначение которого выполняет сам двигатель. Это оказывается возможным потому, что тяга представляет собой реакцию

Мощность ракетного двигателя

Мощность ракетного двигателя Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической

Экономичность ракетного двигателя

Экономичность ракетного двигателя Наряду с мощностью важнейшей характеристикой каждого двигателя является его экономичность. Если речь идет о тепловом двигателе, то экономичность его определяется расходом топлива на единицу мощности, т. е. на 1 л. с. Экономичный

Крепление двигателя

Крепление двигателя Картер – это основание, на котором крепят основные детали двигателя. Картер изготавливают из алюминиевого сплава. Кривошипной камерой называется место картера, в котором вращается шатун и щеки коленчатого вала. Крепление двигателя к раме или

Промывка двигателя

Промывка двигателя Если масло в вашем двигателе, после пробега автомобилем нескольких тысяч километров, остается чистым и прозрачным, это должно навести вас на мысль, что масло не слишком качественное и не обладает необходимыми «моющими» свойствами и его необходимо

Термодинамика

Новая физическая идея — использование детонационного горения вместо обычного, дефлаграционного — позволяет радикально улучшить характеристики реактивного двигателя.

Говоря о космических программах, мы в первую очередь думаем о мощных ракетах, которые выводят на орбиту космические корабли. Сердце ракеты-носителя — ее двигатели, создающие реактивную тягу. Ракетный двигатель — это сложнейшее энергопреобразующее устройство, во многом напоминающее живой организм со своим характером и манерами поведения, которое создается поколениями ученых и инженеров. Поэтому изменить что-то в работающей машине практически невозможно: ракетчики говорят: «Не мешай машине работать. » Такой консерватизм, хотя он многократно оправдан практикой космических пусков, все же тормозит ракетно-космическое двигателестроение — одну из самых наукоемких областей деятельности человека. Необходимость изменений назрела уже давно: для решения целого ряда задач нужны существенно более энергоэффективные двигатели, чем те, которые эксплуатируются сегодня и которые по своему совершенству достигли предела.

Нужны новые идеи, новые физические принципы. Ниже речь пойдет именно о такой идее и о ее воплощении в демонстрационном образце ракетного двигателя нового типа.

Дефлаграция и детонация

В большинстве существующих ракетных двигателей химическая энергия горючего преобразуется в тепло и механическую работу за счет медленного (дозвукового) горения — дефлаграции — при практически постоянном давлении: P=const . Однако, кроме дефлаграции, известен и другой режим горения — детонация. При детонации химическая реакция окисления горючего протекает в режиме самовоспламенения при высоких значениях температуры и давления за сильной ударной волной, бегущей с высокой сверхзвуковой скоростью. Если при дефлаграции углеводородного горючего мощность тепловыделения с единицы площади поверхности фронта реакции составляет

1 МВт/м2, то мощность тепловыделения в детонационном фронте на три-четыре порядка выше и может достигать 10000 МВт/м2 (выше мощности излучения с поверхности Солнца!). Кроме того, в отличие от продуктов медленного горения, продукты детонации обладают огромной кинетической энергией: скорость продуктов детонации в

20-25 раз выше скорости продуктов медленного горения. Возникают вопросы: нельзя ли в ракетном двигателе вместо дефлаграции использовать детонацию и приведет ли замена режима горения к повышению энергоэффективности двигателя?

Приведем простой пример, который иллюстрирует преимущества детонационного горения в ракетном двигателе над дефлаграционным. Рассмотрим три одинаковых камеры сгорания (КС) в виде трубы с одним закрытым и другим открытым концом, которые заполнены одинаковой горючей смесью при одинаковых условиях и поставлены закрытым концом вертикально на тягоизмерительные весы (рис. 1). Энергию зажигания будем считать пренебрежимо малой по сравнению с химической энергией горючего в трубе.

Рис. 1. Энергоэффективность детонационного двигателя

Пусть в первой трубе горючая смесь зажигается одним источником, например, автомобильной свечой, расположенной у закрытого конца. После зажигания вверх по трубе побежит медленное пламя, видимая скорость которого обычно не превышает 10 м/c, то есть много меньше скорости звука (около 340 м/с). Это означает, что давление в трубе P будет очень мало отличаться от атмосферного Pa , и показания весов практически не изменятся. Другими словами, такое (дефлаграционное) сжигание смеси фактически не приводит к появлению избыточного давления на закрытом конце трубы, и, следовательно, дополнительной силы, действующей на весы. В таких случаях говорят, что полезная работа цикла с P = Pa = const равна нулю и, следовательно, равен нулю термодинамический коэффициент полезного действия (КПД). Именно поэтому в существующих силовых установках горение организуется не при атмосферном, а при повышенном давлении P Pa , получаемом с помощью турбонасосов. В современных ракетных двигателях среднее давление в КС достигает 200-300 атм.

Читать еще:  Газ 2705 двигатель 421640 технические характеристики

Попытаемся изменить ситуацию, установив во второй трубе множество источников зажигания, которые одновременно зажигают горючую смесь по всему объему. В этом случае давление в трубе P быстро возрастет, как правило, в семь-десять раз, и показания весов изменятся: на закрытый конец трубы в течение некоторого времени — времени истечения продуктов горения в атмосферу — будет действовать достаточно большая сила, которая способна совершить большую работу. Что же изменилось? Изменилась организация процесса горения в КС: вместо горения при постоянном давлении P = const мы организовали горение при постоянном объеме V = const .

Теперь вспомним о возможности организации детонационного горения нашей смеси и в третьей трубе вместо множества распределенных слабых источников зажигания установим, как и в первой трубе, один источник зажигания у закрытого конца трубы, но не слабый, а сильный — такой, который приведет к возникновению не пламени, а детонационной волны. Возникнув, детонационная волна побежит вверх по трубе с высокой сверхзвуковой скоростью (около 2000 м/с), так что вся смесь в трубе сгорит очень быстро, и давление в среднем повысится как при постоянном объеме — в семь-десять раз. При более детальном рассмотрении оказывается, что работа, совершенная в цикле с детонационным горением, будет даже выше, чем в цикле V = const .

Таким образом, при прочих равных условиях детонационное сгорание горючей смеси в КС позволяет получить максимальную полезную работу по сравнению с дефлаграционным горением при P = const и V = const , то есть позволяет получить максимальный термодинамический КПД . Если вместо существующих ракетных двигателей с дефлаграционным горением использовать двигатели с детонационным горением, то такие двигатели могли бы дать чрезвычайно большие выгоды. Этот результат был впервые получен нашим великим соотечественником академиком Яковом Борисовичем Зельдовичем еще в 1940 году, однако до сих пор не нашел практического применения. Основная причина этому — сложность организации управляемого детонационного горения штатных ракетных топлив.

Мощность тепловыделения в детонационном фронте на 3-4 порядка выше, чем во фронте обычного дефлаграционного горения и может превышать мощность излучения с поверхности Солнца. Скорость продуктов детонации в 20-25 раз выше скорости продуктов медленного горения

Демонстрационный образец ДРД, установленный на испытательном стенде

Фото: Сергей Фролов

Импульсный и непрерывный режимы

До настоящего времени предложено множество схем организации управляемого детонационного горения, включая схемы с импульсно-детонационным и с непрерывно-детонационным рабочим процессом. Импульсно-детонационный рабочий процесс основан на циклическом заполнении КС горючей смесью с последующим зажиганием, распространением детонации и истечением продуктов в окружающее пространство (как в третьей трубе в рассмотренном выше примере). Непрерывно-детонационный рабочий процесс основан на непрерывной подаче горючей смеси в КС и ее непрерывном сгорании в одной или нескольких детонационных волнах, непрерывно циркулирующих в тангенциальном направлении поперек потока.

Концепция КС с непрерывной детонацией предложена в 1959 году академиком Богданом Вячеславовичем Войцеховским и долгое время изучалась в Институте гидродинамики СО РАН. Простейшая непрерывно-детонационная КС представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров (рис. 2). Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой КС можно организовать, сжигая горючую смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать горючая смесь, вновь поступившая в КС за время одного оборота волны по окружности кольцевого канала. К другим достоинствам таких КС относят простоту конструкции, однократное зажигание, квазистационарное истечение продуктов детонации, высокую частоту циклов (килогерцы), малый продольный размер, низкий уровень эмиссии вредных веществ, низкий уровень шума и вибраций.

Заданный удельный импульс в детонационном ракетном двигателе достигается при значительно меньшем давлении, чем в традиционном жидкостном ракетном двигателе. Это позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей

Рис. 2. Схема детонационного ракетного двигателя

В рамках проекта Минобрнауки создан демонстрационный образец непрерывно-детонационного ракетного двигателя (ДРД) с КС диаметром 100 мм и шириной кольцевого канала 5 мм, который испытан при работе на топливных парах водород—кислород, сжиженный природный газ—кислород и пропан-бутан—кислород. Огневые испытания ДРД проводились на специально разработанном испытательном стенде. Длительность каждого огневого испытания — не более 2 с. За это время с помощью специальной диагностической аппаратуры регистрировались десятки тысяч оборотов детонационных волн в кольцевом канале КС. При работе ДРД на топливной паре водород—кислород впервые в мире экспериментально доказано, что термодинамический цикл с детонационным горением (цикл Зельдовича) на 7-8% эффективнее, чем термодинамический цикл с обычным горением при прочих равных условиях.

В рамках проекта создана уникальная, не имеющая мировых аналогов вычислительная технология, предназначенная для полномасштабного моделирования рабочего процесса в ДРД. Эта технология фактически позволяет проектировать двигатели нового типа. При сравнении результатов расчетов с измерениями оказалось, что расчет точно прогнозирует количество детонационных волн, циркулирующих в тангенциальном направлении в кольцевой КС ДРД заданной конструкции (четыре, три или одну волну, рис. 3). Расчет с приемлемой точностью предсказывает и рабочую частоту процесса, то есть дает значения скорости детонации, близкие к измеренным, и тягу, фактически развиваемую ДРД. Кроме того, расчет правильно предсказывает тенденции изменения параметров рабочего процесса при повышении расхода горючей смеси в ДРД заданной конструкции — как и в эксперименте, количество детонационных волн, частота вращения детонации и тяга при этом увеличиваются.

Рис. 3. Квазистационарные расчетные поля давления (а, б) и температуры (в) в условиях трех экспериментов (слева направо). Как и в экспериментах, в расчетах получены режимы с четырьмя, тремя и одной детонационными волнами

Основной показатель энергоэффективности ракетного двигателя — удельный импульс тяги, равный отношению тяги, развиваемой двигателем, к весовому секундному расходу горючей смеси. Удельный импульс измеряется в секундах (с). Зависимость удельного импульса тяги ДРД от среднего давления в КС, полученная в ходе огневых испытаний двигателя нового типа, такова, что удельный импульс увеличивается с ростом среднего давления в КС. Основной целевой показатель проекта — удельный импульс тяги 270 с в условиях на уровне моря — достигнут в огневых испытаниях при среднем давлении в КС, равном 32 атм. Измеренная тяга ДРД при этом превысила 3 кН.

При сравнении удельных характеристик ДРД с удельными характеристиками в традиционных жидкостных ракетных двигателях (ЖРД) оказывается, что заданный удельный импульс в ДРД достигается при значительно меньшем среднем давлении, чем в ЖРД. Так, в ДРД удельный импульс в 260 с достигается при давлении в КС всего 24 атм, тогда как удельный импульс 263,3 с в известном отечественном двигателе РД-107А достигается при давлении в КС 61,2 атм, которое в 2,5 раза выше. Отметим, что двигатель РД-107А работает на топливной паре керосин—кислород и используется в первой ступени ракеты-носителя «Союз-ФГ». Такое значительное снижение среднего давления в ДРД позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей и снизить требования к турбонасосным агрегатам.

Вот и новая идея, и новые физические принципы.

Один из результатов проекта — разработанное техническое задание на проведение опытно-конструкторской работы (ОКР) по созданию опытного образца ДРД. Основная проблема, которую планируется решить в рамках ОКР,— обеспечить непрерывную работу ДРД в течение длительного времени (десятки минут). Для этого потребуется разработать эффективную систему охлаждения стенок двигателя.

Ввиду своего прорывного характера задача создания практического ДРД, несомненно, должна стать одной из приоритетных задач отечественного космического двигателестроения.

Сергей Фролов, доктор физико-математических наук, Институт химической физики им. Н.Н. Семенова РАН, профессор НИЯУ-МИФИ

Газ вместо керосина

Кадр видеосъемки огневых испытаний ДРД

Фото: Сергей Фролов

В 2014-2016 годах Министерством образования и науки РФ поддержан проект «Разработка технологий использования сжиженного природного газа (метан, пропан, бутан) в качестве топлива для ракетно-космической техники нового поколения и создание стендового демонстрационного образца ракетного двигателя». Проект предусматривает создание демонстрационного образца непрерывно-детонационного ракетного двигателя (ДРД), работающего на топливной паре «сжиженный природный газ (СПГ)—кислород». Исполнитель проекта — Центр импульсно-детонационного горения Института химической физики РАН. Индустриальный партнер проекта — Тураевское машиностроительное конструкторское бюро «Союз». В заявке на проект целесообразность использования в жидкостном ракетном двигателе (ЖРД) непрерывно-детонационного горения объяснялась более высоким термодинамическим КПД по сравнению с традиционным циклом, использующим медленное горение, а целесообразность использования СПГ объяснялась целым рядом преимуществ по сравнению с керосином: повышенным удельным импульсом тяги, доступностью и дешевизной, существенно меньшим сажеобразованием при горении и более высокими экологическими характеристиками. Теоретически замена керосина на СПГ в традиционном ЖРД сулит повышение удельного импульса на 3-4%, а переход от традиционного ЖРД к ДРД — на 13-15%.

Читать еще:  Газель двигатель камминз не развивает обороты

PDF-версия

  • 26
  • 27
  • 28
  • 29

Что такое удельная тяга авиационного двигателя

2. ХАРАКТЕРИСТИКИ СИЛОВОЙ УСТАНОВКИ САМОЛЁТА ИЛ-86

2.1. Сила тяги и удельный расход топлива самолёта ИЛ-86

На самолете ИД-86 установлено четыре двигателя НК-86, которые на взлетном режиме при частоте вращения ротора высоко­го давления 7400 об/мин дают тягу 520кН. Это обеспечивает са­молету высокую тяговооруженность

Благодаря большой тяговооруженности и четырем силовым установ­кам обеспечивайся высокая безопасность полета. При отказе одного двигателя обеспечивается безопасность продолжения взле­та на трех двигателях.

При отказе одного двигателя обеспечива­ется возможность продолжения полета на трех двигателях. При отказе двух двигателей обеспечивается возможность продолжения полета и безопасная посадка, на ближайшем аэродроме.

Для улучшения посадочных характеристик двигатели оборудо­ваны системой реверсирования тяга.

Следует учитывать потери силы тяги при установке двига­телей на самолет. Эти потери объясняются уменьшением расхода воздуха за счет каналов воздухозаборников, уменьшением скорости истечения газа из реактивного сопла за счет реверса и откло­нения оси сопла от оси самолета.

Тяга двигателя зависит от расхода воздуха и соотношения скорости истечения газа из реактивного сопла и скорости полета самолета.

P = GB ( WV )/ q , Н(кН)

где GB – расход воздуха, равный ≈ 300 кг/с;

WV / q – удельная тяга (Руд),

W – скорость истечения газа из реактивного сопла, равная ≈ 500м/с,

V – скорость полета самолета.

q – ускорение свободного падения, равное 9,81м/с .

Из формулы видно, что чем больше секундный расход воз­духа и больше удельная тяга, тем больше реактивная тяга. Рас­ход воздуха через двигатель зависит от сжатия воздуха динамической и степени сжатия компрессора , а скорость истечения газа из реактивного сопла зависит от степени расширения газа на турбине и степени расширения газа на реактивном, сопле

Удельным расходом топлива ( C р) называется часовой расход топлива в килограммах, необходимый для получения 1 H тяги двигателя в 1ч.

где С h — часовой расход топлива, кг;

P — сила тяги, Н.

2.2. Дроссельная характеристика двигателя самолёта ИЛ-86

Дроссельной характеристикой двигателя называется зависи­мость тяги, удельного расхода топлива и температуры газов перед турбиной от частоты вращения ротора турбины.

На режиме малого газа 55% (25-40° РУД) двигатель работа­ет устойчиво, обеспечивая минимальную тягу 6 кн, при этом ре­жиме вся энергия газов расходуется на вращение двигателя. Тя­га двигателя при этом небольшая из-за малой частоты вращения, а следовательно, небольшого расхода воздуха и степени сжатия компрессора, а также малых скоростей истечения газа из реак­тивного сопла (рис.4). Часовой расход топлива невелик, но удельный (из-за малой тяги) довольно значительный и достигает 0,1

При увеличении режима работы двигателей увеличивается количество подаваемого топлива, мощность и частота вращения ротора турбины, что привело к увеличению степени сжатия комп­рессора, росту расхода воздуха и скорости истечения газов из реактивного сопла.

Удельный расход топлива в процессе увеличения РУР будет уменьшаться, так как двигатель рассчитан на крейсерский режим работы ( n = 80 – 90% ВД), где КПД его будет максимальным. При выходе двигателя на взлетный режим часовой расход топлива, температура газов и частота вращения ротора турбины становят­ся максимальными. Это дает максимальные значения степени сжа­тия компрессора, расхода воздуха, скорости истечения газа из реактивного сопла и тяги, которая при n = 94,5% (115° РУД) равна 130 кН.

Рис. 4. Дроссельная характеристика двигателя

Рис. 5. Скоростная характеристика двигателя

При закрытии клапанов перепуска из-за увеличения расхода воздуха через турбину реактивная тяга увеличивается, а удель­ный расход топлива уменьшается (см. рис.4).

При включении реверса тяги возникает обратная тяга, дос­тигающая 40 кН. При включении реверса на большой скорости об­ратная тяга будет больше, чем на малых скоростях.

2.3. Скоростная характеристика двигателя самолёта ИЛ-86

Скоростной характеристикой двигателя называется зависимость тяги и удельного расхода от скорости полета самолета.

При увеличении скорости полета происходит рост секунд­ного расхода воздуха через двигатель по причине увеличения суммарной степени сжатия. Суммарная степень сжатия увеличива­ется, т.к. динамическая степень сжатия увеличивается более значительно, чем уменьшается степень сжатия компрессора. Удель­ная тяга , несмотря на рост скорости истечения газов из реактивного сопла из-за более сильного увеличения скорости полета V , уменьшается. Процесс уменьшения удельной тяги идет более быстро, чем рост расхода воздуха, и поэтому тяга двигателя по скорости уменьшается, доходя до нуля, когда скорость полета будет равна скорости истечения газа W (рис.5). Удельный расход топлива при этом непрерывно увеличивается, особенно на больших скоростях, ввиду увеличения подачи топли­ва в связи с ростом расхода воздуха и уменьшением тяги двига­теля.

2.4. Высотная характеристика двигателя самолёта ИЛ-86

Высотной характеристикой двигателя называется зависимость тяги и удельного расхода топлива от высоты полета.

При стандартной атмосфере о достижением высоты 11000м температура, атмосферное давление в плотность воздуха умень­шаются, а на высотах от 11000 до 25000м температура не изменяется.

Тяга двигателя с поднятием на высоту уменьшается (рис.6), падает расход воздуха из-за уменьшения его плотнос­ти, но до 11000м уменьшение расхода замедляется ростом степе­ни сжатия компрессора, которая увеличивается из-за уменьшения температуры наружного воздуха.

После 11000м температура наружного воздуха становится постоянной, степень сжатия не увеличивается, расход воздуха уменьшается пропорционально падению плотности (см.рис.6).

Удельная тяга (Руд) до высоты 11000м растет ввиду роста скорости истечения газов W , увеличение которой объясняется ростом степени сжатия компрессора. Поэтому из-за увеличения удельной тяги (Руд) тяга двигателя медленнее падает из-за роста расхода воздуха, а после 11000м тяга падает пропорцио­нально уменьшению плотности воздуха, так как ничто не замед­ляет ее уменьшения (рис,7), она уменьшается в 2 – 2,5раза.

Удельный расход топлива Ср с поднятием на высоту умень­шается из-за роста степени сжатия компрессора и роста КПД двигателя.

Параметры двигателя НК-86 (Н=0, V =0)

Рис. 6. Высотная характеристика двигателя

Рис.7. характеристики двигателя

2.5. Влияние температуры и давления окружающего воздуха на тягу двигателя самолёта ИЛ-86

В зависимости от принятого закона регулирования для оп­ределенного двигателя можно получить различный характер изме­нения рабочих параметров двигателя в зависимости от температуры окружающего воздуха. Так, для двигателя НК-86 закон ре­гулирования принят по постоянной физической частоте вращений компенсатора II каскада. В соответствии с указанным законом частота вращения ротора турбины двигателя температура поддер­гивается расчетной на взлетном режима + 30°С (см.рис.7).

Несмотря на то, что с понижением температуры воздуха плотность его растет, частота вращения ротора поддерживается постоянной в результате увеличения расхода топлива, при этом температура газов перед турбиной также останется почти посто­янной. За счет повышения плотности воздуха и, следовательно, увеличения весового заряда воздуха, а также увеличения степе­ни повышения давления в компрессоре при понижении температуры на входе в двигатель тяга двигателя возрастает.

При температуре воздуха + 30°С на взлетном режиме топлив­ный насос-регулятор дает максимальную производительность.

При дальнейшем понижении температуры воздуха на входе в двигатель плотность воздуха возрастает, увеличивается потребная работа компрессора, а располагаемая работа турбины увеличиться не может, так как насос выдает максимальную про­изводительность (шайба стоит на упоре).

В связи с этим падает частота вращения, производитель­ность насоса уменьшается, уменьшается расход топлива и снижа­ется температура газов перед турбиной, а тяга двигателя в ре­зультате увеличения массового расхода воздуха остается почти постоянной.

При уменьшении давления на 20 мм рт.ст. из-за уменьше­ния расхода воздуха тяга двигателя уменьшается на 3–4%. Сте­пень сжатия компрессора не изменяется, так как давление падает по всему тракту двигателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector