Avtoargon.ru

АвтоАргон
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое верхний двигатель водного потока в растении

Что такое верхний двигатель водного потока в растении

Разглядеть в пороге эти V-образные структуры обычно бывает нетрудно, если смотреть с берега. Но для того, чтобы бегло читать их, глядя из каяка, требуется определенная практика. Умение быстро находить их очень важно, потому что «языки» указывают вам глубокие и чистые проходы, а «усы» — скрытые камни. В простых порогах обычно имеется всего один «язык», и гребцу достаточно направить лодку в его вершину. Более сложные пороги содержат несколько таких структур, и ваша задача состоит в том, чтобы последовательно связать их в единый маршрут от начала до конца порога. В еще более сложных препятствиях таких структур очень много, причем некоторые из них не очень четко выражены либо сопряжены с другими структурами течений. Вы должны выполнить последовательность ходов, зависящую от того, что вы видели при просмотре порога, и от того, насколько успешными были предыдущие ходы.

Улова

Для каякера улово — практически единственное место, где можно отдохнуть, подождать товарищей, изготовиться для страховки, просмотреть последующий участок реки, выйти на берег или отчалить от него. Передвигаясь прыжками от одного улова до другого в пределах видимости, каякер способен быстро перемещаться по незнакомой реке, не тратя много времени на просмотр по берегу.

Самое сложное место — это граница улова и струи, называемая сбойкой. Из-за разности скоростей по обе стороны от нее плывущий предмет начинает не только вращаться вокруг вертикальной оси, но может также легко перевернуться через борт (если это не абсолютно круглое бревно). При увеличении скорости течения возрастает и разность скоростей между основной струей и уловом. Из-за этого на сбойке образуется опасная вертикальная турбулентность в виде воронок и перепад уровней воды. В одних ситуациях, например, если улово образовано крупным надводным камнем выше по течению, то его уровень оказывается ниже уровня основной струи; такое улово называется пониженным. В некоторых других, например, когда основную роль в возникновении улова играет подпор крупного камня ниже по течению, уровень воды в улове оказывается выше уровня потока; такое улово называется повышенным. Прохождение такого перепада с низшего уровня на высший требует определенного запаса скорости; в любом случае, при прохождении таких сложных сбоек каяк ведет себя весьма неустойчиво.

На реках с большим расходом воды или во время паводка опасность для каяка может представлять и само улово. В этих случаях в нем часто образуются восходящие вертикальные течения — поганки. Это одна из самых неприятных для каякера структур, и угодить в нее вместо ожидаемого отдыха — сомнительное удовольствие.

Сбойки струй

Каяк, оказавшийся на сбойке струй, попадает в весьма сложное положение. Во-первых, разность горизонтальных скоростей потока у носа и у кормы стремится развернуть его строго вдоль границы, и тогда крен в любую сторону позволяет либо одной, либо другой струе притопить борт и перевернуть лодку. Во-вторых, вертикальная турбулентность сама по себе делает поведение каяка неустойчивым. Сложность прохождения сбоек тем больше, чем больше угол схождения струй и их скорость; по существу, она определяется разностью поперечных составляющих скорости по обе стороны границы.

Что такое верхний двигатель водного потока в растении

Вода является одной из главных составных частей растений. Ее содержание неодинаково в разных органах растения (так, в листьях салата она составляет 95 %, а в сухих семенах — не более 10 % от массы ткани) и зависит от условий внешней среды, вида и возраста растения. Для своего нормального существования растение должно содержать определенное количество воды, в среднем 75-80 % массы растительной ткани.
В клетках и тканях различают две формы воды:

  • прочно связанную (связанную)
  • рыхло связанную (свободную).

Осмотически связанная вода гидратирует растворенные вещества — ионы и молекулы; коллоидносвязанная вода гидратирует коллоиды (макромолекулы); капиллярносвязанная вода связана со структурами клеточных стенок и сосудов за счет сил адгезии.

Связанная вода выполняет структурную функцию, поддерживая структуру коллоидов и обеспечивая функционирование ферментов, органоидов и клетки в целом. Она малоподвижна, не участвует в растворении и транспорте веществ, отличается сниженной температурой замерзания и более высокой температурой кипения по сравнению со свободной водой.

Свободная вода обладает высокой подвижностью, является растворителем и основным транспортером веществ по растению. Доля связанной воды в клетке составляет около 40 %, доля свободной — около 60 %. При недостатке влаги в первую очередь снижается доля свободной воды.

Растительная клетка представляет собой осмотическую систему. Пектоцеллюлозная оболочка хорошо проницаема как для воды, так и для растворенных веществ. Однако плазмалемма и тонопласт обладают избирательной проницаемостью, легко пропускают воду и менее проницаемы, а в некоторых случаях непроницаемы для растворенных веществ. В этом можно убедиться, рассмотрев явления плазмолиза и тургора. Если поместить клетку в раствор более высокой концентрации, чем в клетке, то под микроскопом видно, что цитоплазма отстает от клеточной оболочки. Это особенно хорошо проявляется на клетке с окрашенным клеточным соком. Клеточный сок остается внутри вакуоли, а между цитоплазмой и оболочкой образуется пространство, заполненное внешним раствором. Явление отставания цитоплазмы от клеточной оболочки получило название плазмолиза.

Плазмолиз происходит в результате того, что под влиянием более концентрированного внешнего раствора вода выходит из клетки (от своего большего химического потенциала к меньшему), тогда как растворенные вещества остаются в клетке. При помещении клеток в чистую воду или в слабо концентрированный раствор вода поступает в клетку. Количество воды в клетке увеличивается, объем вакуоли возрастает, клеточный сок давит на цитоплазму и прижимает ее к клеточной оболочке. Под влиянием внутреннего давления клеточная оболочка растягивается, в результате клетка переходит в напряженное состояние — тургор.

Корневая система как орган поглощения воды

Водный баланс растений складывается из поглощения, использования и потери воды. Поглощение воды и питательных веществ осуществляется в основном корневыми волосками ризодермы. Ризодерма — это однослойная ткань, покрывающая корень снаружи. У одних видов растений каждая клетка ризодермы формирует корневой волосок, у других она состоит из двух типов клеток:

  • трихобластов, образующих корневые волоски,
  • атрихобластов, не способных к образованию волосков.
Читать еще:  Вездеход с китайским двигателем своими руками

Из ризодермы вода попадает в клетки коры. Через клетки коры возможны два пути транспорта воды и растворов минеральных солей: по симпласту и апопласту. Более быстрый транспорт воды происходит по апопласту. Затем вода попадает в клетки эндодермы. Центральный цилиндр корня содержит перицикл, паренхимные клетки и две системы проводящих элементов: ксилему и флоэму. Клетки перициклаи паренхимные клетки активно транспортируют ионы в проводящие элементы ксилемы. Контакт осуществляется через поры во вторичных клеточных стенках сосудов и клеток. По сосудам флоэмы транспортируются органические вещества из надземной части растения в корни.

Корневое давление: значение, механизм и методы определения.

Вода пассивно диффундирует в сосуды ксилемы благодаря осмотическому механизму. Осмотически активными веществами в сосудах являются минеральные ионы и метаболиты, выделяемые насосами плазмалеммы паренхимных клеток, окружающих сосуды. Сосущая сила у сосудов выше, чем у окружающих клеток из-за повышающейся концентрации ксилемного сока и отсутствия значительного противодавления со стороны малоэластичных клеточных стенок. В результате поступления воды в сосудах ксилемы развивается гидростатическое давление, получившее название корневого давления. Оно участвует в поднятии ксилемного раствора по сосудам ксилемы из корня в надземную часть растения. Поднятие воды по растению вследствие развивающегося корневого давления называют нижним концевым двигателем. Проявлением работы нижнего концевого двигателя (корневого давления) служат плач растений и гуттация.

Механизмы передвижения воды по растению. Теория сцепления


Восходящий поток воды в растении идет по сосудам ксилемы, лишенным цитоплазмы. Помимо работы нижнего концевого двигателя и присасывающего действия транспирации (верхний концевой двигатель) в передвижении воды по капиллярным сосудам ксилемы участвуют силы сцепления молекул воды друг с другом (когезии) и силы прилипания (адгезии) воды к стенкам сосудов. Обе силы препятствуют также образованию пузырьков воздуха, способных закупорить сосуд. Скорость передвижения воды по ксилеме равна 12-14 м/ч. Большая часть воды, попавшей в листья, испаряется в атмосферу, а меньшая часть (около 0,2 %) используется в метаболизме клеток на поддержание тургора и в транспорте органических соединений по сосудам флоэмы.

Транспирация — это физиологический процесс испарения воды растением.

Основным органом транспирации является лист. Вода испаряется с поверхности листьев через клеточные стенки эпидермальных клеток и покровные слои (кутикулярная транспирация) и через устьица (устьичная транспирация). В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из сосудов ксилемы и передвижению воды по ксилеме из корней в листья. Таким образом, верхний концевой двигатель, участвующий в транспорте воды вверх по растению, обусловлен транспирацией листьев. Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия, как в корне, но и энергия внешней среды (температура и движение воздуха). Транспирация спасает растение от перегрева.

Кутикулярная транспирация. Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующими эффективный барьер на пути движения воды. Интенсивность кутикулярной транспирации варьируется у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев.

Устьичная транспирация и механизм ее регулирования


Устьица представляют собой щель в подустьичную полость, окаймленную двумя замыкающими клетками серповидной формы. Стенки замыкающих клеток, обращенные к щели, образуют утолщения. Противоположные стенки тонкие. Устьичная щель ведёт в обширный межклетник — подустьичную полость. В основе устьичных движений лежит обратимое изменение тургора замыкающих клеток. Тонкие участки их стенок с повышением тургора растягиваются и вытягиваются в направлении от устьичной щели. В этом же направлении выгибаются и стенки, обращенные к щели. Ширина щели увеличивается — и устьице открывается. С понижением тургора замыкающих клеток устьице закрывается. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц. Высокая оводненность замыкающих клеток приводит к открыванию устьиц. При недостатке воды замыкающие клетки выпрямляются — и устьичная щель закрывается. Для нормального существования растительный организм должен содержать определенное количество воды. Чтобы возместить потери воды при испарении в растение непрерывно должна поступать вода. Два процесса, непрерывно идущие в растении – поступление и испарение воды – называются водным балансом растений.

Читать еще:  Что такое egr на бензиновом двигателе

В естественных условиях поступление воды не успевает за ее расходованием, в результате чего в растении развивается водный дефицит. В полдень содержание воды в листе на 25-28% ниже, чем в утренние часы и сопровождается уменьшение водного потенциала. Вечером при нормальных водных условиях насыщение водой листьев увеличивается. Орошение должно быть систематической целенаправленной подачей воды растению с учетом физиологических особенностей ростовых процессов, времени формирования органов. Существуют различные методы: определения влажности почвы в слое роста корней, диагностики физиологического состояния растения и др. Определение необходимости полива с учетом физиологического состояния растения дает особенно хорошие результаты.

К таким методам относят:

  • определение сосущей силы, концентрации и осмотического давления сока клетки;
  • определение необходимости полива по периодизму работы устьиц, по тургорному давлению листьев;
  • измерение электрического сопротивления тканей и клеток листа.

Наряду с поливной нормой и временем полива для агрономии важно знать показатели эффективного использования воды растениями. Таким показателем служит транспирационный коэффициент — количество воды, затраченное для накопления 1 г сухого вещества.

Пути и механизмы передвижения воды по растению. Восходящий и нисходящий ток.

Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: верхнего концевого двигателя(транспирации), и нижнего концевого двигателя, или корневого двигателя. Основной силой, вызывающей поступление и передвижение воды в растении, является присасывающая сила транспирации, в результате которого возникает градиент водного потенциала.

Водный потенциал – это мера энергии, используемой водой для передвижения. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противоположны по знаку.

Путь воды по растению распадается на три различные по физиологии, строению и протяженности части:

1. По живым клеткам корня.

2. По мертвым элементам ксилемы корня, стебля, черешка и жилок.

3. По живым клеткам листа до устьиц.

(1),(3) — по живым клеткам корня и листьев вода передвигается осмотическим путем с помощью разности сосущих сил соседних клеток. (2) – передвижение воды по сосудам ксилемы и трахеидам проходит довольно легко, как по полым трубкам, подчиняясь гидродинамическим законам. По протяженности эти пути тоже сильно отличаются.

Восходящий ток — это ток минеральных солей, растворенных в воде, идущих от корней по стеблю к листьям. Восходящий ток осуществляется по сосудам и трахеидам ксилемы (древесины).

основные особенности восх.тока:

1. движется главным образом по ксилеме.

2.Кроме воды по восходящему току передвигаются минеральные вещества из почвы.

3.Большая часть воды восходящего потока испаряется в атмосферу в результате транспирации.

4.Меньшая часть воды восходящего потока (0,2%) используется:

А) на метаболитические реакции;

Б) на поддержания тургора клеток;

В) на транспорт органических веществ вниз по флоэме

5.Движущей силой восходящего тока воды в растении является градиент водного потенциала через растение от почвы до атмосферы, который определяется градиентом осмотического потенциала в клетках корня и транспирацией.

Значение восходящего тока в растении:

1. Служит средством транспортировки минеральных веществ.

2. Участвует в водоснабжении и поддержании тургора клеток.

3. За счет транспирации защищает растение от перегрева.

Нисходящий ток – это движение органических веществ от листьев к корням по ситовидным элементам флоэмы (луба).

Его основные особенности:

1.Это направленный вниз флоэмный поток органических веществ (продуктов фотосинтеза), формирующихся в мезофилле листа.

2.Он доставляет органические соединения к тканям корня, где они используются в метаболизме.

3.Движущей силой является осмотический градиент, возникающий вследствие накопления сахаров и других продуктов фотосинтеза.

Низкорослых травянистых растений механизм перетекания ксилемного сока заключается в том, что корневое давление нагнетает воду в сосуды центрального цилиндра корня, а сосущие силы, возникающие в листьях из-за транспирации, притягивают эту воду, создавая постоянный ток воды по всему растению.

У гигантов растительного мира (эвкалипт, 140м) водный ток испытывает и преодолевает силу земного притяжения. Объясняет подъем на такую высоту воды теория сцепления (когезии), согласно которой вода в капиллярных трубках сосудов ксилемы поднимается вверх в ответ на присасывающее транспирации из-за действия сил сцепления молекул воды друг с другом и действия сил прилипания (адгезии) столба воды к гидрофильным стенкам сосудов. Обе силы препятствуют образованию воздушных полостей в сосудах.

Передвижение воды по растению.

Немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно не зависимых друг от друга объемов, по которым передвигается вода, — апопласта и симпласта.

Апопласт – это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы.

Читать еще:  Что такое теплообменник в дизельном двигателе

Симпласт – это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая – по другую сторону клеток эндодермы, и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству. Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа. Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Вся вода в клетке находится в равновесном состоянии. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Что такое верхний двигатель водного потока в растении

Корневая система распространяется в почве в вертикальном и горизонтальном направлениях. Особенности распространения зависят от видовых особенностей растения. Так, у пустынных растений корневая система распространяются вглубь на десять (а отдельные виды и на большее количество) метров, а у теневыносливых растений, растущих в нижнем ярусе леса, корневая система в основном располагается в ярусе до 0.5 метра, но вширь может занимать несколько квадратных метров.

Поступление воды в корневую систему растения и перемещение ее по тканям корня осуществляется путем пассивной диффузии. Поступление идет по градиенту концентрации, поэтому если в почве концентрация почвенного раствора выше, чем концентрация клеточного сока, то вода будет диффундировать не в растение, а из него, и наступит гибель растения. Такая ситуация может сложиться в результате передозировки минеральных удобрений, небрежного внесения минеральных удобрений, когда они рассыпаются неравномерно.

Корневая система имеет поглощающую или всасывающую зону — это зона корневых волосков. Поступив в клетку корневого волоска вода становится частью живой системы — клетки растения — и подчиняется закономерностям, действующим в живой клетке. Передвижение по растению определяется двумя основными двигателями водного потока в растении:

нижним двигателем водного потока или корневым давлением,

верхним двигателем водного потока или присасывающим действием атмосферы.

Корневое давление создается при переходе воды из коры корня в сосудистую систему корня при прохождении воды через пропускные клетки перицикла, из которых вода под давлением как бы впрыскивается в сосуды ксилемы. Доказательством этого служат явления гуттации и «плача растений».

Гуттация — это выделение капельно-жидкой влаги листьями через гидатоды в условиях затрудненного испарения.

Плач растения — это вытекание пасоки (воды с растворенными в ней минеральными веществами, находящейся в ксилеме) из стеблей растений со срезанными побегами. Механизм образования корневого давления по-видимому состоит из двух аспектов:

переноса воды по законам осмоса,

дополнительной сократительной деятельности актомиозиновых белков, находящихся в перицикле и паренхимных клетках корня.

Присасывающее действие атмосферы определяется концентрацией водяных паров в атмосфере. Этот показатель в атмосфере почти всегда меньше, чем в листе растения, за исключением условий повышенной влажности воздуха, например, во время дождя, тумана.

Определяющую роль в формировании верхнего двигателя водяного потока в растении играет водный потенциал ¥ (фэта).

Водный потенциалYвыражает способность воды в данной системе, в том числе в почвенном растворе, или в клетке растения, или в атмосфере, совершить работу по сравнению с той работой, которую при тех же условиях совершила бы чистая вода.

Водный потенциал, являясь фактически мерой активности воды, определяет термодинамически возможное направление ее транспорта. Молекулы воды всегда перемещаются от более высокого водного потенциала к более низкому, подобно тому, как вода течет вниз. Водный потенциал имеет размерность энергии, деленной на объем, поэтому его выражают в барах или паскалях (1 атмосфера = 1,013 бар = 10 5 Па.10 6 Па равны 1 мегаПа)

Химический потенциал воды — µw — это величина, производная от активности воды. Она выражает максимальное количество внутренней энергии молекул воды, которое может быть превращено в работу, измеряется в ДЖ . моль -1 и рассчитывается по уравнению:

µw = µw 0 + RT ln aw, где

µw 0 химический потенциал чистой воды (принят равным нулю), R — газовая постоянная, T — абсолютная температура, aw — активность воды в системе.

В системе «почвенный раствор — растение — атмосфера» водный потенциал изменяется от самого высокого значения в почвенном растворе до самого низкого в воздухе. Вода переходит из растения в окружающий воздух в парообразном состоянии. В мезофилле листа имеются обширные межклеточные пространства и каждая клетка мезофилла хотя бы одной стороной граничит с таким межклетником. Вследствие испарения воды с влажных клеточных стенок воздух в межклетниках насыщен водяными парами, часть которых через устьица выходит наружу.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector