Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронный учебник по электрическим машинам / 7

Электронный учебник по электрическим машинам / 7. Коллекторные машины переменного тока

7-1. Общие замечания

Коллекторные машины переменного тока обычно применяются как двигатели, т. е. для преобразования энергии однофазного или трехфазного тока в механическую энергию. Соответственно различают однофазные и трехфазные коллекторные двигатели переменного тока. Ротор их выполняется так же, как якорь машины постоянного тока, — с петлевой или волновой обмоткой, соединенной с коллектором. B статоре рассматриваемых машин имеет место переменное магнитное поле, поэтому он собирается из тонких листов электротехнической стали в отличие от статора машин постоянного тока, ярмо которого обычно выполняется из литой или прокатанной стали.

Коллекторные машины переменного тока, за исключением однофазных двигателей малой мощности, получили незначительное распространение Они применяются лишь в специальных установках. К недостаткам, препятствующим их широкому распространению, нужно отнести: сложность изготовления и относительно высокую стоимость, необходимость тщательного ухода за коллектором и щетками, меньшую надежность в работе (из-за ухудшенных условий коммутации). Однако в ряде случаев они позволяют решать некоторые задачи, связанные с работой электропривода, более совершенным образом, чем бесколлекторные асинхронные двигатели. По сравнению с последними их преимущества заключаются в том, что они позволяют экономично и плавно регулировать скорость вращения и могут работать с лучшим cos .

7-2. Однофазные двигатели

Здесь рассмотрим однофазные коллекторные двигатели с последовательным возбуждением. Схема одного из таких двигателей приведена на рис. 7-1, где обозначают: В — обмотку возбуждения, помещенную на главных полюсах; К — компенсационную обмотку, помещенную в пазах статора и предназначенную для компенсации реакции якоря (ротора); Я — якорь (ротор) с наложенными на коллектор щетками; Д — обмотку дополнительных полюсов, зашунтированную активным сопротивлением R.

Рис. 7-1. Схема однофазного двигателя последовательного возбуждения.

Вращающий момент в двигателе получается в результате взаимодействия поля, созданного обмоткой возбуждения, и токов в обмотке ротора. Этот момент и при переменном токе все время направлен в одну сторону, так как одновременно с изменением направления магнитного поля изменяется направление тока в обмотке ротора. Изменение направления вращения ротора осуществляется так же, как для двигателя постоянного тока, например путем переключения концов обмотки возбуждения.

Приведенная на рис. 7-1 схема не отличается в основном от схемы двигателя постоянного тока последовательного возбуждения. Однако для последнего компенсационную обмотку применяют очень редко, только при очень больших мощностях, тогда как для однофазных двигателей ее применяют, начиная с 10—15 кВт и выше. Она компенсирует реакцию ротора (якоря), уменьшает потокосцепление обмотки ротора и, следовательно, ее индуктивное сопротивление, что необходимо для улучшения cos  двигателя.

Дополнительные полюсы, так же как в машинах постоянного тока, служат для улучшения коммутации. Условия коммутации в однофазном двигателе получаются более тяжелыми, чем в машинах постоянного тока. В этом его существенный недостаток. Ухудшение коммутации здесь вызывается возникновением в коммутируемой секции (секции, замкнутой щеткой) трансформаторной э.д.с., кроме реактивной э.д.с. и э.д.с. вращения (от внешнего поля в коммутационной зоне). Трансформаторная э.д.с. возникает вследствие пульсаций потока главных полюсов, с осью которого совпадает ось коммутируемой секции. Эта секция является как бы замкнутой вторичной обмоткой трансформатора, первичной, обмоткой которого служит обмотка возбуждения. Для компенсации трансформаторной и реактивной э.д.с. при помощи э.д.с. вращения нужно в коммутационной зоне создать поле, сдвинутое по фазе относительно тока ротора, что достигается шунтированием обмотки дополнительных полюсов активным сопротивлением (рис. 7-1). Однако взаимной компенсации э.д.с. в коммутируемой секции можно добиться только при определенных значениях тока ротора и его скорости вращения. При других режимах работы двигателя условия коммутации ухудшаются и становятся особенно тяжелыми при пуске в ход, так как в этом случае трансформаторная э.д.с. не компенсируется (э.д.с. вращения равна нулю). Большие работы по исследованию коммутации в коллекторных двигателях переменного тока были выполнены акад. К. И. Шенфером еще в 1911—1914 гг. Они способствовали усовершенствованию этих двигателей.

Трансформаторная э.д.с. Eт, наведенная в коммутируемой секции, определяется так же, как э.д.с. вторичной обмотки трансформатора:

, (7-1)

где wc— число витков секции якорной обмотки; f — частота тока; Ф — амплитуда потока главных полюсов.

Для уменьшения Eт т приходится идти на уменьшение потока Ф, что при данной мощности достигается увеличением числа полюсов

Кроме того, для больших двигателей число витков в секции берется равным единице (wc = 1). Все это приводит к увеличению числа коллекторных пластин и, следовательно, размеров коллектора. Для уменьшения Eт уменьшают также частоту питающего переменного тока. Скорость вращения однофазных двигателей последовательного возбуждения может регулироваться, например, при помощи трансформатора Т, имеющего ответвления со вторичной стороны (рис. 7-1). Трансформатор служит в то же время для понижения напряжения, подведенного к двигателю, так как последний должен работать при относительно небольшом напряжении на щетках коллектора.

Широкое распространение получили однофазные двигатели последовательного возбуждения малой мощности (до 100—150 Вт). Они не имеют ни дополнительных полюсов, ни компенсационной обмотки, так как при малой мощности условия коммутации и при 50 Гц получаются вполне удовлетворительными, a cos  здесь не играет существенной роли. На рис. 7-2 приведена схема одного из таких двигателей. Они могут работать от переменного и постоянного тока, поэтому называются универсальными. При мощности свыше 60—80 Вт иногда делается ответвление от обмотки возбуждения (показано пунктиром на рис. 7-2), позволяющее при работе от переменного тока иметь обмотку возбуждения с меньшим числом витков, что дает ту же скорость вращения, как и при постоянном токе, и повышает использование двигателя. Универсальные двигатели применяются для самых различных целей: для электроинструмента, швейных машин, бормашин, для небольших вентиляторов, пылесосов, как исполнительные двигатели в схемах автоматики и т. д.

Рис. 7-2. Схема универсального двигателя.

7-3. Трехфазные двигатели

Трехфазные коллекторные двигатели являются коллекторными асинхронными машинами. Они работают при наличии в них вращающегося магнитного поля со скоростью, отличающейся в общем случае от скорости поля. На их роторе помещается обмотка, выполненная так же, как обмотка якоря машины постоянного тока. Из трехфазных коллекторных двигателей на практике получил распространение главным образом двигатель с параллельным возбуждением, получающий питание со стороны ротора. Схема такого двигателя приведена на рис. 7-3. Здесь обозначают: 1 — трехфазную обмотку ротора (главную), соединенную через контактные кольца и щетки с питающей сетью трехфазного тока; 2 — обмотку статора, каждая фаза которой соединена со щетками на коллекторе; 3 — коллекторную обмотку, которая закладывается в те же пазы ротора, что и главная его обмотка. Щетки каждой фазы статора могут сдвигаться или раздвигаться, что осуществляется при помощи подвижных траверс, к которым они прикреплены На рис. 7-4 правые щетки прикреплены к одной траверсе, левые— к другой. Обе траверсы можно поворачивать во взаимно противоположных направлениях Для этого применяются различные устройства Одно из них схематически показано на рис. 7-5. Если щетки каждой фазы поставить на одни и те же коллекторные пластины (рис. 7-4), то двигатель будет работать как асинхронный двигатель. От обычного асинхронного двигателя в этом случае он будет отличаться тем, что первичной его обмоткой будет служить обмотка ротора, а вторичной — обмотка статора Применяя правило правой руки и учитывая относительное перемещение проводников статора и вращающегося поля, найдем направление тока, наведенного в проводниках статора. По правилу левой руки определяется направление электромагнитной силы, действующей на статор. Сила, действующая на ротор, имеет обратное направление. Отсюда найдем, что ротор будет вращаться против направления вращения поля. Скорость поля относительно ротора есть синхронная скорость. Скорость поля относительно статора есть скорость скольжения. Она равна разности скоростей поля относительно ротора и самого ротора.

Читать еще:  Автономный подогреватель двигателя как включить

Рис. 7-3. Схема трехфазного коллекторного двигателя параллельного возбуждения с питанием со стороны ротора.

Рис. 7-4. Трехфазный коллекторный двигатель (см. рис. 7-3).

Рис. 7-5. Устройство для поворота щеток во взаимно противоположных направлениях. К—малые зубчатые колеса; Т—большие зубчатые колеса, прикрепляемые к траверсам; М—маховичок.

При раздвижении щеток на них получается э.д.с., имеющая такую же частоту, как и э.д.с. в обмотке статора, т. е. частоту скольжения. В этом можно убедиться, учитывая то, что поле относительно части обмотки, заключенной между щетками (как бы фиксирующими в пространстве эту часть обмотки), имеет такую же скорость, как и относительно обмотки статора. При указанном на рис. 7-3 соединении щеток с обмоткой статора э.д.с. на щетках — добавочная э.д.с. Eдоб — вводится во вторичную цепь двигателя ,Она вместе с э.д.с. статора sE2 вызывает ток, взаимодействие которого с полем определяет вращающий момент двигателя. Здесь Е2— э.д.с. фазы статора при неподвижном роторе, s — скольжение двигателя. Если щетки раздвинуть так, чтобы Eдоб была направлена против sE2, то скольжение будет увеличиваться. Режим работы устанавливается при некотором скольжении, когда результирующая э. д. с. (sE2Eдоб) вызывает ток, достаточный для создания момента, равного тормозящему моменту на валу двигателя. При увеличении Eдоб (при большом раздвижении щеток) скорость вращения будет уменьшаться вниз от синхронной.

При регулировании скорости вращения обычного асинхронного двигателя путем введения в его вторичную цепь реостата получается непроизводительная затрата мощности в реостате. В рассматриваемом двигателе соответствующая мощность поступает в коллекторную обмотку, так как сдвиг по фазе между током во вторичной цепи и э.д.с. Eдоб больше 90°. Мощность, полученная от статора коллекторной обмоткой возвращается в сеть через трансформаторную связь коллекторной обмотки с главной обмоткой ротора. Этим и обусловлена экономичность регулирования скорости вращения трехфазного коллекторного двигателя путем введения в его вторичную цепь добавочной э.д.с.

При положении щеток, показанном на рис. 7-4, скорость вращения ротора близка к синхронной. Если щетки раздвинуть так, чтобы Eдоб была направлена в ту же сторону, что и sE2 при положительном скольжении, то скорость вращения будет увеличиваться вверх от синхронной. В этом случае двигатель будет работать с отрицательным скольжением, при котором э.д.с. sE2 изменит свое направление. Она будет направлена против Eдоб, но будет меньше последней.

Таким образом, раздвигая щетки в ту или другую стороны, можно регулировать скорость вращения двигателя вниз или вверх от синхронной.

Двигатель позволяет также регулировать его cos . Для этою нужно изменять по фазе э.д.с. Eдоб, что осуществляется путем смещения щеток каждой фазы, например, для улучшения cos  при скорости ниже синхронной щетки нужно сместить в сторону, обратную направлению вращения, ротора (показано пунктиром на рис. 7-3).

Рассматриваемый трехфазный коллекторный двигатель применяется в текстильной промышленности (для кольцевых прядильных станков), в полиграфической промышленности (для ротационных машин), иногда для металлорежущих станков.

В этом двигателе, так же как и в других коллекторных двигателях переменного тока, условия коммутации получаются более тяжелыми, чем в машинах постоянного тока. Здесь они также определяются значением трансформаторной э.д.с. Ет, индуктированной в коммутируемой секции вращающимся полем. Она может быть рассчитана по формуле (7-1). Опыт показал, что удовлетворительные условия коммутации могут быть получены, если Eт Соседние файлы в папке Электронный учебник по электрическим машинам

    #

Проверка и ремонт коллекторного электродвигателя

В домашнем хозяйстве практически все электродвигатели коллекторные- это синхронные устройства. Как они устроены и работают читайте в нашей предыдущей статье.

Коллекторные электродвигатели стоят в стиральных машинах (но не во всех моделях), пылесосах, электроинструменте, детских игрушках и т. д. Главной отличительно их особенностью является наличие неподвижных обмоток статора и обмоток на валу (якорь), на которые подается напряжение при помощи коллектора и графитных щеток.

Если у Вас сломался или барахлит мотор в электроинструменте и других устройствах, то не спешите его выкидывать, потому что в большинстве случаев его можно быстро и недорого отремонтировать своими руками. Как определить и устранить неисправность Вы узнаете далее из этой статьи.

Перед тем как начать искать причину в электродвигателях, сначала проверьте исправность шнура питания, кнопок включения и при наличии пуск-регулировочных устройств.

Как проверить коллекторный электродвигатель- наиболее частые поломки

Для определения и устранения неисправностей придется разбирать сам электроинструмент или электродвигатель других бытовых устройств по этой инструкции. Только перед тем как приступить к разборке, обратите внимание на искрение в контактно-щеточном механизме. Если оно будет повышенным (как на рисунке у нижней щетки), то это может свидетельствовать об износе или плохом контакте щеток, реже о межвитковом замыкании в коллекторе.

Читать еще:  Что с двигателем если оборвало ремень грм ауди

В большинстве случаев причиной поломок коллекторных двигателей является износ щеток и почернение коллектора. Изношенные щетки необходимо заменить новыми одинаковыми по форме и размерам, лучше конечно оригинальными. Меняются они очень просто- либо нужно снять или сдвинуть фиксатор или открутить болт. В некоторых моделях меняются не сами щетки, а в сборе с щеткодержателем. Не забываем подключить к контакту медный поводок. Если же щетки целы, тогда растяните прижимающие их пружины.

Если контактная часть коллектора потемнела, тогда ее необходимо обязательно почистить мелкой наждачной бумагой (нулевкой).

Иногда вместе контакта щеток с коллектором образовывается канавка. Ее необходимо проточить на станке.

На втором месте по количеству неисправностей стоит износ подшипников. О необходимости их замены в электроинструменте свидетельствует биение патрона и повышенная вибрация корпуса при работе. Как проверить и заменить подшипники подробно рассказано в этой статье. В самых запущенных случаях начинают при вращении касаться якорь и статор- придется как минимум менять якорь.

Как проверить коллекторный электродвигатель- редкие поломки

Гораздо реже происходит обрыв или выгорание в обмотках или в местах их подключения, оплавление или замыкание графитовой пылью ламелей коллектора.
В большинстве случаев это удается определить внешним осмотром. При этом обращайте внимание на:

  • Целостность обмоток.
  • Почернение обмоток либо всей, либо ее части.
  • Надежность контактов выводов проводов с ламелями коллектора. При необходимости перепаяйте.
  • Забита ли графитовой пылью пространство между ламелями. Если да то почистите.
  • Наличие характерного запаха горения изоляции проводов.

Если обнаружено визуально повреждение обмотки стартера или якоря, то их потребуется заменить на новые или сдать в перемотку.

Но не всегда визуально возможно определить повреждение обмоток, поэтому следует воспользоваться мультиметром для этих целей.

Как прозвонить электродвигатель мультиметром

Включите мультиметр в режим прозвонки или омметра с пределом измерения 50-100 Ом. Как это сделать читаем а этой инструкции.

  1. Прозвоните попарные выводы обмоток на ламели коллектора. Все значения сопротивления должны быть равны.
  2. Затем проверьте сопротивление между ламелями и корпусом якоря, как показано на правой картинке. Оно должно быть бесконечным.
  3. Проверить целостность обмотки статора можно при помощи прозвонки ее выводов, как показано на левой картинке.
  4. Проверьте цепь между корпусом статора и выводами обмоток. При пробое на корпус, эксплуатировать электроинструмент или мотор запрещено.

Иногда возникает межвитковое замыкание в обмотке, тогда определить его возможно только при помощи специального устройства- прибора проверки якорей.

  • Разборка и сборка электродвигателя
  • Видео 27 о электродвигателе 220 В, .
  • Проверка и ремонт асинхронных .
  • Видео 29 о разборке и сборке .

Универсальный коллекторный двигатель

Универсальный коллекторный двигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены.

Содержание

Особенности конструкции

Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.

Достоинства и недостатки

Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.

Достоинства в сравнении с коллекторным двигателем постоянного тока:

  • Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
  • Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
  • Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.

Недостатки в сравнении с коллекторным двигателем постоянного тока:

  • Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
  • Меньший максимальный момент (может быть недостатком).

Достоинства в сравнении асинхронным двигателем:

  • Быстроходность и отсутствие привязки к частоте сети.
  • Компактность (даже с учётом редуктора).
  • Больший пусковой момент.
  • Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
  • Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.

Недостатки в сравнении с асинхронным двигателем:

  • Нестабильность оборотов при изменении нагрузки (где это имеет значение).
  • Наличие щёточно-коллекторного узла и в связи с этим:
    • Относительно малая надёжность (срок службы)
    • Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи
    • Высокий уровень шума
    • Относительно большое число деталей коллектора (и соответственно двигателя)

Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.

Читать еще:  Без какого датчика не заведется двигатель

Сравнение с асинхронным двигателем

Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:

  • УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
  • Асинхронный двигатель — «жёсткая» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном снижении оборотов (единицы процентов). При значительном снижении оборотов (до полного торможения) момент двигателя не растёт, а даже падает, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.

Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.

Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).

Аналоги без коллекторного узла

Ближайшим аналогом УКД по механической харатеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).

Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).

Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.

Почему в ж/д электровозах используются именно коллекторные двигатели постоянного тока?

Вопрос этот интересен тем, что коллекторный электродвигатель постоянного тока не является образцом энергоэффективности и надёжности. Так часть подводимой к нему электроэнергии уходит на питание обмоток возбуждения (обмотки статора). А ещё щёточно-коллекторный узел нужно инспектировать и обслуживать. Гораздо эффективнее было бы изначально устанавливать на те же советские электровозы серии ВЛ асинхронные электродвигатели. Но ведь нет же, не устанавливали. Давайте разберёмся, почему?

Прежде чем ответить на этот вопрос, нужно пояснить, что на контактную сеть РЖД подаётся однофазное переменное напряжение 25 кВ и частотой 50 Гц. Строго говоря это напряжение может просаживаться и до 21 кВ, но не должно превышать 29 кВ. Сама контактная сеть включает в себя один токоведущий воздушный провод и рельсы. Да, рельсы тоже активно участвуют в процессе электроснабжении электровоза. Вся эта сеть питается от тяговой ж/д подстанции, в которую из энергосистемы вводится высокое трёхфазное напряжение 220 — 110 кВ.

Ну а дальше в тяговой подстанции это трёхфазное напряжение фактически преобразуется в однофазное 25 кВ. Такие подстанции расположены на всём протяжении через каждые 40 — 60 км, чтобы напряжение не проседало.

И отсюда у многих возникнет вопрос: а почему же нельзя подавать трёхфазный ток на контактную сеть? Зачем его преобразовывать в однофазный?

Это связано с тем, что однофазному току нужен всего лишь один воздушный провод, а трёхфазному нужно аж три. Три провода на всей протяжённости железной дороги тянуть дорого. И именно из-за экономических соображений трёхфазный ток на тяговой ж/д подстанции преобразуют в однофазный.

Таким образом через пантограф и контакт с рельсами этот однофазный ток напряжением 25 кВ и частотой 50 Гц попадает в электровоз. И что же его там ждёт? Строго говоря, ничего хорошего. Потому что на сегодняшний день не существует асинхронных электродвигателей, которые бы работали на однофазном токе с высоким КПД. А те, что существуют, маломощные и ставятся в основном на бытовую технику, и их КПД не выше 60%. Разумеется, такой низкий КПД вообще никого не устроит.

То ли дело трёхфазные асинхронные электродвигатели! У них КПД доходит до 90%. Вот они очень даже хорошо подходят для использования в качестве мощных тяговых. Только вот проблема в том, что просто так взять и дёшево преобразовать однофазный ток в трёхфазный не получится. Если вы намотаете на сердечник трансформатора одну первичную обмотку и три вторичные, то на этих трёх вторичных обмотках вы получите три однофазных тока, никак не сдвинутых между собой по фазе. А ведь мы с вами знаем, что у трёхфазного тока угол сдвига составляет 120 градусов. И именно благодаря этому сдвигу появляется вращающееся магнитное поле.

Получается, что тот фокус, который мы проделали на тяговой подстанции, преобразовав трёхфазный ток в однофазный, в обратную сторону просто так провести не удаётся. Для этого сначала нужно в самом электровозе установить управляемый выпрямитель. Он сделает однофазный переменный ток постоянным. Затем этот выпрямленный ток нужно подать на ещё одно сложное и очень дорогое устройство под названием тяговый автономный инвертор. Вот как раз он и сделает из постоянного тока трёхфазный переменный с возможностью регулировки напряжения и частоты.

Ну и конечно же эти мощные инверторы стоят неприлично дорого. В советское время на всём экономили, и поэтому трёхфазный асинхронный электродвигатель, который заполонил всю промышленность, не смог «прописаться» в электровозе. И поэтому только современные, дорогие и новые ж/д локомотивы, в которые вбухано много денег, ездят на асинхронных электродвигателях с инверторами. А подавляющее большинство электровозов РЖД до сих пор старые, советские, иногда чешские, ездят на коллекторных электродвигателях постоянного тока.

Это значит, что подводимое к электровозу переменное напряжение просто выпрямляется в нём с возможностью регулировки величины напряжения. И это постоянное напряжение питает коллекторники. Потому что так дешевле и экономически эффективнее.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector