Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способ определения скоростных характеристик двигателей

Способ определения скоростных характеристик двигателей

Владельцы патента RU 2325626:

Изобретение относится к диагностике двигателей различных типов, в частности двигателей внутреннего сгорания (ДВС), в эксплуатационных условиях, а также в процессе изготовления или ремонта. Способ универсален, прост и экономичен. Осуществим с использованием в качестве вычислительного средства блока управления двигателем или бортового компьютера автомобиля, или внешнего персонального компьютера. Способ обеспечивает наибольшую эффективность экспресс-диагностики двигателей. Способ определения скоростных характеристик двигателей по ускорению и/или замедлению движущихся инерционных масс с помощью вычислительного средства и подключенного к нему датчика положения вала диагностируемого двигателя осуществляют таким образом, что в установленном технологическом режиме отслеживают каждый полный оборот вала в виде исходного электрического сигнала определенной формы. Преобразуют электрический сигнал в цифровой. Определяют временной интервал каждого фиксируемого оборота. Формируют последовательный ряд временных интервалов отслеженных полных оборотов, по меньшей мере, одинарных, и по нему вычисляют угловую скорость и угловое ускорение вала. Перед определением временного интервала каждого полного оборота восстанавливают форму исходного электрического сигнала, по меньшей мере, частично, например в зоне наибольшей информативности, и временной интервал полного оборота определяют по повторяемости восстановленного сигнала в этой зоне. 7 з.п. ф-лы, 5 ил.

Изобретение относится к области диагностики двигателей различных типов, в частности двигателей внутреннего сгорания (ДВС), в эксплуатационных условиях, а также в процессе изготовления или ремонта по определению их скоростных характеристик: МКР(n) — крутящего момента от n, где n — частота вращения вала в минуту, N(n) — мощности от n и/или МT(n) — тормозного момента от n.

Известен способ диагностики ДВС, основанный на измерении числа свободных разгонов и расхода топлива за фиксированное время и последующем сравнении их с эталонными значениями (патент России 2248549, G01М 15/00, 2005 г.). Оценка скоростных характеристик двигателя (СХД) в этом способе опосредована и поэтому недостаточно точна.

Известен способ диагностики ДВС путем оценки СХД по изменению частоты вращения вала в установленном технологическом режиме работы двигателя (патент России 2037803, G01М 15/00, 1995 г.), при котором непрерывно измеряют промежутки времени, соответствующие повороту вала на смежные и равные угловые интервалы заданной величины, с синхронизацией начала измерения с одним и тем же тактом цикла работы определенного цилиндра. Такой способ позволяет диагностировать не только работу двигателя в целом, но и работу отдельных его цилиндров. Однако он специфичен, алгоритм его проведения перегружен и не предусматривает определение тормозного момента двигателя, в силу чего использование этого способа не всегда экономически оправдано.

Известен более простой и универсальный способ определения СХД по ускорению и/или замедлению движущихся инерционных масс, основанный на использовании для определения углового ускорения и частоты вращения вала ряда интервалов времени последовательных полных оборотов вала в установленном технологическом режиме работы двигателя (патент России 2280244, G01М 15/04, 2006 г), являющийся наиболее близким аналогом (прототипом) изобретения.

Способ проводят с помощью специального вычислительного блока, к которому подключают датчик положения вала диагностируемого двигателя и по взаимодействию датчика с одним и тем же выступом синхронизирующего диска, связанного с валом, отслеживают каждый полный оборот вала в виде исходного электрического сигнала определенной формы. После чего его преобразуют в цифровой и с заданной дискретизацией определяют временной интервал каждого фиксируемого оборота. Затем формируют последовательный ряд временных интервалов полных оборотов вала и по нему вычисляют угловую скорость ω и угловое ускорение Е(ω).

В прототипе каждый полный оборот отсчитывают с определенной долей приблизительности по кратному числу дискретного времени, что наряду с использованием сигнала в цифровом виде приводит к получению результата, как правило, с заведомой технологической ошибкой, которая вносит погрешность в определение углового ускорения вала двигателя, функция Е(ω) при этом неочевидна. Из-за формирования последовательного ряда временных интервалов полных оборотов по одному и тому же выступу диска, т.е. когда угловой шаг между двумя последовательными полными оборотами равен 2π, погрешности суммируются.

Перечисленные недостатки искажают протекание вычисленной функции Е(ω) (углового ускорения) и, следовательно, функции МКР(n). Точность определения СХД в прототипе таким образом снижена.

К тому же способ осуществим только с использованием специального вычислительного блока с высоким разрешением, что удорожает диагностику.

Диагностика четырехтактных ДВС, где рабочий процесс происходит за два полных оборота, таким способом нецелесообразна, т.к. функция Е(ω), а следовательно, функции МКР(n) могут принимать пилообразный характер из-за разной индикаторной мощности цилиндров в многоцилиндровом ДВС, а в одноцилиндровом ДВС, из-за разности тактов в двух последовательных оборотах.

Задача, решаемая изобретением, направлена на создание экономичного и эффективного способа определения СХД для диагностики различных типов двигателей с достаточной точностью.

Технический результат, получаемый от реализации изобретения, заключается в упрощении способа и повышении достоверности получаемых им данных.

Для достижения технического результата в способе определения скоростных характеристик двигателей по ускорению и/или замедлению движущихся инерционных масс с помощью вычислительного средства и подключенного к нему датчика положения вала диагностируемого двигателя, при котором в установленном технологическом режиме отслеживают каждый полный оборот вала в виде исходного электрического сигнала определенной формы, преобразуют электрический сигнал в цифровой, определяют временной интервал каждого фиксируемого оборота, формируют последовательный ряд временных интервалов отслеженных полных оборотов, по меньшей мере одинарных, и по нему вычисляют угловую скорость и угловое ускорение вала, в отличие от известных аналогов перед определением временного интервала каждого полного оборота восстанавливают форму исходного электрического сигнала, по меньшей мере частично, например в зоне наибольшей информативности, и временной интервал полного оборота определяют по повторяемости восстановленного сигнала в этой зоне.

В вариантах исполнения отличия способа состоят в том, что

временной интервал каждого последующего полного оборота определяют со смещенной по углу точкой отсчета относительно предыдущего оборота;

при диагностике четырехтактного двигателя последовательный ряд временных интервалов формируют по двум смежным полным оборотам вала, а точка отсчета временных интервалов каждой последующей пары смежных полных оборотов может быть смещена по углу относительно каждой предыдущей пары смежных полных оборотов.

Важным отличительным свойством предлагаемого способа является то, что его осуществление не требует специальных технических средств, например специального вычислительного блока, — способ реализуется через электронный блок управления двигателем либо бортовой компьютер автомобиля, либо внешний персональный компьютер.

Другие дополнительные отличия предлагаемого способа направлены на его детализацию и заключаются в том, что в качестве технологического режима устанавливают режимы разгона двигателя до максимальных оборотов или свободного выбега двигателя при торможении, или принудительного холостого хода.

Благодаря восстановлению исходной формы электрического сигнала, определению времени полного оборота по повторяемости восстановленного электрического сигнала в зоне наибольшей информативности и формированию последовательного ряда временных интервалов полных оборотов (одинарных или сдвоенных) с точками отсчета, смещенными по углу, изобретением обеспечивается снижение уровня возможных погрешностей, т.к. достигается более достоверное определение времени полного оборота из-за отсутствия в нем кратного дискретного времени, а также простота, эффективность и универсальность способа с возможностью реализации его с помощью доступных технических средств с более низким, чем в прототипе разрешением.

Для пояснения сущности способа представлены: фиг.1 — схема осуществления способа, фиг.2 — график внешней скоростной характеристики (ВСХ) ДВС, полученной данным способом, фиг.3, 4, 5 — графики, характеризующие точность способа.

Способ применим для различных типов двигателей, как ДВС: поршневых или роторных, так и других видов двигателей, в частности альтернативных ДВС, как имеющих электронный блок управления, так и без него. В последнем случае может быть использован внешний персональный компьютер.

Сущность способа поясняется на конкретном примере определения МКР(n) поршневого ДВС с использованием датчика 1 положения коленчатого вала, взаимодействующего с выступами синхронизирующего диска 2, взаимосвязанного с коленчатым валом, и внешнего компьютера 3, работающего по алгоритму, задаваемому программой, разработанной автором данного изобретения, также патентуемой.

Датчик 1 подключают к каналу входа аналого-цифрового преобразователя (АЦП) компьютера 3. Двигатель запускают и в режиме свободного разгона начинают съем электрических сигналов, которые с помощью АЦП компьютера 3 преобразуют в цифровой и затем восстанавливают форму электрического сигнала полностью или частично. В зависимости от формы восстановленный сигнал может иметь участки, не несущие полезной информации и частичное восстановление сигнала, например, в зоне наибольшей информативности, является наиболее рациональным.

Используя восстановленный сигнал за время каждого полного оборота вала двигателя, а для четырехтактного двигателя время сдвоенных оборотов, определяют с точностью не менее 0,0000005 с по фактической индикации перехода, например через ноль, последовательного ряда чисел в одном и том же повторяющемся через полный одинарный или сдвоенный оборот месте. Для определения углового ускорения и частоты вращения вала используют разности времени между полными оборотами. Формируют последовательный ряд временных интервалов одинарных (или сдвоенных для четырехтактного двигателя) полных оборотов вала с одной и той же точкой отсчета, или смещая ее по углу, например, на шаг, равный или меньше шага расположения выступов синхронизирующего диска, при этом угловой шаг между полными оборотами меньше 2π, что позволяет с дополнительной очевидностью определить протекание функции Е(ω) углового ускорения от угловой скорости вращения вала, а далее находят МКР(n) (крутящий момент двигателя), умножая Е(ω) (угловое ускорение вала) на IПР (приведенный момент инерции подвижных деталей). Технологический режим повторяют несколько раз.

Читать еще:  Что такое механическая и регулировочная характеристики двигателя

Тормозной момент определяют по тому же алгоритму при замедлении вала в режиме свободного выбега при выключении двигателя или в режиме принудительного холостого хода при работающем двигателе.

Из приведенной ВСХ четырехтактного ДВС (фиг.2) видно, что МКР(n) имеет гладкий характер протекания без пилообразных и волнообразных участков, благодаря точности определения удвоенного оборота коленчатого вала, которая не менее 0,0000005 с. Абсолютная ошибка ускорения имеет степенной характер (фиг.3). Принимая крутящий момент за 155 Нм, что соответствует максимальному крутящему моменту современного ДВС в режиме свободного разгона, получаем график относительной ошибки крутящего момента (фиг.4). Обеспеченная точность данного способа при определении МКР(n) с погрешностью не более 1% в диапазоне оборотов до 10000 об/мин для четырехтактного двигателя. При 10000 об/мин при угловом ускорение 800 рад/с -2 изменение частоты вращения вала в минуту за один оборот не более 50 об/мин, что позволяет использовать время четырех смежных оборотов, при этом погрешность МКР(n) не более 0,25% (фиг.5).

При диагностике других типов двигателей формирование последовательного ряда временных интервалов данным способом может быть осуществлено с использованием любого целесообразного числа отслеживаемых полных оборотов, например строенных или учетверенных (фиг.5), что обеспечивает дополнительное снижение погрешностей.

1. Способ определения скоростных характеристик двигателей по ускорению и/или замедлению движущихся инерционных масс с помощью вычислительного средства и подключенного к нему датчика положения вала диагностируемого двигателя, при котором в установленном технологическом режиме отслеживают каждый полный оборот вала в виде исходного электрического сигнала определенной формы, преобразуют электрический сигнал в цифровой, определяют временной интервал каждого фиксируемого оборота, формируют последовательный ряд временных интервалов отслеженных полных оборотов, по меньшей мере, одинарных, и по нему вычисляют угловую скорость и угловое ускорение вала, отличающийся тем, что перед определением временного интервала каждого полного оборота восстанавливают форму исходного электрического сигнала, по меньшей мере, частично, например, в зоне наибольшей информативности и временной интервал полного оборота определяют по повторяемости восстановленного сигнала в этой зоне.

2. Способ по п.1, отличающийся тем, что временной интервал каждого последующего полного оборота определяют со смещенной по углу точкой отсчета относительно предыдущего оборота.

3. Способ по п.1, отличающийся тем, что при диагностике четырехтактного двигателя последовательный ряд временных интервалов формируют по двум смежным полным оборотам вала.

4. Способ по п.3, отличающийся тем, что точку отсчета временных интервалов каждой последующей пары смежных полных оборотов смещают по углу относительно каждой предыдущей пары смежных полных оборотов.

5. Способ по любому из пп.1, 2 или 3, отличающийся тем, что в качестве технологического режима устанавливают режим свободного разгона двигателя.

6. Способ по любому из пп.1, 2 или 3, отличающийся тем, что в качестве технологического режима устанавливают режим свободного выбега при выключенном двигателе.

7. Способ по любому из пп.1, 2 или 3, отличающийся тем, что в качестве технологического режима устанавливают режим работы двигателя на принудительном холостом ходу.

8. Способ по п.1, отличающийся тем, что в качестве вычислительного средства используют электронный блок управления двигателя, или бортовой компьютер автомобиля, или внешний персональный компьютер.

Внешняя скоростная характеристика двигателя внутреннего сгорания

Внешняя скоростная характеристика двигателя Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности Ne и крутящего

  1. Внешняя скоростная характеристика двигателя
  2. Что такое мощность двигателя, крутящий момент и удельный расход топлива
  3. Что такое мощность двигателя
  4. Виды мощности
  5. Как узнать мощность двигателя автомобиля
  6. Что такое крутящий момент
  7. Что такое расход (удельный расход) топлива
  8. Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя

Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности Ne и крутящего момента Ме от частоты вращения коленчатого вала при полной подаче топлива. Эффективной называется мощность, развиваемая на коленчатом валу двигателя. Внешняя скоростная характеристика определяет возможности двигателя и характеризует его работу. По внешней скоростной характеристике определяют техническое состояние двигателя. Она позволяет сравнивать различные типы двигателей и судить о совершенстве новых двигателей.

На внешней скоростной характеристике (рис.6) выделяют следующие точки, определяющие характерные режимы работы двигателя:

Nmax – максимальная (номинальная) мощность;

nN – частота вращения коленчатого вала при максимальной мощности;

Мmax – максимальный крутящий момент;

nM – частота вращения коленчатого вала при максимальном крутящем моменте;

nmin – минимальная частота вращения коленчатого вала, при которой двигатель работает устойчиво при полной подаче топлива;

nmax – максимальная частота вращения.

Из характеристики видно, что двигатель развивает максимальный момент при меньшей частоте вращения, чем максимальная мощность.

Это необходимо для автоматического приспосабливания двигателя к возрастающему сопротивлению движения. Например, автомобиль двигается по горизонтальной дороге при максимальной мощности двигателя и начинает преодолевать подъем. Сопротивление дороги возрастает, скорость автомобиля и частота вращения коленчатого вала уменьшаются, а крутящий момент увеличивается, обеспечивая возрастание тяговой силы на ведущих колесах автомобиля. Чем больше увеличение крутящего момента при уменьшении частоты вращения, тем выше приспосабливаемость двигателя и тем меньше вероятность его остановки. Для бензиновых двигателей увеличение (запас) крутящего момента достигает 30 %, а у дизелей — 15 %.

В эксплуатации большую часть времени двигатели работают в диапазоне частот вращения nM—nN, при которых развиваются соответственно максимальные крутящий момент и эффективная мощность. Внешнюю скоростную характеристику двигателя строят по данным результатов его испытаний на специальном стенде. При испытаниях с двигателя снимают часть элементов систем охлаждения, питания и др. (вентилятор, радиатор, глушитель и др.), без которых обеспечивается его работа на стенде. Полученные при испытаниях мощность и крутящий момент приводят к нормальным условиям, соответствующим давлению окружающего воздуха 1 атм и температуре 15 °С. Эти мощность и момент называются стендовыми, и они указываются в технических характеристиках, инструкциях, каталогах, проспектах и т.п. В действительности мощность и момент двигателя, установленного на автомобиле, на 5 . 10 % меньше, чем стендовые. Это связано с установкой на двигатель элементов, которые были сняты при испытаниях (насос гидроусилителя, компрессор и др.). Кроме того, давление и температура при работе двигателя на автомобиле отличаются от нормальных.

При проектировании нового двигателя внешнюю скоростную характеристику получают расчетным способом, используя для этого специальные формулы. Однако действительную внешнюю скоростную характеристику получают только после изготовления и испытания двигателя.

Что такое мощность двигателя, крутящий момент и удельный расход топлива

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.

Чем больше мощность, тем большую скорость сможет развить автомобиль.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Эффективная мощность двигателя будет всегда ниже индикаторной.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Читать еще:  Что обеспечивает мощность двигателя машины

Что такое крутящий момент

Крутящий момент двигателя рассчитывается по формуле: M = F*R, где F – это сила, с которой давит поршень, R – длина плеча (рычага). В нашем случае плечом будет расстояние от оси вращения коленчатого вала до места крепления шатунной шейки. Этот параметр измеряется в ньютонах на метр (Hм). 1H соответствует 0,1 кг, который давит на конец рычага длиной в метр.

Крутящий момент ДВС характеризует показатель силы вращения коленчатого вала и определяет динамику разгона автомобиля.

Что такое расход (удельный расход) топлива

Удельный расход топлива двигателя – это количество топлива, затрачиваемое для производства определенного количества энергии. Чем расход ниже, тем рациональнее будет использоваться топливо. Расход связан с эффективностью двигателя. Один двигатель может иметь разный расход топлива в зависимости от скорости и нагрузки.

Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.

Внешняя скоростная характеристика

На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

Что такое внешняя скоростная характеристика поршневого двигателя

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Главными размерами двигателя внутреннего сгорания являются: диаметр цилиндра D, количество цилиндров i, ход поршня S. Кроме того, к основным данным, характеризующим двигатель, относятся: мощность, число оборотов, удельный расход топлива, а также его габаритные размеры (длина, ширина и высота между крайними точками) и сухой вес (без топлива, масла и воды).

Работа газов. Работа, совершаемая газами в цилиндре двига­теля, называется индикаторной работой. Работа за один цикл равна произведению силы давления газов на площадь поршня и на величину хода поршня:

где pi среднее индикаторное давление газов, н/м 2 ;

где VS — объем рабочего цилиндра

причем, так как работа эквивалентна площади индикаторной диаграммы, ее можно назвать средней индикаторной работой, а величину pi средним индикаторным давлением

т. е. средним индикаторным давлением называется такое условное постоянное давление, которое, перемещая поршень в течение хода расширения, производит работу, равную индикаторной работе цикла.

Работа, полученная на конце коленчатого вала, называется эффективной работой двигателя. Она меньше индикаторной на величину работы, расходуемой двигателем на преодоление сопротивлений:

где Lm работа сопротивлений, называемая обычно работой механических потерь двигателя.

Эффективную работу по аналогии с индикаторной можно выразить в виде

где. ре среднее эффективное давление.

Таким образом, среднее эффективное давление представляет собой величину, при умножении которой на рабочий объем цилиндра Vs получают эффективную работу за цикл. Эта величина также является условной, но в отличие от рe характеризует некоторую среднюю величину давления, пропорциональную полезной работе двигателя.

При неизменных оборотах коленчатого вала величина ре для данного двигателя зависит от величины, передаваемой на привод мощности. Чем больше передаваемая мощность, тем больше среднее эффективное давление.

Следовательно, ре определяет степень загруженности данного двигателя. Каждый двигатель может развивать определенное среднее эффективное давление, которому соответствует определенная мощность. В соответствии с наивыгоднейшим ре заводом устанавливается номинальная мощность двигателя, которая гарантируется для работы на определенных оборотах коленчатого вала.

Мощность двигателя является основной его характеристикой. Выражается она в киловаттах.

Работа, совершаемая газами во всех цилиндрах в единицу времени, называется индикаторной мощностью двигателя, а соответствующая ей мощность, развиваемая двигателем на конце коленчатого вала и отдаваемая силовой передаче (на электрогенератор, приводной ремень, гребной винт) — эффективной, или действительной, мощностью двигателя. При этом

где Ne эффективная мощность; Ni, — индикаторная мощность; Nm,- мощность механических потерь, затрачиваемая на преодоление сопротивлений.

Если двигатель делает п оборотов в секунду, то индикаторная мощность двигателя, имеющего i цилиндров, будет равна

где D диаметр цилиндра, м; S ход поршня, м; n число оборотов вала в секунду; i- число цилиндров; рi — среднее индикаторное давление, н/м г ; z коэффициент тактности, показывающий, во сколько раз число оборотов вала больше числа циклов за один и тот же промежуток времени.

Приведенная формула справедлива для четырех- и двухтактных двигателей, причем для двухтактного двигателя простого действия z=1, для двухтактного с противоположно движущимися поршнями z = 0,5, а для четырехтактного z = 2.

Произведение (πD 2 /4)·S представляет собой величину рабочего объема цилиндра. Поэтому можно записать:

Аналогично выразится и эффективная мощность четырех-и двухтактного двигателей:

где ре среднее эффективное давление, н/м 2 .

В двигателях внутреннего сгорания работа совершается за счет тепла, выделяющегося при сгорании топлива. Преобразование его в индикаторную работу неизбежно связано с потерей части тепла. Величина, показывающая, какая доля от всего тепла преобразована в индикаторную работу в цилиндре двигателя, называется индикаторным коэффициентом полезного действия и представляет собою отношение

где В секундный расход топлива, кг/сек;

QH P — низшая теплота сгорания топлива, кдж/кг.

Значения и. к. п. д. для разных двигателей составляют:

двухтактные дизели 0,35-0,50

четырехтактные дизели 0,42-0,50

карбюраторные двигатели 0,30-0,35

Эффективный к. п. д. ηe представляет собою отношение тепла, превращенного в работу на валу двигателя, ко всему затраченному теплу:

Значение ηe может быть также определено по формуле

Эффективный к. п. д. для различных двигателей имеет следую-щие значения:

дизели тихоходные 0,32-0,39

дизели быстроходные 0,32-0,41

карбюраторные двигатели 0,25-0,30

Для определения эффективной мощности надо от величины индикаторной мощности отнять часть мощности, расходуемой на трение в двигателе, что может быть достигнуто умножением на величину механического к. п. д.:

где ηm механический к. п. д. двигателя.

Удельный расход топлива. Оценка экономичности двигателя внутреннего сгорания может быть произведена непосредственно по количеству топлива, затрачиваемого на получение полезной ра­боты в единицу времени. Для этого введено понятие секундного расхода топлива на 1 квт ge, являющегося отношением количества топлива Ge к полезной мощности Ne двигателя:

Чем совершеннее двигатель и чем лучше преобразуется в нем энергия топлива в полезную механическую работу, тем меньше удельный расход топлива.

На величину удельного расхода топлива значительно влияет степень сжатия: чем больше степень сжатия, тем меньше удельный расход топлива. Поэтому у дизелей удельный расход топлива зна­чительно меньше, чем у карбюраторных двигателей, т. е. дизели экономичнее последних.

Тепловой баланс. В полезную эффективную работу обычно превращается лишь 25-41% тепла, получаемого в результате сжигания топлива в двигателе; остальная часть энергии сжигаемого топлива теряется в процессе работы двигателя.

Тепловой баланс характеризует распределение и потери тепла, вносимого в двигатель с топливом.

Количество тепла, распределяющееся по различным составляющим теплового баланса, подсчитывают в джоулях.

Уравнение внешнего теплового баланса имеет следующий вид:

где Q тепло израсходованного топлива в двигателе;

Qe тепло, использованное на полезную эффективную работу двигателя;

Qв — тепло, унесенное с охлаждающей водой;

Qв. г — тепло, унесенное с выхлопными газами;

Qн.с — тепло, получаемое при неполном сгорании;

Qост — так называемый остаточный член баланса, равный сумме всех неучтенных потерь теплоты. При определении величины теплового баланса в процентах уравнение будет иметь вид:

В данном случае каждое слагаемое в левой части уравнения представляет собой количество тепла в процентах по отношению ко всему теплу Q, т.е.

Располагаемое тепло Q практически определяют по низшей теплоте сгорания топлива QH P и секундному расходу топлива Gс кг/ч:

Тепло, использованное на полезную эффективную работу дизеля за 1 сек

На рис. 12 представлена диаграмма теплового баланса дизеля с наддувом.

Характеристики двигателей. Характеристиками двигателя называются кривые, определяющие зависимость мощности и крутящего момента от показателей числа оборотов вала, нагрузки, рас­хода топлива и т. д.

Характеристики составляются при испытаниях двигателя на стенде и загрузке его тормозом (гидравлическим, электрическим) либо винтом и используются для оценки двигателя при выборе его для силовой установки.

Различают характеристики: скоростные, нагрузочные и регулировочные. На последних мы не будем останавливаться, поскольку они различны для разных типов двигателей и не имеет практического смысла останавливаться на этом достаточно подробно.

Скоростные характеристики определяют зависимость мощности или крутящего момента от числа оборотов двигателя. Различают внешние и винтовые скоростные характеристики.

Внешние характеристики двигателя — это кривые зависимости максимальной мощности или крутящего момента от числа оборотов двигателя при наибольшей подаче топлива. Так как внеш­няя характеристика относится к работе двигателя при максимально допустимой подаче топлива, то она дает значения наибольших мощностей, которые можно получить от двигателя на разных числах оборотов.

Читать еще:  Электронные схемы из двигателей своими руками

Построив зависимость мощности трения от числа оборотов и взяв разность между индикаторной мощностью и мощностью трения при различных числах оборотов, можно получить кривую изменения Ne по числу оборотов.

Эффективная мощность всегда имеет максимальное значение при числе оборотов меньшем, чем то, при котором получается максимальное значение индикаторной мощности. Этот сдвиг максимальных мощностей объясняется уменьшением ηm по числу оборотов.

Увеличивая число оборотов, можно получить такой режим двигателя, при котором мощность трения окажется равной индикаторной мощности, а эффективная мощность будет равна нулю. Однако работа двигателя при числе оборотов, большем расчетного n, соответствующего максимальному значению эффективной мощности, конечно, нецелесообразна.

Зависимость ре от числа оборотов n можно получить по формуле

Винтовыми характеристиками двигателей называются кривые зависимости мощности или крутящего момента от числа оборотов двигателя, работающего на гребной винт.

Мощность, поглощаемая винтом, изменяется пропорционально кубу числа оборотов, т. е.

Мощность двигателя, нагруженного винтом, при каждом числе оборотов равна мощности, поглощаемой винтом, поэтому

Таким образом, эффективная мощность двигателя по винтовой характеристике изменяется так же, как и мощность, поглощаемая винтом, т. е. пропорциональна кубу числа оборотов. Так как эффективная мощность двигателя по внешней характеристике меняется по другому закону, то двигатель, нагруженный винтом, при изменении числа оборотов должен регулироваться изменением положения дросселя в карбюраторных двигателях или подачей топливного насоса в двигателях с самовоспламенением.

Для двигателя при данном винте число оборотов nmax является максимально возможным. Этому числу оборотов соответствует максимальная мощность двигателя Nmax. При числе оборотов n > nmax двигатель работать не может, так как при этом эффективная мощность двигателя (по внешней характеристике) растет медленнее, чем мощность, поглощаемая винтом (по винтовой характеристике).

Зачем инженеры возвращают встречные поршни

За последнее десятилетие изобретатели в разных странах выдали кучу самых экзотических схем ДВС, некоторые даже удалось воплотить в металле. Но массовая индустрия продолжает выпускать моторы классического вида. Проблема в конструкторских просчётах новичков или в отсутствии у них финансирования?

Недавнее известие о том, что миллиардер Билл Гейтс и инвестиционная фирма Khosla Ventures решили вложить миллионы в компанию EcoMotors, проектирующую двигатели со встречным движением поршней, заставило нас детально рассмотреть заокеанскую разработку. У подобных моторов давняя история, но широкого распространения они не получили, во всяком случае на автомобильном транспорте. EcoMotors придала, казалось бы, известному блюду новый вкус.

Свой двигатель с двумя оппозитными цилиндрами, в каждом из которых работает по два встречных поршня, EcoMotors назвала незамысловато — OPOC, что значит Opposed Piston Opposed Cylinder — «оппозитные поршни, оппозитные цилиндры». В принципе, по такой схеме может работать как бензиновый мотор (или ДВС, потребляющий спирт), так и дизельный, но пока компания сосредоточила усилия на втором варианте.

Двигатель OPOC — двухтактный, так что за один оборот коленчатого вала встречные поршни каждого из цилиндров совершают рабочий ход. При движении к своим мёртвым точкам они открывают окна в стенках цилиндров. Причём один из поршней заведует впуском, второй — выпуском. На рисунке ниже их легко распознать по цветам — синему и красному соответственно. При этом окна расположены так, что выпускное открывается чуть раньше впускного и закрывается также раньше. Это важно для хорошего газообмена.

Устранение головок цилиндров, клапанов и механизма их привода упростило мотор, сделало его легче, снизило потери на трение и даже расход масла (по оценке компании, вдвое против обычного дизеля). Но ведь такими преимуществами вроде бы могут похвастать и другие двухтактные моторы со встречными поршнями?

Изюминка новинки в том, что все поршни в ней соединены с единственным центральным коленвалом, в то время как раньше схожие конструкции требовали двух коленчатых валов по краям движка. Соответственно, они были заметно крупнее и тяжелее, и неудивительно, что применение нашли в основном на тепловозах и судах. Ну а OPOC, схема работы которого представлена в ролике ниже, нацелен на куда более широкий спектр машин.

Как любой двухтактник, OPOC нуждается во внешнем устройстве, которое продувало бы цилиндры в момент открытия окон. В рассматриваемом случае конструкторы решили возложить эту обязанность на турбонаддув. Но очевидно, он не поможет при запуске мотора, а сами цилиндры «вдохнуть» и «выдохнуть» не способны.

Решение опять же нашлось в давней идее, которую ряд компаний обкатывал, но до ума никто так и не довёл. На вал классической турбинки инженеры поставили электродвигатель. При запуске и до тех пор, пока ДВС не набрал обороты, этот моторчик получает энергию от батарей, обеспечивая «дыхание» OPOC. А далее мотор отключается, и турбонаддув превращается в самый обычный. Более того, на высоких оборотах, когда поток выхлопных газов велик, электромотор в турбине может превращаться в генератор, подпитывающий батареи машины.

Новая схема, по утверждению её создателей, отличается очень хорошей продувкой цилиндров, а потому позволяет извлечь наибольшую выгоду из самого двухтактного цикла, теоретически позволяющего достичь вдвое большей литровой мощности двигателя, по сравнению с четырёхтактным. Хотя на практике такого показателя ещё не достигалось. Система OPOC обладает рядом иных любопытных особенностей.

При новой конфигурации для того, чтобы обеспечить заданный рабочий объём, каждому из поршней за один ход требуется пройти вдвое меньшее расстояние. Это означает и меньшую скорость движения при фиксированных оборотах, следовательно, и меньшие потери на трение. Всеми этими особенностями двигатель OPOC обязан в первую очередь Петеру Хофбауэру. Основатель, председатель и технический директор EcoMotors ранее много лет возглавлял разработку перспективных двигателей в компании Volkswagen. К примеру, на его счету смещённо-рядный мотор VR6 с малым (15 градусов) углом развала цилиндров. И хотя фирма EcoMotors была основана в 2008 году, сам Хофбауэр начал размышлять над OPOC на несколько лет раньше.

Компания сообщает, что OPOC в дизельном варианте на легче, чем обычный турбодизель той же мощности, содержит на 50% меньше деталей, занимает в два-четыре раза меньше места под капотом и при этом может быть (при определённых условиях) на экономичнее. Последняя цифра вызывает у специалистов самые большие сомнения, однако, даже если выигрыш в расходе преувеличен, основания для оптимистичных заявлений у EcoMotors имеются. Первый образец ДВС OPOC, по утверждению фирмы, провёл на динамометрическом стенде свыше 500 часов. Можно констатировать, что схема работает. С характеристиками дело обстоит не так однозначно. Модель EM100, которую ныне испытывают инженеры, выдаёт заявленные параметры по мощности и крутящему моменту только при настройках, не учитывающих токсичность выхлопа. Такую версию OPOC компания предлагает ставить на военную технику, для которой отношение отдачи к весу важнее прочего.

Для обычного транспорта EcoMotors предлагает настраивать те же движки несколько иначе: на 300 л.с. и 746 Н•м. Улучшение экономичности против обычных дизелей в таком случае обещано «всего» но и оно выглядит огромным шагом вперёд, так как обычно компании борются за каждый процент. Дальнейшая экономия возможна при объединении пары таких моторов в четырёхцилиндровый агрегат. То, что раньше было самостоятельным мотором, превращается в модуль. Между ними EcoMotors намерена ставить управляемую электроникой муфту. При малой нагрузке, мол, будет работать только один модуль, при большой — подключится второй. А так как OPOC хорошо уравновешен, все действующие силы тут компенсируют друг друга и мотор отличается минимумом вибраций, то и активация «спящей» половинки в любой момент пройдёт гладко.

Замысел этот похож на известное отключение цилиндров в больших двигателях. Вот только там «холостые» поршни всё равно продолжают движение вверх-вниз, здесь же половина мотора останавливается полностью, а вторая продолжает трудиться в выгодном режиме. Кроме того, в такой бинарной схеме инженеры предлагают ещё немного снизить предельную отдачу каждого модуля — до 240 «лошадок» (480 будет развивать весь агрегат). По соотношению мощности и веса это всё ещё будет очень достойный мотор, причём, мол, удастся добиться максимальной экономии горючего (тех самых 45%) и соответствия самым строгим нормам по токсичности выхлопа, уверяют разработчики.

Пока OPOC — система сырая, а её конструкторы больше раздают обещания. Но они оптимисты и приступили к расширению линейки. На чертежах уже вырисовывается двухцилиндровый мотор EM65 чуть меньшего размера и массы, чем EM100. Его, кстати, хотят перевести на бензин. Сферы же применения EM65 вполне очевидны: лёгкие грузовики и легковушки, в том числе гибриды. Определённым залогом, но не стопроцентной гарантией успеха экзотического ДВС является репутация его главного конструктора: Петер отдал Фольксвагену 20 лет жизни. И удивительно ли, к слову, что его нынешняя работа перекликается с проектами Порше, стоявшего у истоков знаменитой немецкой марки?

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector