Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Работа тепловых двигателей

Работа тепловых двигателей

Какв тепловых двигателях происходит преобразование внутренней энергии в механическую?

С тепловыми двигателями учащихся знакомят впервые в VIII классе, когда рассматривают общий принцип работы тепловых двигателей (совершение полезной работы за счет внутренней энергии рабочего тела), изучают двигатель внутреннего сгорания и паровую турбину, а также вводят понятие о КПД тепловых двигателей. Основное внимание уделяют конструкции и принципам работы названных выше двигателей. В курсе X класса рассматривают энергетические процессы, происходящие при работе тепловых двигателей.

При изучении нового материала повторяют то, что уже извест­но учащимся, в частности понятие теплового двигателя как такого устройства, в котором внутренняя энергия топлива превращается в механическую. Тепловой двигатель совершает полезную работу за счет внутренней энергии при переходе тепла от более горячего тела к более холодному. Делают вывод: любой тепловой двигатель имеет три части: нагреватель, рабочее тело и холодильник.

Рабочее тело (им может быть пар, газ или специальная смесь) получает некоторое количество теплоты ( ) от нагревателя и расширяется. При расширении рабочее тело совершает работу. При сжатии рабочее тело отдает количество теплоты ( ) холодильнику. Температуру холодильника и нагревателя поддерживают постоянной, при этом температура нагревателя всегда выше температуры холодильника ( ). Это следует из того, что двигатель совершает полезную работу только в том случае, когда работа расширения больше работы сжатия, а она больше тогда, когда расширение происходит при более высокой температуре, чем сжатие.

Рисунок 6. – Цикл Карно

Необходимо подвести школьников к пониманию того, что, двигатель должен работать циклично. После этого целесообразно рассмотреть принцип работы идеальной тепловой машины Карно, рабочим телом в которой является идеальный газ. При расширении газа во время его контакта с нагревателем температуру поддерживают постоянной, во время сжатия и контакта с холодильником температура также постоянна, следовательно, расширение и сжатие происходят изотермически (на рисунке 6 соответственно изотермы 1 – 2и 3 – 4). Но если температура расширения больше температуры сжатия, то необходимо произвести процессы, при которых температура меняется от до , а затем от до . В принципе это осуществимо при изобарном, изохорном или адиабатном процессах. Наиболее целесообразным является адиабатный процесс (процесс, происходящий без теплообмена), так как именно это условие является условием максимальной работы (на рисунке 6 2 – 3и 4 – 1– адиабаты). Полезная работа численно равна площади заштрихованной фигуры.

Важным является вопрос о коэффициенте полезного действия. Как известно, КПД – это отношение полезной работы к количеству теплоты, полученному от нагревателя:

.

Задача повышения КПД – одна из основных технических задач. Она связана прежде всего с созданием материалов, имеющих достаточную прочность при высоких температурах. В настоящее время температурные границы рабочего тела составляют 303 – 853 К. КПД идеальной машины, работающей по циклу Карно, при таких значениях температур составляет 65%. Однако с учетом потерь КПД примерно равен 40%. Необходимо, чтобы десятиклассники поняли принципиальное отличие решения задачи повышения КПД тепловых двигателей от решения этой же задачи применительно к механическим и электрическим двигателям. КПД последних стремятся приблизить к 100%, а КПД тепловых двигателей к КПД идеальной машины Карно, работающей при тех же температурах холодильника и нагревателя. Поэтому повышение КПД тепловых двигателей связано с повышением температуры нагревателя и понижением температуры холодильника.

В заключение изучения рассматриваемой темы обращают внимание учащихся на значение развития теплоэнергетики для народного хозяйства, в частности рассказывают о той экономии, которую дает стране развитие теплоэлектроцентралей.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО ПЛАНА ТЕМЫ «ОСНОВЫ ТЕРМОДИНАМИКИ» НА ОСНОВЕ ПРОБЛЕМНОЙ ТЕХНОЛОГИИ ОБУЧЕНИЯ

№п/пТема урокаТип урокаАктуализация знанийЭлементы содержанияДемонстрации (приборы и материалы)Колчасд/з
Термодинамическая система. Термодинамическое равновесие. Внутренняя энергия. Внутренняя энергия идеального одноатомного газа.Урок изучения нового материалаВнутренняя энергия. Способы изменения внутренней энергии.Тепловое движение молекул. Закон термодинамики. Порядок и хаос.«Внутренняя энергия».§9
Работа в термодинамике. Количество теплоты.Комбинированный УрокВнутренняя энергия. Способы изменения внутренней энергии.Количество теплоты, удельная теплоемкость. Физические условия на Земле, обеспечивающие существование жизни человека.«Теплоемко-сть».§10
Решение задач по теме «Работа в термодинамике . Количество теплоты»Урок решения задач
Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам в идеальном газе. Адиабатный процессУрок изучения нового материалаТепловое движение молекул. Закон термодинамики. Порядок и хаос.Первый закон термодинамики. Необратимость процессов в природе.Законы термодинамики§11
Решение задач по теме «Первый закон термодинамики»Урок решения задач
Решение графических задач по теме «Первый закон термодинамики»Урок решения задач
Тепловые двигатели. Коэффициент полезного действия. ДВСКомбинированный урокТепловые двигатели.Принципы действия тепловых двигателей. КПД тепловых двигателей. Рациональное природопользование и защита окружающей среды«Четырехтактный ДВС», «Компрессионный холодильни껧12
Решение задач по теме «КПД тепловых двигателей».Урок решения задач
Обобщение и систематизация знаний по теме «Основы термодинамики»Обобщение и систематизация знаний
Контрольная работа № 2 «Основы термодинамики»Урок контроляВыполнение К.Р.

Организация отдельных уроков по теме «Основы термодинамики»

Тема урока: «Термодинамическая система. Термодинамическое равновесие. Внутренняя энергия. Внутренняя энергия идеального одноатомного газа»

Ведущая идея урока:Термодинамика – раздел физики, изучающий возможности использования внутренней энергии тел для совершения механической работы. Изменение внутренней энергии всегда происходит за счет энергии других тел: при теплопередаче – за счет изменения внутренней энергии; при совершении работы – за счет механической энергии.

Задачи:

1. Образовательная–обеспечить формирование понятия «термодинамика», «внутренняя энергия»; усвоение формулы для расчета внутренней энергии идеального газа.

2. Развивающая – развитие способов мыслительной деятельности (анализ, сравнение, обобщение), развитие речи (владение физическими понятиями, терминами), развитие познавательного интереса учащихся.

3. Воспитательная – формирование научного мировоззрения, воспитание устойчивого интереса к предмету, положительного отношения к знаниям.

Тип урока: изучение нового материала.

Принцип действия и КПД тепловых двигателей. Физика. 10 класс.

Принцип действия и КПД тепловых двигателей. Физика. 10 класс.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе
Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями
Комментарии преподавателя

Прин­цип дей­ствия теп­ло­во­го дви­га­те­ля

Читать еще:  Что такое детонация двигателя иж планета

1. Тепловые двигатели

Темой про­шло­го урока был пер­вый закон тер­мо­ди­на­ми­ки, ко­то­рый за­да­вал связь между неко­то­рым ко­ли­че­ством теп­ло­ты, ко­то­рое было пе­ре­да­но пор­ции газа, и ра­бо­той, со­вер­ша­е­мой этим газом при рас­ши­ре­нии. И те­перь при­шло время ска­зать, что эта фор­му­ла вы­зы­ва­ет ин­те­рес не толь­ко при неких тео­ре­ти­че­ских рас­чё­тах, но и во вполне прак­ти­че­ском при­ме­не­нии, ведь ра­бо­та газа есть не что иное как по­лез­ная ра­бо­та, какую мы из­вле­ка­ем при ис­поль­зо­ва­нии теп­ло­вых дви­га­те­лей.

Опре­де­ле­ние. Теп­ло­вой дви­га­тель – устрой­ство, в ко­то­ром внут­рен­няя энер­гия топ­ли­ва пре­об­ра­зу­ет­ся в ме­ха­ни­че­скую ра­бо­ту (рис. 1).

Рис. 1. Раз­лич­ные при­ме­ры теп­ло­вых дви­га­те­лей (Ис­точ­ник), (Ис­точ­ник)

Как видно из ри­сун­ка, теп­ло­вы­ми дви­га­те­ля­ми яв­ля­ют­ся любые устрой­ства, ра­бо­та­ю­щие по вы­ше­ука­зан­но­му прин­ци­пу, и они ва­рьи­ру­ют­ся от неве­ро­ят­но про­стых до очень слож­ных по кон­струк­ции.

Все без ис­клю­че­ния теп­ло­вые дви­га­те­ли функ­ци­о­наль­но де­лят­ся на три со­став­ля­ю­щие (см. рис. 2):

  • На­гре­ва­тель
  • Ра­бо­чее тело
  • Хо­ло­диль­ник

Рис. 2. Функ­ци­о­наль­ная схема теп­ло­во­го дви­га­те­ля (Ис­точ­ник)

2. Работа газа в тепловых двигателях

На­гре­ва­те­лем яв­ля­ет­ся про­цесс сго­ра­ния топ­ли­ва, ко­то­рое при сго­ра­нии пе­ре­да­ёт боль­шое ко­ли­че­ство теп­ло­ты газу, на­гре­вая тот до боль­ших тем­пе­ра­тур. Го­ря­чий газ, ко­то­рый яв­ля­ет­ся ра­бо­чим телом, вслед­ствие по­вы­ше­ния тем­пе­ра­ту­ры, а сле­до­ва­тель­но, и дав­ле­ния, рас­ши­ря­ет­ся, со­вер­шая ра­бо­ту . Ко­неч­но же, так как все­гда су­ще­ству­ет теп­ло­пе­ре­да­ча с кор­пу­сом дви­га­те­ля, окру­жа­ю­щим воз­ду­хом и т. д., ра­бо­та не будет чис­лен­но рав­нять­ся пе­ре­дан­ной теп­ло­те – часть энер­гии ухо­дит на хо­ло­диль­ник, ко­то­рым, как пра­ви­ло, яв­ля­ет­ся окру­жа­ю­щая среда.

Проще всего можно пред­ста­вить себе про­цесс, про­ис­хо­дя­щий в про­стом ци­лин­дре под по­движ­ным порш­нем (на­при­мер, ци­линдр дви­га­те­ля внут­рен­не­го сго­ра­ния). Есте­ствен­но, чтобы дви­га­тель ра­бо­тал и в нём был смысл, про­цесс дол­жен про­ис­хо­дить цик­ли­че­ски, а не ра­зо­во. То есть после каж­до­го рас­ши­ре­ния газ дол­жен воз­вра­щать­ся в пер­во­на­чаль­ное по­ло­же­ние (рис. 3).

Рис. 3. При­мер цик­ли­че­ской ра­бо­ты теп­ло­во­го дви­га­те­ля (Ис­точ­ник)

Для того чтобы газ воз­вра­щал­ся в на­чаль­ное по­ло­же­ние, над ним необ­хо­ди­мо вы­пол­нить некую ра­бо­ту (ра­бо­та внеш­них сил). А так как ра­бо­та газа равна ра­бо­те над газом с про­ти­во­по­лож­ным зна­ком, для того чтобы за весь цикл газ вы­пол­нил сум­мар­но по­ло­жи­тель­ную ра­бо­ту (иначе в дви­га­те­ле не было бы смыс­ла), необ­хо­ди­мо, чтобы ра­бо­та внеш­них сил была мень­ше ра­бо­ты газа. То есть гра­фик цик­ли­че­ско­го про­цес­са в ко­ор­ди­на­тах P-V дол­жен иметь вид: за­мкну­тый кон­тур с об­хо­дом по ча­со­вой стрел­ке. При дан­ном усло­вии ра­бо­та газа (на том участ­ке гра­фи­ка, где объём рас­тёт) боль­ше ра­бо­ты над газом (на том участ­ке, где объём умень­ша­ет­ся) (рис. 4).

Рис. 4. При­мер гра­фи­ка про­цес­са, про­те­ка­ю­ще­го в теп­ло­вом дви­га­те­ле

Раз мы го­во­рим о неко­ем ме­ха­низ­ме, обя­за­тель­но нужно ска­зать, каков его КПД.

Паровая турбина

В современной технике широко применяют другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами.

Ротор паровой турбины

Схема устройства простейшей паровой турбины приведена на рисунке 28. На вал 5 насажен диск 4, по ободу которого закреплены лопатки 2. Около лопаток расположены трубы — сопла 1, в которые поступает пар 3 из котла. Струи пара, вырывающиеся из сопел, оказывают значительное давление на лопатки и приводят диск турбины в быстрое вращательное движение.

Схема паровой турбины

В современных турбинах применяют не один, а несколько дисков, насаженных на общий вал. Пар последовательно проходит через лопатки всех дисков, отдавая каждому из них часть своей энергии.

На электростанциях с турбиной соединён генератор электрического тока. Частота вращения вала турбин достигает 3000 оборотов в минуту, что является очень удобным для приведения в движение генераторов электрического тока.

В нашей стране строят паровые турбины мощностью от нескольких киловатт до 1 200 000 кВт.

Применяют турбины на тепловых электростанциях и на кораблях.

Постепенно находят всё более широкое применение газовые турбины, в которых вместо пара используются продукты сгорания газа.

КПД теплового двигателя

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты. Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.

Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.

Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Коэффициент полезного действия обозначают η (греч. буква «эта»).

КПД теплового двигателя определяют по формуле

где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 — Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.

Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .

КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.

Домашняя работа

Задание 1. Ответить на вопросы.

  1. Какие тепловые двигатели называют паровыми турбинами?
  2. В чём отличие в устройстве турбин и поршневых машин?
  3. Из каких частей состоит паровая турбина и как она работает?
  4. Почему в тепловых двигателях только часть энергии топлива превращается в механическую энергию?
  5. Что называют КПД теплового двигателя?
  6. Почему КПД двигателя не может быть не только больше 100%, но и равен 100%?

Задание 2. Решить задачи.
☝ При равномерном перемещении груза массой 30 кг по наклонной плоскости была приложена сила 80 Н. Вычисли КПД плоскости, если ее длина 3,6 м, а высота – 60 см.
☝ Какова длина наклонной плоскости, если при перемещении груза массой 1 кг была приложена сила 5 Н? Высота наклонной плоскости 0,2 м, а КПД 80%.
☝ Груз массой 300 кг подняли с помощью рычага на высоту 0,5 м. При этом к длинному плечу рычага была приложена сила 500 Н, а точка приложения силы опустилась на 4 м. Вычислите КПД рычага.
☝ Какая сила была приложена к длинному плечу рычага с КПД 40%, если груз массой 100 кг был поднят на высоту 10 см, а длинное плечо рычага опустилось на 50 см?

Читать еще:  Что проверяют при диагностике двигателе автомобиля

ИНТЕРЕСНО

1. Мощные механизмы приводят в движение не паровыми поршневыми машинами, а паровыми турбинами. Ведь поршневые машины при той же мощности имеют большие размеры и вес и меньший кпд. В ряде случаев это технически неудобно и экономически невыгодно.

2. Чтобы поднять КПД парового двигателя стенки парового котла лучше делать из железа или меди.
Эти металлы улучшат теплопроводность котла и этим поднимут его КПД. Кстати, слой накипи ухудшает теплопроводность котла и приводит к появлению на нем трещин и, в конце концов, к порче котла, поэтому-то так необходимо очищать котел от накипи.

К занятию прикреплен файл «Изобретение и распространение паровых турбин.». Вы можете скачать файл в любое удобное для вас время.

Что является рабочим телом в тепловом двигателе

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом . В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами .

Как следует из первого закона термодинамики, полученное газом количество теплоты полностью превращается в работу при изотермическом процессе, при котором внутренняя энергия остается неизменной ():

.

Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически . Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл , при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме () газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу , равную площади под кривой , при сжатии газ совершает отрицательную работу , равную по модулю площади под кривой . Полная работа за цикл на диаграмме () равна площади цикла. Работа положительна, если цикл обходится по часовой стрелке, и отрицательна, если цикл обходится в противоположном направлении.

Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем , а с более низкой – холодильником . Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты и отдает холодильнику количество теплоты . Полное количество теплоты , полученное рабочим телом за цикл, равно

.

При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (). Согласно первому закону термодинамики,

.

Отсюда следует:

.

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть () была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (). Энергетическая схема тепловой машины изображена на рис. 3.11.2.

В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (, ) и двух адиабат (, ). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (, ), одной изобары () и одной изохоры (). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.

В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).

Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке () газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру . Газ изотермически расширяется, совершая работу , при этом к газу подводится некоторое количество теплоты . Далее на адиабатическом участке () газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу . Температура газа при адиабатическом расширении падает до значения . На следующем изотермическом участке () газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре . Происходит процесс изотермического сжатия. Газ совершает работу и отдает тепло , равное произведенной работе . Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения , газ совершает работу . Полная работа , совершаемая газом за цикл, равна сумме работ на отдельных участках:

.

На диаграмме () эта работа равна площади цикла.

Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).

Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли его внутренней энергии. Для 1 моля газа

Читать еще:  Что такое система зажигания дизельного двигателя
,

где и – начальная и конечная температуры газа.

Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам

.

По определению, коэффициент полезного действия цикла Карно есть

Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине , когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы . Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной .

В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме () обходятся против часовой стрелки. Энергетическая схема холодильной машины представлена на рис. 3.11.5.

Что является рабочим телом в тепловом двигателе

Тепловые машины в термодинамике — это периодически действующие тепловые двигатели и холодильные машины (термокомпрессоры). Разновидностью холодильных машин являются тепловые насосы.

Устройства, совершающие механическую работу за счёт внутренней энергии топлива, называются тепловыми машинами (тепловыми двигателями). Для функционирования тепловой машины необходимы следующие составляющие: 1) источник тепла с более высоким температурным уровнем t1, 2) источник тепла с более низким температурным уровнем t2, 3) рабочее тело. Иначе сказать: любые тепловые машины (тепловые двигатели) состоят из нагревателя, холодильника и рабочего тела.

В качестве рабочего тела используются газ или пар, поскольку они хорошо сжимаются, и в зависимости от типа двигателя может быть топливо (бензин, керосин), водяной пар и пр. Нагреватель передаёт рабочему телу некоторое количество теплоты (Q1), и его внутренняя энергия увеличивается, за счёт этой внутренней энергии совершается механическая работа (А), затем рабочее тело отдаёт некоторое количество теплоты холодильнику (Q2) и охлаждается при этом до начальной температуры. Описанная схема представляет цикл работы двигателя и является общей, в реальных двигателях роль нагревателя и холодильника могут выполнять различные устройства. Холодильником может служить окружающая среда.

Поскольку в двигателе часть энергии рабочего тела передается холодильнику, то понятно, что не вся полученная им от нагревателя энергия идет на совершение работы. Соответственно, коэффициент полезного действия двигателя (КПД) равен отношению совершенной работы (А) к количеству теплоты, полученному им от нагревателя (Q1):

Двигатель внутреннего сгорания (ДВС)

Существует два типа двигателей внутреннего сгорания (ДВС): карбюраторный и дизельный. В карбюраторном двигателе рабочая смесь (смесь топлива с воздухом) готовится вне двигателя в специальном устройстве и из него поступает в двигатель. В дизельном двигателе горючая смесь готовится в самом двигателе.

ДВС состоит из цилиндра, в котором перемещается поршень; в цилиндре имеются два клапана, через один из которых горючая смесь впускается в цилиндр, а через другой отработавшие газы выпускаются из цилиндра. Поршень с помощью кривошипно-шатунного механизма соединяется с коленчатым валом, который приходит во вращение при поступательном движении поршня. Цилиндр закрыт крышкой.

Цикл работы ДВС включает четыре такта: впуск, сжатие, рабочий ход, выпуск. Во время впуска поршень движется вниз, давление в цилиндре уменьшается, и в него через клапан поступает горючая смесь (в карбюраторном двигателе) или воздух (в дизельном двигателе). Клапан в это время закрыт. В конце впуска горючей смеси закрывается клапан.

Во время второго такта поршень движется вверх, клапаны закрыты, и рабочая смесь или воздух сжимаются. При этом температура газа повышается: горючая смесь в карбюраторном двигателе нагревается до 300— 350 °С, а воздух в дизельном двигателе — до 500—600 °С. В конце такта сжатия в карбюраторном двигателе проскакивает искра, и горючая смесь воспламеняется. В дизельном двигателе в цилиндр впрыскивается топливо, и образовавшаяся смесь самовоспламеняется.

При сгорании горючей смеси газ расширяется и толкает поршень и соединенный с ним коленчатый вал, совершая механическую работу. Это приводит к тому, что газ охлаждается.

Когда поршень придёт в нижнюю точку, давление в нём уменьшится. При движении поршня вверх открывается клапан, и происходит выпуск отработавшего газа. В конце этого такта клапан закрывается.

Паровая турбина

Паровая турбина представляет собой насаженный на вал диск, на котором укреплены лопасти. На лопасти поступает пар. Пар, нагретый до 600 °С, направляется в сопло и в нём расширяется. При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара. Струя пара поступает из сопла на лопасти турбины и передаёт им часть своей кинетической энергии, приводя турбину во вращение. Обычно турбины имеют несколько дисков, каждому из которых передаётся часть энергии пара. Вращение диска передаётся валу, с которым соединён генератор электрического тока.

Удельная теплота сгорания топлива

При сгорании различного топлива одинаковой массы выделяется разное количество теплоты. Например, хорошо известно, что природный газ является энергетически более выгодным топливом, чем дрова. Это значит, что для получения одного и того же количества теплоты, масса дров, которые нужно сжечь, должна быть существенно больше массы природного газа. Следовательно, различные виды топлива с энергетической точки зрения характеризуются величиной, называемой удельной теплотой сгорания топлива .

Удельная теплота сгорания топлива — физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.

Удельная теплота сгорания обозначается буквой q, её единицей является 1 Дж/кг.

Значение удельной теплоты определяют экспериментально. Наибольшую удельную теплоту сгорания имеет водород, наименьшую — порох.

Удельная теплота сгорания нефти — 4,4*10 7 Дж/кг. Это означает, что при полном сгорании 1 кг нефти выделяется количество теплоты 4,4*10 7 Дж. В общем случае, если масса топлива равна m, то количество теплоты Q, выделяющееся при его полном сгорании, равно произведению удельной теплоты сгорания топлива q на его массу:

Q = qm.

Конспект урока по физике в 8 классе «Тепловые машины. ДВС. Удельная теплота сгорания».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector