Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности работы дизельных двигателей

Особенности работы дизельных двигателей

Самое большое преимущество автомобиля с дизельным двигателем – его экономичность. Для подтверждения этого мнения рассмотрим основные отличия в работе бензинового и дизельного двигателей.

    Особенности сгорания.

Дизельный двигатель – двигатель внутреннего сгорания с воспламенением топлива вследствие сжатия. В бензиновом двигателе происходит воспламенение топливно-воздушной смеси от искры. Такие двигатели очень чувствительны к детонации. Процесс сгорания в дизельном двигателе начинается с втягивания воздуха, затем происходит его сжатие до уровня, превышающего уровень сжатия в бензиновом двигателе, в результате чего возникает воспламенение топлива. Коэффициент полезного действия (КПД) дизельного двигателя выше, чем у любого другого двигателя внутреннего сгорания. Для низкооборотных двигателей с большим рабочим объемом КПД достигает 0,5 и выше. Как результат: автомобили с дизельными двигателями потребляют меньше топлива, количество вредных отбросов в выхлопных газах также значительно ниже, что является одним из главных преимуществ дизельного двигателя в сравнении с бензиновым.

Рабочий цикл.

В дизельном двигателе используется как двух-, так и четырехтактный рабочий цикл. В первом такте поршень движется вниз и через открытый впускной клапан втягивает воздух. Во втором такте, так называемом такте сжатия, происходит сжатие воздуха вследствие обратного движения поршня вверх. Степень сжатия — от 14:1 до 24:1. В конце такта происходит впрыскивание топлива форсункой под очень высоким давлением ( до 1500 кгс/см2). Температура воздуха при этом достигает 8000С. Происходит воспламенение мелко распыленного топлива (третий такт), которое сгорает почти полностью. Энергия, высвобождаемая при этом, давит на поршень, который снова начинает двигаться вниз. Происходит преобразование химической энергии в механическое движение. Четвертый такт – выпуск отработавших газов. Поршень движется вверх и вытесняет их через открытый выпускной клапан. Затем начинается новый цикл.

Камеры сгорания и турбонаддув.

В дизельном двигателе внутреннего сгорания может использоваться как разделенная (двигатель с предкамерой), так и неразделенная камера сгорания (двигатель с непосредственным впрыском). Двигатели последнего типа считается более экономичными и эффективными, чем двигатели с предкамерой, поэтому чаще устанавливаются на грузовых и грузопассажирских автомобилях. Двигатели с предкамерой дешевле, преимуществами их являются более низкие уровни шума и вредных выбросов в выхлопных газах. Такие двигатели используются в легковых автомобилях. Если сравнить с бензиновым двигателем внутреннего сгорания с воспламенением от искры, оба вышеописанные типа дизельных двигателей более экономичны, в том числе в диапазоне частичных нагрузок. Дизельные двигатели внутреннего сгорания подходят для применения турбонагнетателей (турбокомпрессора) механического наддува или с приводом от выхлопных газов. Использование турбонагнетателя (турбокомпрессора) повышает мощность и коэффициент полезного действия (КПД) двигателя, снижает содержание вредных веществ в выхлопных газах.

Типы камер сгорания дизельного двигателя:

  • Системы с предкамерой. Эта система используется в дизельных двигателях на легковых автомобилях. Топливо впрыскивается в горячую предкамеру, где происходит дополнительное воспламенение. В результате образуется качественная смесь и снижается задержка воспламенения в основном процессе сгорания.
  • Система с вихревой предкамерой. Такая система также используется в дизельных двигателях на легковых автомобилях. Как и в предыдущей системе, сгорание начинается в дополнительной камере. Однако такая камера сгорания имеет форму шара или диска (вихревая камера). Горловина (вырез) расположена тангенциально в основной камере сгорания.
  • Система с непосредственным впрыском. Большей частью используются в грузовых автомобилях и в различных стационарных дизельных двигателях. Топливо под давлением впрыскивается сразу в камеру внутреннего сгорания, расположенную над поршнем. Образование топливной смеси происходит без дополнительной вихревой камеры.
  • М-система или система непосредственного смешивания топлива с дальнейшим распылением его по стенкам. Эта система чаще используется в стационарных дизельных двигателях разного размера. Для испарения топлива используется теплоемкость стенок углубления в поршне. Топливовоздушная смесь образуется в результате управления воздухом в процессе сжатия.

Выхлопные газы дизельных двигателей внутреннего сгорания.

Состав выхлопных газов, образующихся в результате сгорания дизельного топлива, во многом зависит от конструкции самого двигателя, его мощности и заданной нагрузки. Чем более полно происходит сгорание топлива, тем ниже концентрация вредных веществ. Полнота сгорания зависит от точной поддержки состава тепловоздушной смеси, абсолютной точности впрыскивания и оптимального завихрения топливовоздушной смеси. Выхлопные газы большей частью состоят из воды (Н2О) и безвредной двуокиси углерода (СО2). Следующие соединения находятся в составе выхлопных газов в относительно небольшом количестве: несгоревшие углеводороды (НС или СН), окись углерода (СО), окись азота (NOx), серная кислота (Н2SО4) и окись серы (SO2), частички сажи. Если же двигатель холодный, в состав выхлопных газов поступают неокисленные или частично окисленные углеводы, различаемые как голубой или белый дым с характерным резким запахом.

Как работает система выпуска отработавших газов

При работе двигателя автомобиля образуются продукты сгорания, которые отличаются высокой температурой и токсичностью. Для их охлаждения и отвода из цилиндров, а также для снижения уровня загрязнения окружающей среды в конструкции предусмотрена система выпуска отработавших газов. Другая функция данной системы – уменьшение шума, возникающего при работе двигателя. Выпускная (выхлопная) система состоит из последовательной цепи элементов, каждый из которых выполняет определенную функцию.

Конструкция системы выпуска

Основной задачей системы выпуска является эффективный отвод отработавших газов из цилиндров двигателя, снижение их токсичности и уровня шума. Зная, из чего состоит выхлопная система в автомобиле, вы сможете лучше понимать принципы ее работы и причины возможных неполадок. Устройство стандартной выхлопной системы зависит от вида используемого топлива, а также от применяемых экологических стандартов. Выхлопная система может состоять из следующих элементов:

  • Выпускной коллектор – выполняет функцию отвода газов и охлаждения (продувки) цилиндров двигателя. Он выполняется из термостойких материалов, поскольку температура выхлопных газов в среднем варьируется от 700°С до 1000°С.
  • Приемная труба – представляет собой трубу сложной формы с фланцами для крепления к коллектору или турбонагнетателю.
  • Каталитический нейтрализатор (устанавливается в бензиновых двигателях экологического стандарта Евро-2 и выше) – устраняет из отработавших газов наиболее вредные компоненты CH, NOx, СО, преобразуя их в водяной пар, углекислый газ и азот.
  • Пламегаситель – устанавливается в системах выпуска отработавших газов автомобилей вместо катализатора или сажевого фильтра (в качестве бюджетной замены). Он предназначен для снижения энергии и температуры потока газов, выходящих из выпускного коллектора. В отличие от катализатора, не снижает количество токсичных компонентов в отработавших газах, а лишь снижает нагрузку на глушители.
  • Лямбда-зонд – служит для контроля уровня кислорода в составе отработавших газов. В системе может быть один или два кислородных датчика. На современных двигателях (рядных) с катализатором устанавливается 2 датчика.
  • Сажевый фильтр (обязательная часть системы выхлопа дизельного двигателя) – удаляет сажу из выхлопных газов. Может совмещать в себе функции катализатора.
  • Резонатор (предварительный глушитель) и основной глушитель – снижают уровень шума выхлопных газов.
  • Трубопроводы – соединяют отдельные элементы выхлопной автомобильной системы в единую систему.

Принцип работы системы выхлопа

В классическом варианте для бензиновых двигателей выхлопная система автомобиля работает следующим образом:

  • Выпускные клапана двигателя открываются, и отработавшие газы с остатками не сгоревшего топлива выбрасываются из цилиндров.
  • Газы из каждого цилиндра попадают в выпускной коллектор, где объединяются в один поток.
  • По приемной трубе отработавшие газы из выпускного коллектора проходят через первый лямбда-зонд (кислородный датчик), который фиксирует количество кислорода в составе выхлопа. На основе этих данных электронный блок управления корректирует топливоподачу и состав топливовоздушной смеси.
  • Далее газы попадают в катализатор, где вступают в химическую реакцию с металлами-окислителями (платиной, палладием) и металлом-восстановителем (родий). Рабочая температура газов при этом не должна быть ниже 300°С.
  • На выходе из катализатора газы проходят второй лямбда-зонд, с помощью которого происходит оценка исправности работы каталитического нейтрализатора.
  • Далее очищенные отработавшие газы попадают в резонатор, а затем в глушитель, где потоки выхлопа преобразуются (сужаются, расширяются, перенаправляются, поглощаются), что снижает уровень шума.
  • Из основного глушителя отработавшие газы уже попадают в атмосферу.
Читать еще:  Головка блока цилиндров двигателя условия работы материал и конструкция

Система выхлопа дизельного двигателя имеет некоторые особенности:

  • Выходя из цилиндров, отработавшие газы попадают в выпускной коллектор. Температура выхлопных газов дизельного двигателя варьируется в диапазоне 500-700 °С.
  • Далее они попадают в турбокомпрессор, осуществляющий наддув.
  • После этого выхлоп проходит через кислородный датчик и попадает в сажевый фильтр, в котором удаляются вредные компоненты.
  • В завершении выхлоп проходит через автомобильный глушитель и выходит в атмосферу.

Эволюция системы выхлопа неразрывно связана с ужесточением экологических стандартов эксплуатации автомобиля. Так например, начиная с категории Евро-3, установка катализатора и сажевого фильтра для бензиновых и дизельных моторов обязательна, а их замена на пламегаситель считается нарушением закона.

Убедительные признаки забитого сажевого фильтра дизеля и суть процедуры его регенерации

Дизель ныне не чадит. Основной компонент дизельного черного дыма (сажа) задерживается в специальном фильтрующем элементе, интегрированном в выхлопную систему. Экодеталь не вечная – со временем забивается. Преждевременная замена или удаление – неуместны, разумней вовремя подметить критический уровень наполнения, чтобы воспользоваться штатными средствами регенерации. Они продлевают жизнь узлу, вернут прыть двигателю и сохранят время.

На что обращать внимание: признаки забитого сажевого фильтра на автомобильном дизеле любой марки

Заметить, а тем более объяснить, небольшие ухудшения в динамике в пределах городской черты может не каждый. А это первый знак засорения сажевика. Сажа на керамической матрице будь-то немецкого DPF с платиновым ускорителем химреакций или французского FAP с жидкостью-катализатором выжигания Eolys откладывается постоянно, создавая сопротивление потоку выхлопных газов. Говоря научным языком, неполное сгорание топлива ведет к образованию частиц аморфных углеродов, которые оседают на стенках очистителя, и постепенно снижают пропускную способность детали.

Приборная индикация

А теперь оцените режим работы двигателя в городской толкучке: постоянные перегазовки, прогревы, простои в ожиданиях зеленого сигнала. И без экспертного мнения ясно, что в таких условиях быстро будет забит сажевый фильтр на дизеле и симптомы выяснять не придется – все будет отображено на приборном табло. Но заметим: универсального стандарта оповещения о наличии проблемы нет.

  • Подсвеченный значок DPF. Фильтрующий элемент заполнен сажей, выполнено несколько безуспешных попыток активной регенерации в движении. В срочном порядке необходим активный прожиг на трассе.
  • Одновременная подсветка датчика сажевого фильтра + Check Engine или «Чек» + мигающая спираль преднакала. Аварийный режим работы двигателя, о чем оповестит бортовая система, а в ЭБУ появится ошибка типа Diesel Particulate Filter Restricted/Clogged MIL ON. Требуется принудительный прожиг.

Физические ограничения


Когда зажигается лампа сажевого фильтра, электронные «ошейники» не активируются, да и тяга заметно не падает. Приближение момента срабатывания электронной индикации помогает вычислить увеличенный на 1-2 литра расход топлива и разжиженное топливом масло (возрастает его уровень в картере).

Совершенно иная ситуация с аварийным режимом: ЭБУ душит систему впрыска – не позволяет пользоваться газом во всю мощь для недопущения чрезмерного нагрева фильтрующего узла. Вот какие принудительные блокировки срабатывают на машине Audi Q7 3,0 TDI:

  • Скорость передвижения – не более 100 км/ч.
  • При ускорениях доступна только половина тягового момента.
  • Расход топлива не превышает 10 л/100 км.
  • Невозможно запустить круиз-контроль.

Итого зимой в автомобиле без установленного подогрева антифриза свечами накала будет прохладно. Если сигналы приборной доски и электронные блокировки игнорируются, наступает момент, когда машина глохнет и не заводится, или двигатель запускается, но тут же останавливается.

Подтвердить, что это действительно крайние признаки забитого сажевого фильтра дизеля помогает демонтаж и продувка фильтрующего элемента компрессором. При таких обстоятельствах на выходе давления не будет.

Решает компания

Автомобили Opel обучены алгоритму индикации, подобному машинам VAG: когда совсем худо дело – лампа DPF мигает. У Toyota – абсолютная аналогия с немцами. Mazda, Peugeot, Citroen предупреждающей индикацией не располагают: подсвечивание лампы сажевика информирует об активации аварийного режима. Однако у французов индикатор вправе засветиться при снижении объема жидкости-катализатора в специальном бачке ниже минимальной отметки.

Что делать при обнаружении симптомов забитого сажевого фильтра на легковом дизеле любой модели

На интуитивном уровне цель ясна – избавиться от скоплений сажи. Наиболее простой метод – выжечь пассивным, активным или принудительным путем, чтобы углеродные частицы преобразовались в диоксид углерода (углекислый газ), который беспрепятственно выйдет в атмосферу. Техническое наименование процесса – регенерация.

Пассивный прожиг

Получасовая загородная поездка на одной передаче с постоянными оборотами, но не ниже 2 500 об/мин, снижает балласт твердых частиц на внушительный процент. С ростом оборотов коленвала в фильтре повышается температура отработанных газов до 350-500°C, что позволяет вступить диоксиду азота в реакцию с сажей и получить диоксид углерода. Отсутствие резких ускорений снижает процент недожженного топлива – основной причины образования углеродных элементов.

Вообще говоря, дизелям в особенности противопоказан прогрев на холостых и движение на низких оборотах. Поэтому, любителям городских покатушек совет один: разбавить список короткометражных маршрутов длинными участками, на которых беспрепятственно можно совершать пассивный прожиг. 2-3-х выездов за город в неделю вполне достаточно. Рекомендуемая скорость: 70-80 км/ч.

Внимание. Пассивный прожиг полезен для сажевиков, совмещенных с нейтрализатором (DPF): путь до него, и выхлопные газы не успевают остыть. Если система основана на применении присадок (FAP), то фильтрующий узел расположен далеко от камеры сгорания и нагреться исключительно от отработавшей газовой смеси не успевает, поэтому выжигание естественным образом не происходит.

Активная регенерация

Приставка Active присвоена процессу из-за вмешательства искусственного интеллекта в режим работы систем двигателя с целью повысить температуру выхлопных газов в сажевике до 600-650°C. ЭБУ запускает активный прожиг сажевого фильтра на дизеле после достижения определенного уровня наполненности его твердыми частицами. Это может быть 30-40 грамм – у каждого автомобиля порог свой.

Если ЭБУ подметил допустимую базовую температуру отработавшей газовой смеси (не менее 250°C), прогретый мотор (не менее 60-75°C) и заметно наполненный топливный бак (более 1/4), то регенерация запускается. На время ее активации (последующие 10-30 минут), электроника меняет тон функционирования мотора:

  • Глушится клапан EGR, перепускающий часть газов из выпуска на впуск. Отсутствие отработавшей газовой смеси при наполнении цилиндров способствует повышению температуры сгорания в котлах.
  • Активируется послевпрыск. Распыление дополнительной порции ДТ после основного цикла (такт расширения) обеспечивает догорание солярки в сажевике, благодаря низкой температуре ее самовоспламенения (62°C).
  • Изменяется геометрия расположения сопловых лопаток турбины турбокомпрессора. Минимизация расширения выхлопных газов уменьшает долю энергии, расходуемой на механическое раскручивание колеса центробежного аппарата, что способствует сохранению тепла отработавшей газовой смеси.
Читать еще:  Что такое мощность двигателя и крутящий момент электродвигателя

К сведению. Образование углекислого газа при прожиге активным способом происходит вследствие реакции между сажей и кислородом.

О запуске прожига бортовая электроника никак не оповещает. Признаки прохождения активной регенерации считываются по показаниям иных приборов и характеру работы двигателя:

  • Мгновенно растет температура антифриза. Часто водитель не замечает этого и ищет, в чем же причина срабатывания вентилятора охлаждения мотора на холодную , хотя ОЖ уже давно горячая. На BMW 525D E60 показания с положенных 92°C увеличиваются до 97°C.
  • Увеличивается расход топлива из-за послевпрыска. Заметить факт роста на некоторых машинах, в частности на Пежо, невозможно – бортовой компьютер намеренно занижает привычный расход на время проведения процесса.
  • Растет температура масла. Например, у Peugeot 407 в режиме прожига она достигает 116°C при нормальных 90-95°C.
  • Возникает цоканье раскаленного металла, которое отчетливо слышно снаружи.
  • На «холостых» меняется звук мотора на характерный басовитый.
  • Из глушителя идет густой белый дым.


Оптимальные условия для успешного проведения операции: равномерное движение со скоростью 50-60 км/ч и частота вращения коленвала около 2 000 об/мин по тахометру. Электроника в состоянии выявить симптомы забитого сажевого фильтра на легковом дизеле, но оценить, где движется автомобиль, она не может. Посему команда на проведение регенерации может быть подана даже в городе.

В совокупности с тем, что система никак не сигнализирует о запуске цикла восстановления фильтра, водитель может не заметить произведение активного прожига, и продолжать двигаться в рваной манере. Тогда избыток топлива приводит к его попаданию в картер и повышению уровня масла. Разжиженную смазку придется срочно менять, а для сажевика либо остается последняя попытка активной регенерации, о чем говорит горящая лампа DPF, либо принудительный прожиг, если приборная сигнализация однорежимная.

Крайняя попытка активного прожига у каждого автомобиля производится по-разному:

  1. Когда горит лампа DPF на первых VolksWagen с сажевым фильтром, необходимо в срочном порядке выехать на автомагистраль и двигаться на 4 или 5 передаче со скоростью не более 60 км/ч до момента, когда лампа потухнет (обычно это 30-40 минут непрерывного равномерного движения).
  2. На новых Toyota Land Cruiser 200 дополнительно выводится сообщение, требующее остановиться и запустить процесс в «паркинге» с помощью специальной кнопки. Система самостоятельно проведет регенерацию в течение 20-30 минут, при этом оперировать педалью газа запрещено.

Последний шанс: принудительный прожиг дизельного сажевого фильтра штатными средствами

Процесс этот вынужденный, а программа его выполнения прописана в ЭБУ. Запускается он извне, в ручном режиме – чаще с помощью диагностического оборудования. Если коротко: через сервисную программу активируется особый режим работы мотора (закрытый EGR + послевпрыск + изменение геометрии турбокомпрессора), поднимаются обороты ХХ до 1 500-2 000 единиц и двигатель «коптит» в течение 20-30 минут на месте.

По сути, это и есть финальная попытка активной регенерации. Только, скажем, VolksWagen B6, предпочитает дать водителю шанс не посещать лишний раз сервис. Ну а Toyota сразу рекомендует запускать принудительный прожиг, причем никаких программных средств для этого не нужно – включил кнопку и пожалуйста.

Аспекты процесса

Свои ограничения у операции есть. На VAG-овских машинах регенерация не запустится, если система выявит признаки напрочь забитого сажевого фильтра дизеля, а именно принципиальную разницу показаний датчика дифференциального давления (измеряет разницу давлений газов на входе и выходе) и запредельные показания счетчика объема сажи (более 68 грамм). Цель вынужденной очистки – сбить лишь часть задержанных углеродов (на Audi Q7 3,0 TDI операция завершается при расчетных 56 граммах).

К сведению. Определить физический объем твердых частиц в фильтре невозможно, поэтому используется одна из двух моделей: измеряется давление и температура на входе и выходе из очистителя, расход воздуха мотором или оценивается стиль вождения, информация с сенсора температуры отработавшей газовой смеси и кислородного датчика.

Что делать, если принудительный прожиг не запускается

Предлог запрета – выявленные симптомы забитого фильтра. Исключать выход из строя датчика дифференциального давления нельзя, но чаще система не врет, что доказывает окно с расчетным количеством сажи в диагностической программе. Сбросить счетчик можно, но сенсоры не обманешь.

Реанимировать компонент реально только после пассивного прожига, когда фактический объем сажи станет меньше. Счетчик, естественно, накрутит лишние цифры из расчета 3-5 грамм на 100 км, но показания датчика дифференциального давления уже будут в кондиции, а накрученное обнуляется через пропись нового сажевика.

К сведению. Резкие старты с 0 до 100 км/ч выбивают сажу из-за избыточного давления в выхлопной системе. 5-6 жестких разгонов в течение первых 10…30 секунд после запуска двигателя способны удалить около 10 грамм углерода. Ускорения производятся только на прогретом моторе.

Системы нейтрализации выхлопных газов машины

Статья о нейтрализации выхлопов на бензине и дизеле: состав выхлопных газов, системы нейтрализации. В конце статьи — видео о том, что делать с запахом выхлопа в салоне. Статья о нейтрализации выхлопов на бензине и дизеле: состав выхлопных газов, системы нейтрализации. В конце статьи — видео о том, что делать с запахом выхлопа в салоне.

Проблема загрязнения воздуха и окружающей среды не нова – первые серьезные изменения были отмечены еще в 70-х годах прошлого века. Однако сегодня, спустя почти полвека, ситуация значительно усугубилась: автомобильного транспорта стало значительно больше, вместе с ним возросла концентрация вредных веществ и соединений, попадающих в атмосферу мегаполиса и вызывающих у сограждан серьезные нарушения здоровья.

Борьба за чистоту воздуха привела к созданию так называемых нейтрализаторов для двигателей бензинового и дизельного типа. Сегодня такие системы часто интегрированы в бортовую электронику транспортного средства. Что это за системы и как они работают? Рассмотрим детально.

Выхлопные газы

Во время работы различные системы автомобиля (ДВС, топливная, вентиляционная, а также ходовая часть) выделяют вредные вещества в виде газа и мелкодисперсной пыли. Часть из них – неядовитые соединения, которые содержатся в обычном воздухе. Другая часть является ядовитыми, токсичными и канцерогенными веществами, которые не только негативно влияют на окружающую среду, но и разрушают здоровье человека. Основные загрязнители:

    СО (он же – оксид углерода, или угарный газ) не имеет цвета и запаха, однако приводит к патологии ЦНС, угнетению сердечно-сосудистой и дыхательной системы, и в концентрации 0,3% от объема воздуха приводит к летальному исходу. Возникает он в результате неполного сгорания топлива.

СН (углеводороды) – обширная группа соединений с общей структурой, которые возникают при неполном или недостаточно быстром сгорании топлива. К ним относятся парафин, олефин, альдегид, формальдегид, бензол, толуол, ксилол и прочие полициклические соединения. Эти мутагены и канцерогены разрушают органы дыхания и способствуют росту и развитию раковых клеток, в том числе рака крови – лейкемии.

Читать еще:  Двигатели для ваз какие гнут клапана на ваз

NОх (окислы азота) – основная причина возникновения кислотных дождей, так как при соединении с водой образуются азотная и азотистая кислоты. Это один из серьезных канцерогенов, вызывающих раковые опухоли. Ядовитый газ разрушает органы дыхания и накапливается в крови. Образуется в момент сгорания топлива.

SОх (оксиды серы) аналогично предыдущему химическому элементу. При контакте с водой образуют серную и сернистую кислоты. В состоянии газа вызывает патологию органов зрения и дыхания.

Н2S (сероводород) — вызывает общее отравление организма, возникает при использовании низкокачественного топлива с высоким содержанием серы.

NH3 – аммиак – вызывает слепоту и ожоги верхних дыхательных путей.

Частицы сажи – продукт неполного сгорания топлива и масла. В основном, проблема возникновения канцерогена характерна для дизельных двигателей.

Мелкодисперсные частицы пыли углеводорода, серы, тяжелых металлов менее опасны, так как способны отфильтровываться непосредственно организмом.

Дым синего или белого цвета – продукт испарения масла дизельных двигателей.

СО2 – углекислый газ – вызывает угнетение ЦНС, сердечно-сосудистой системы и органов дыхания, при содержании в атмосфере 6% от общего объема воздуха приводит к летальному исходу.

  • Прочие, незначительные, но не менее опасные составляющие выхлопных газов: метан, закись азота, фторуглеводород, гексафторид серы.
  • В современном законодательстве проблема экологии и нормы предельно допустимых выхлопных газов для автотранспортных средств регулируются техрегламентом Таможенного союза ТР ТС 018/2011 в поправке от 11.07.2016. Однако с 11 ноября 2018 и в него будут внесены поправки, ну а пока допускаются следующие предельные показатели: СО — 85 г/кВт•ч, НС — 5 г/кВт•ч, NO — 17 г/кВт•ч.

    А к обязательным компонентам автомобилей относятся системы нейтрализации отработавших газов, в том числе сменные каталитические нейтрализаторы (за исключением систем нейтрализации на основе мочевины).

    Решение для бензиновых двигателей

    Системы нейтрализации выхлопных газов автомобиля бывают двухкомпонентными и трехкомпонентными, причем последние появились сравнительно недавно. Как устроена и работает данная система?

    Принцип действия

    Работа нейтрализатора заключается в окислении токсичных веществ при помощи катализаторов, в результате чего продукты неполного сгорания топлива дожигаются или разлагаются на безвредные химические элементы и вещества.

    Активными компонентами (катализаторами) выступают драгоценные металлы — палладий, платина. Популярны и менее затратны катализаторы на основе оксида меди, кобальта, никеля, ванадия, марганца, железа, алюминия. Нередки катализаторы на основе сплавов стали нержавеющей или легированной, бронзы или латуни.

    Конструкция

    Основные элементы нейтрализатора – корпус из нержавеющей жаропрочной стали, внутренняя поверхность которой выстлана терморасширительной прокладкой. Внутри бака — газоподводящий и отводящий цилиндр и ячеистые соты, на которые нанесен слой вещества — катализатора.

      Ячеистые соты, на которые наносится катализирующий состав, могут быть выполнены из керамики. Такие нейтрализаторы в качестве катализатора используют тонкий слой из драгоценных редких металлов. Это самый дорогостоящий вид систем нейтрализации отработанных газов.

  • Менее дорогой вариант – ячеистые соты, выполненные методом пайки из тонкой металлической фольги с покрытием из одного из видов вышеназванных составов. Такая система более эффективна, ведь площадь ячеистых сот значительно больше, чем у керамических, а следовательно, способно обработать больший объем отработанных газов.
  • Устройство в автомобильных системах и порядок работы

    Системы нейтрализации выхлопных газов располагаются в непосредственной близости от ДВС, под днищем транспортного средства. Через шарнирное соединение нейтрализатор подсоединяется к выпускному коллектору с одной стороны, и выхлопной системе – с другой.

    Для обеспечения качественной химической реакции с участием кислорода системы нейтрализации используют воздушные насосы или виброклапаны. При разогреве системы нейтрализации до 400-800 градусов CO (оксид углерода) и CH (углеводороды) под действием катализаторов превращаются в углекислый газ и воду. Близкое расположение нейтрализаторов к ДВС позволяет снизить количество NОх (окисла азота) сразу после запуска двигателя.

    Обратную связь с блоком управления автомобиля нейтрализатору обеспечивают лямбда-зонды, специальные кислородные датчики, или четырехгазовые анализаторы, которые на входе и выходе из системы определяют уровень кислорода и качество очистки выхлопных газов.

    Решение для дизельных двигателей

    Аналогично бензиновым двигателям, дизели имеют системы нейтрализации выхлопных газов. Однако главной проблемой остается сажа: не до конца сгоревшее топливо под действием химических процессов превращается в твердые мелкодисперсные частицы — канцерогены.

    Нейтрализаторы решить эту проблему не способны. Поэтому перед тем, как выхлопной газ попадет в систему нейтрализации, он проходит очистку сажевым фильтром.

    Конструкция

    Аналогично нейтрализатору, фильтр имеет ячеистые соты, которые в шахматном порядке закрыты накопительными перегородками-фильтрами частиц. Для каждого производителя автомобиля с дизельным двигателем используется своя система контроля данного параметра. Среди видов таких фильтров можно выделить:

      DPF – накопительные фильтры;

    DPNR – фильтры, дожигающие твердые частицы;

    FAP – фильтры с цериевыми присадками для очистки от сажи;

  • DPF или SCR – фильтры с присадкой AdBlue, разлагающие NOx (окислы азота) на безвредный азот и водяной пар.
  • Проблемы системы нейтрализации выхлопных газов

    Все вышеописаные системы характерны для автомобилей импортного производства и моделей последнего поколения. Для отечественного автопрома с карбюраторами установка нейтрализатора не популярна, не пользуется спросом, а также может быть весьма накладна.

    Существенная стоимость систем нейтрализации выхлопных газов при их выходе из строя на импортных автомобилях чаще всего приводит к попытке избавиться от такой «нужной» детали. А выйти из строя он может по ряду причин:

      Использование некачественного или «улучшенного» присадками топлива;

    Попадание в рабочую полость топлива или масла;

    Нестабильная работа двигателя;

    Механические повреждения корпуса;

  • Резкий перепад температур на корпусе.
  • Предугадать точный пробег нейтрализатора невозможно: на одних машинах он едва ли переваливает за 100 тыс. км, на других отлично ведет себя при пересечении отметки в 200 тысяч.

    Как решить проблему системы нейтрализации выхлопных газов? Не стоит спешить и демонтировать нейтрализаторы, ведь борьба за экологию только началась. Кроме того, что могут возникнуть непредвиденные поломки, которые не сможет диагностировать «обманутая» электроника, требования к выхлопам при прохождении ТО ужесточаются, а значит, не все владельцы смогут его пройти. Да и токсичные выхлопы и канцерогены смогут в большой концентрации попасть в салон и нанести непоправимый вред здоровью водителя и пассажиров.

    Гораздо целесообразнее проводить своевременную профилактическую проверку состояния нейтрализатора и сажевого фильтра и при возникновении критической для работы поломки или неисправности – заменить на новый. Ведь суммарная стоимость устранения возникших по причине отсутствия этого важного элемента неполадок может быть существенно выше.

    Видео о том, что делать с запахом выхлопа в салоне:

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector