Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление в картере двигателя причины ваз

Давление в картере двигателя причины ваз

Рекламные ссылки. Показывается только незарегистрированным пользователям

прочитал недавно вот что:
При работающем двигателе осторожно откройте крышку маслозаливной горловины. Убедитесь, что изнутри «норовят» выскочить капельки масла и внутри стоит масляный туман. Если при открытой крышке приблизительно при 1000 об/мин выходят выхлопные газы, значит, в картере избыточное давление, и поршневая группа требует ремонта. Обнаружить избыточное давление в картере двигателя можно и другим способом. На холостом ходу двигателя следует снять крышку маслозаливной горловины и, не заворачивая, аккуратно поставить ее на отверстие горловины. Если на холостом ходу крышка подпрыгивает, то в скором времени двигатель потребует ремонта, а до тех пор у него будет повышенный расход масла.

и призадумался.
наездил уже 40 тыс. км. с такой бедой. только у меня крышка не подпрыгивает, а ее сдувает нафиг. расход масла 0*4 раза (за 10000 км.) чё делать не знаю. может забить, или к спецам тащить?
з.ы. после покупки поменял кольца и колпачки, т.к. масло хавала по литру на тысячу км.

_________________
седан. 99г. 1 ZZV50

_________________
«VISTA ARDEO» 3F- FSE (D4) SV50G 2000год, апрель

«Киа Карнивал» 2007 г. (тоже D4, только соляра)

а что конкретно накрылось?

_________________
«VISTA ARDEO» 3F- FSE (D4) SV50G 2000год, апрель

«Киа Карнивал» 2007 г. (тоже D4, только соляра)

Последний раз редактировалось Vyatich 14 дек 2010, 02:09, всего редактировалось 1 раз.
Объединил темы.

_________________
Vista Ardeo 1ZZ 2000г.

здесь глянь. я и вроми отписывались про систему вентиляции.

_________________
седан. 99г. 1 ZZV50

_________________
Vista Ardeo 1ZZ 2000г.

_________________
Управлял шесть лет японской мечтой — Toyota Vista Ardeo , теперь управляю немецкой мечтой — DAS AUTO .

у меня когда забито было- крышка просто улетала. а если лежит — значит все ОК.

_________________
седан. 99г. 1 ZZV50

у меня когда забито было- крышка просто улетала. а если лежит — значит все ОК.

А что было забито?

К др.заслонке приходят два шланга, один до, а другой после, забор берется из разных мест. И оба вентилируют двигатель, в одном стоит клапан, в другом его нету, надо проверить что оба чистые были.

Я один раз отсек тот шланг который без клапана, взял целофаном закрыл штуцер и одел сверху шланг на место, так через пять минуты езды снимался с хлопком, не помню то ли давление, то ли вакум создался.

_________________
Управлял шесть лет японской мечтой — Toyota Vista Ardeo , теперь управляю немецкой мечтой — DAS AUTO .

сам клапан был засран до полной непроходимости

_________________
седан. 99г. 1 ZZV50

сегондня попробовал у себя, крышка так же немного подпрыгивает, руку подставляешь (после чего она вся в масле) чуствуется напор воздуха от туда как с глушителя.

Неужели и у меня проблемы. Клапан у меня чистый!

_________________
Управлял шесть лет японской мечтой — Toyota Vista Ardeo , теперь управляю немецкой мечтой — DAS AUTO .

_________________
Vista Ardeo 1ZZ 2000г.

_________________
VISTA SV50 2WD 3S-FSE 06/98
PREMIO ZZT245 4WD 1ZZ-FE 12/02
Toyota forever!

22 причины расхода и потерь моторного масла в двигателе

Расход масла, потери моторного масла в двигателе

Любого автомобилиста беспокоит повышенный расход масла. Особенно, когда это происходит на «свежесделанном» моторе. Инженеры компании Kolbenschmidt назвали 22 причины, по которым это может происходить.

1. Слишком большой зазор подшипника в турбонагнетателе

В случае износа подшипников скольжения турбонагнетателя точная герметизация уплотнений большого колеса турбонагнетателя невозможна из-за большого зазора. Моторное масло всасывается и сгорает в камере сгорания.
Подшипники турбонагнентателя при эксплуатации подвергаются высоким нагрузкам. Износ возникает, как правило, в результате большого пробега двигателя, загрязненного или неправильно подобранного моторного масла или недостаточной смазки.

2. Забитая обратная линия масла на турбонагнетателе.

Если температура обратной масляной линии от турбонагнетателяк блоку двигателя слишком высока, то происходит нагарообразование масла в линии. Причиной такого перегрева может быть качество масла или недостаточное общее охлаждение двигателя. Нагарообразование препятствует стоку масла к маслянному картеру. В результате создается высокое давление масла, что приводит к утечкам масла на подшипниках рабочего колеса турбонагнетателя. Попавшее в систему впуска масло всасывается вместе с выпускаемым воздухом в камеру сгорания и сжигается.
Причиной перегрева чвасто являются неправильно проложенные масляные линии, проходящие, например, слишком близо к выпускному коллектору, неизолированные линии или неправильно установленные изолирующие листы.

3. Износ ТНВД.

В 24 % всех случаев причиной повышенного расхода масла является износ рядных топливных насосов высокого давления (ТНВД).
Смазка движущихся деталей рядного ТНВД осуществляется, как правило, через масляный контур двигателя. В случае износа элементов ТНВД при движении поршней насоса вниз моторное масло проникает в рабочие пространства элементов насоса. Здесь моторное масло перемешивается с дизтопливом, вместе с ним впрыскивается в камеру сгорания и там сгорает.
При проведении работ по ремонту дизельных двигателей с рядными ТНВД, проводимых из-за повышенного расхода масла всегда рекомендуется подвергнуть контролю также и рядный ТНВД. Эти работы проводятся, как правило в демонтированном состоянии на испытательном стенде.

4. Загрязненность всасываемого воздуха.

Всасываемый воздух проходит долгий путь к камере сгорния. Н этом пути расположено большое количество точек соединения, имеющих уплотнения или резиновые шланги. Если они становятся пористыми или негерметичными, то через эти точки всасывается нефильтрованный загрязненный воздух, который попадает в камеру сгорания. То же происходит при недостаточной фильтрации впускаемого воздуха из-за отсутствующих, дефектных или неподходящих воздушных фиьтров.
Попадающие в цилиндр загрязнения вызывают смешанное трение и, как следствие, повышенный износ на рабочей поверхности цилиндра, поршнях и поршневых кольцах. Результатом является повышенный расход масла.

5. Износ уплотнения стержня клапана (сальники клапанов) и направляющих втулок.

Задачей уплотнения стержня клапана является предотвращение попадания масла в зону направляющей клапана. Если зазор между направляющей стержня клапана и стержнем клапана слишком большой или уплотнение стержня клапана было повреждено при монтаже, то в этом месте будет вытекать масло, попадая при этом в камеру сгорания.
При каждом ремонте необходимо заменять уаплотнения, потому что после длительной эксплуатации резиновый уплотнитель изнашивается или теряет свою эластичность.

6. Ошибка сборки головки цилиндров.

Неправильный монтаж головки блока цилиндров может вызвать перекос элементов, в результате которого в зоне камеры сгорания могут возникнуть негерметичные места на пути к масляному контуру. Тогда на уплотнении головки цилиндров масло без того, что видны потери, попадает через каналы подачи масла в камеру сгорания.
С целью предотвращения перекоса необходимо соблюдать последовательность, моменты затяжки и затяжку болтов под углом.

7. Избыточное давление в картере.

Во всех двигателях наблюдается прорыв газов. Это газы сгорания, попадающие в результате высокого давления сгорания мимо поршневых колец в картер двигателя.
Если в результате износа поршней, колец и клапанов прорыв газов выше обычного, то вкартере двигателя может возникнуть настолько высокое давление, что масло во всем двигателе проталкивается, через уплотнения. Наглядным примером являются уплотнения стержней клапанов, которые при высоком избыточном давлении испытывают намного большую нагрузку. Вследствие этого в систему впуска или выпуска вдоль направляющей клапана продавливается еще больше масла.
В исправных двигателях повышение давления в картере может возникнуть из-за дефекта клапана выпуска воздуха из картера.
С большим количеством прорывающихся газов может уходить и масляный туман. Из-за большого прорыва газов все больше и больше масляного тумана транспортируется к системе впуска, через которую масло попадает в камеру сгорания.

8. Слишком высокий уровень масла.

Масляный туман образуется в результате вращения коленчатого вала в масле. Слишком высокий уровень масла может приводить к образованию масляной пены. Вместе с прорываемыми газами эта пена и растущий объем масляного тумана поднимается через систему вентиляции к системе впуска. Если нет масляного сепаратора, то пена попадает в камеру сгорания. Но и в двигателях со сложными системами отделения масла система может стать неработоспособной из-за поднимающейся масляной пены.

Читать еще:  В чем преимущество v образных двигателей

9. Нарушение режима сгорания и переполнения топливом.

В резуьтате нарушений режима сгорания или переполнения топливом в камере сгорания остается несгоревшее топливо.
Если это топливо отлагается на стенках цилиндра, растворяя масляную пленку, возникает полусухое трение, что приводит к быстрому износу деталей цилидрово-поршневой группы (ЦПГ).
Часть несгоревшего топлива в виде газов попадает в картер двигателя, температура которого намного ниже, кондесируется там и перемешивается с моторным маслом. Это приводит к уменьшению вязкости моторного масла, образованию черных шламов, забивающих масляные каналы.
Возможные причины: слишком богатая смесь, дефект турбонагнетателя, неправильная установка момента зажигания, нарушения работы системы зажигания, дефектные распылители форсунок, дефектные ТНВД, неправильная выступающая длина поршня.

10. Нерегулярное техобслуживание.

Если не соблюдаются предписанная изготовителем двигателя переодичность ТО, то в двигателе будет находиться загрязненное масло в течении длительного времени. Поскольку в процессе работы пакет присадок постепенно расходуется, понижается эффект смазки и возникает риск повышенного износа.

11. Использование некачественных моторных масел.

При использовании некачественных или неподходящих сортов масла, не во всех режимах может быть обеспечена надежная работа двигателя. Износ двигателя повышается, например, при пуске холодного двигателя, при работе в режиме высоких температур и т.д. Масло должно соответствовать предписаниям изготовителя транспортного средства по вязкости и эксплуатационным свойствам.

12. Перекос цилиндров.

Перекос цилиндра можно определить по неравномерному пятну контакта с отдельными блестящими полированными местами сухой рабочей втулки цилиндра. Пятнистые, неравномерные пятна контакта на наружной стенке гильзы цилиндра, а также в цилиндре всегда являются признаком перекоса цилиндра. Поршневые кольца не могут безупречно герметезировать перекошенный цилиндр ни по отношению к маслу, ни по отношению к газам сжигания. Масло не может сниматься маслосъемными кольцами, попадает в камерц сгорания и сжигается там. Одновременно и повышается давление газов в картере двигателя.
Возможные причины: неправильная затяжка болтов головки блока цилиндров, отложения и загрязнения в системе охлаждения, неровные плоские поверхности блока цилидров или головки блока цилиндров, нечистые или перекошенные резьбы болтов головки блока цилиндров, неподходящие уплотнения головки блока цилиндров, дефектные опоры буртиков, контактная коррозия.

13. Ошибки обработки при сверлении и хонинговании.

Из-за неправильной обработки поверхности цилидров не создается масляная пленка между поршневым кольцом и стенкой цилиндра (толщина масляной пленки 1-3 мкм). При непосредственном контакте кольца с рабочей поверхностью возникает высокий износ. Из-за высокого трения, кольца, вместо того чтобы отводить тепло, в соответствии с их задачей, создают еще дополнительное тепло. Важное влияние на качество обработки поверхности имеют угол хонингования и доля высвобождения графита.

14. Слишком низкий процент вскрытия зерен графита.

Решающий фактор образования масляной пленки и способности рабочей поверхности цилиндра сохранять служебные цели является процент вскрытия зерен графита. Оптимальная финишная обработка поверхности с процентом вскрытия не менее 20 % позволяет обеспечить сбор масла во впадинах профиля и в графитовых зернах, что способствует повышению стоикости масляной пленки при высоких нагрузках и существенному улучшению способности сохранять свои свойства. Вскрытые графитовые зерна могут воспринимать моторное масло как губка и при необходимости снова высвобождать его. Слишком гладкая финишная обработка, в частности при чистом хонинговании с алмазными кругами, в большинстве случаев указывает на образование металлической прослойки при обработке.
В металлической прослойке графитовые зерна и каналы закрыты или забиты тонкой стружкой. Попадание масла становится невозможным. Лишь при обкатке этот слой снимается поршневыми кольцами, при этом происходит стабильный износ колец. После определенного времени свойство поверхности цилиндров нормализуются, но поршневые кольца остаются изношенными. Расход масла после обкатки не уменьшается, а наоборот, даже повышается.
Хонинговальные щетки устраняют эти проблемы. Обработка хононговальными щетками должна быть последним шагом при обработке поверхности цилиндров. Обработка щетками очищает впадины поверхности, удаляет стружку забивающую графитовые зерна и создает плоскостность, устраняя острые выступы, без изменения размеров.

15. Перекос или изгиб шатунов.

Шатуны оказывают наибольшее влияние на работу поршней. Ошибки соосности в результате перекоса или изгиба приводят к качающемуся движению поршней в продольной оси двигателя, которые затем попеременно сталкиваются с цилиндром. Масло проходит через щели, возникающие в результате движения поршней, и проникает в камеру сгорания. В наиболее неблагоприятных случаях создается насосный эффект, из-за которого масло нагнетается вверх еще сильнее.

16. Поломанные, зажатые, неправильно установленные кольца.

Поршневые кольца, выполняющие многочисленные задачи, являются решающими конструктивными элементами для работы двигателя. Основная задача поршневых колец состоит в герметизации камеры сгорания относительно картера двигателя. При неправильном монтаже колец, они не могут выполнять свою функцию герметизации. Масло не снимается со стенок цилиндров и попадает в камеру сгорания.
Возможные причины: поломанные поршневые кольца, заклиненные поршневые кольца, неправильно установленные поршневые кольца (верхние и нижние поверхности колец отличаются), чрезмерное натяжение при монтаже, неправильно установленные маслосъемные кольца.

17. Применение неправильного, избыточного или оставшегося незамеченным уплотнительного средства.

Уплотнительные массы являются конструктивными элементами двигателя, которые не выступают на первый план. Уплотнительные средства обеспечивают герметизацию различных систем, как относительно окружающей среды, так и между собой.
Уплотнительные средства часто должны выдерживать высокие нагрузки. Чрезмерное нанесение может вызывать утечки. Остатки уплотнительной массы, выдавливаемые из уплотняемых поверхностей в пространство двигателя, могут загрязнить или забить масляные каналы или водяные контуры. По этой причине некоторые современные уплотнительные массы растворяются, если входят в контакт с маслом.

18. Оставшиеся незамеченные инородные тела на поверхностях уплотнения.

Инородные тела между уплотнением и конструктивным элементом не позволяют правильную посадку. В худшем случае это вызывает перекос в конструктиыных элементах. Однако, намного выше опасность возникновения учечки из-за более низкого удельного давления в плоских уплотнениях.
Если уплотнительное средство наносится на неочищенные поверхности, то в этих местах из-за некачественного соединения могут возникнуть утечки масла. Поэтому перед сборкой необходимо особенно тщательно очистить все важные детали – головка цилиндров, масляный картер, клапанная крышка и т.д.

19. Негерметичные радиальные уплотнительные кольца вала.

Радиальные уплотнительные кольца вала (сальники) состоят из подвергаемой высокой нагрузке втулки из пластмассового компаунда, в которую вложеная пружина из коррозионностойкой высококачественной стали. Эта пружина обеспечивает высокую и длительную эластичность, компенсирует поток в холодном состоянии, износ уплотнительной губки и обеспечивает заданные усилия уплотнения. Для правильного функционирования уплотнительного кольца, пружина должна быть правильно вставлена.
Решающим для герметичности является состояние работающего вала. Если вал имеет биение или следы обкатки на уплотнительной поверхности кольца, то предварительное натяжение уплотнительной пружины недостаточно для герметизации. В этом случае, уплотнения, как правило, не выдерживают повышенного давления масла и могут привести к утечкам.

20. Дефекты поверхности на уплотнительной поверхности

В результате поврежденных уплотнительных поверхностей после затяжки деталей между уплотнителем и уплотнительной поверхностью остаются зазоры, через которые масло или охлаждающая жидкость может вытечь или попасть в камеру сгорания.

21. Дефектный вакуумный насос.

Дефектная мембрана вакуумного насоса может привести к попаданию моторного масла в вакуумную систему. Это моторное масло остается в вакуумной системе и может привести к отказу пристраиваемых деталей.

22. Слишком высокое давление масла.

При слишком высоком давлении масла уплотнительные поверхности не выдерживают это давление.
Возможные причины: загрязнения могут забить масляные трубки и фильтры, дефектный обратный масляный клапан и редукционный клапан могут нарушить циркуляцию масла, забит масляный фильтр или перепускной клапан, использование неподходящих деталей.

Причины низкого и избыточного давления в системе охлаждения

Двигатель внутреннего сгорания нуждается в эффективном отводе тепла во избежание поломок. Эта задача возлагается на его систему охлаждения. Одна из характеристик, позволяющих судить о ее исправности — стабильное, заложенное производителем давление в системе охлаждения двигателя. Смысл и важность этого параметра и будет рассмотрен в рамках данной статьи. В качестве наглядного пособия выступит 8-клапанный полуторалитровый двигатель автомобиля ВАЗ-2110.

  1. Для чего нужно давление
  2. Каким должно быть нормальное давление
  3. Причины повышенного и пониженного давления в системе охлаждения
  4. Почему давление высокое
  5. Почему давление отсутствует
  6. Как обнаружить утечки
Читать еще:  Ваз 21214 инжектор глохнет на холостом ходу на горячем двигателе

Для чего нужно давление

Казалось бы, зачем давление в системе охлаждения, ведь все, что требуется – обеспечить непрерывную циркуляцию антифриза, чтобы он нагревался, проходя через водяную рубашку блока цилиндров, и охлаждался в радиаторе потоком встречного воздуха при движении автомобиля, или воздухом, нагнетаемым вентилятором.

Поначалу так и было: в радиатор заливалась вода, и машина отправлялась в путь. Лет восемьдесят назад не было ничего необычного в стоящей на обочине машине, из-под капота которой валит пар, а фраза «мотор закипел» у всех вызывала понимание. Продолжить движение водитель мог либо залив в радиатор холодной воды, либо дождавшись, когда остынет та, что залита в систему охлаждения.

Причина проста: температура кипения воды при атмосферном давлении, как известно, составляет 100 градусов Цельсия, антифризы, изготавливающиеся на основе спиртов, закипают при температуре 110–115 градусов. Охлаждающая жидкость, проходя через систему охлаждения, не успевает остывать и в результате закипает. Причем чем выше нагрузка на мотор, тем быстрее.

Из школьного курса физики известно, что повышенное давление увеличивает температуру кипения жидкости. Даже небольшого повышения давления достаточно, чтобы «отодвинуть» температуру кипения на 5-10 градусов.

Так, у ВАЗ-2110 давление в исправной системе охлаждения должно составлять порядка 1,2 атм.

Каким должно быть нормальное давление

Давление в системе охлаждения двигателя автомобиля невозможно повышать до бесконечности, поскольку слишком высокое в итоге приведет к разрыву наиболее слабых ее элементов. В норме оно должно составлять 1,2–1,4 атм. По мере нагрева антифриза и достижения им температуры кипения, давление достигает критического значения. В этот момент его необходимо сбросить, чтобы избежать выхода из строя сначала системы охлаждения, а затем заклинивания поршней в цилиндрах, и как следствие, поломки последнего.

Для поддержания давления в допустимых пределах, в крышку расширительного бачка (у ВАЗ-2110), или радиатора монтируется воздушный клапан.

Он имеет простое устройство:

  • внутри корпуса, имеющего одинаковые отверстия сверху и снизу, располагается шарик размером чуть больше отверстий.
  • Вес шарика подбирается таким образом, чтобы при достижении давления 1,5 атм он поднимался, открывая нижнее отверстие и стравливая в атмосферу воздух из системы охлаждения.
  • В то же время пока охлаждающая жидкость не нагрелась, шарик закрывает нижнее отверстие, а верхнее остается открытым, обеспечивая приток атмосферного воздуха и обеспечивая более быстрый нагрев антифриза.

Работоспособность клапана необходимо периодически проверять, особенно на старых автомобилях. Проверка выполняется очень просто: достаточно потрясти крышку расширительного бачка или радиатора и прислушаться. Если шарик гремит – клапан исправен.

Сейчас наиболее распространен вариант крышки, в устройстве которой имеется два клапана (впускной и выпускной). При повышении давления открывается выпускной клапан, и излишки скидываются из системы. При падении же ниже атмосферного, начинает работать впускной.

Часто из-за нарушения работы клапанов система перестает правильно функционировать. При этом даже новая крышка не гарантирует того, что все будет работать как положено. Зачастую владельцы автомобилей жалуются на то, что расширительный бачек лопается. Вызвано это может быть как неправильной работой клапанов крышки, так и браком самого бачка (тонкие стенки).

Момент срабатывания клапанов напрямую зависит от жесткости пружин, поэтому умельцы регулируют время срабатывания путем отрезания от нее лишних витков.

Пренебрегать периодическими проверками не стоит, поскольку в самый неподходящий момент клапан может заклинить или в открытом состоянии, или в закрытом. В первом случае система охлаждения потеряет герметичность, в результате температура кипения антифриза значительно понизится, и мотор попросту «закипит» посреди дороги.

При этом в системе могут образоваться паровоздушные пробки, препятствующие нормальной циркуляции антифриза, а это может вызвать локальный перегрев двигателя и деформацию различных его элементов. Во втором случае в замкнутой системе создается слишком большое давление, которое способно повлечь ее повреждение.

Причины повышенного и пониженного давления в системе охлаждения

Почему давление высокое

Избыточное давление в системе охлаждения двигателя может возникнуть лишь по одной причине: неработоспособный воздушный клапан в крышке радиатора или расширительного бачка заклинило в закрытом состоянии.

Поскольку иного способа удалить лишний воздух не существует, исправность клапана нужно периодически проверять. Теоретически, ремонту эта деталь не подлежит и в случае выхода из строя меняется, как правило, вместе с крышкой. Специалисты рекомендуют во избежание внезапных поломок менять крышку радиатора раз в два года.

Как показывает гаражный опыт, жидкость для очистки карбюраторов неплохо справляется с отложениями, образующимися в клапане, и способна вернуть его к жизни.

Почему давление отсутствует

Когда давления в системе охлаждения нет, это говорит о том, что она не герметична, а установить причину может оказаться сложнее.

  1. Прежде всего, следует опять-таки проверить исправность воздушного клапана.
  2. Если он исправен, необходимо исследовать систему охлаждения двигателя на наличие утечек (об их наличии свидетельствует постоянно убывающий уровень антифриза).

Как обнаружить утечки

Начать можно с визуального осмотра элементов системы охлаждения, однако, если течь не сильная, осмотр вряд ли даст результат. Наиболее надежный способ выявить слабое место – создать повышенное давление и смотреть, откуда польется антифриз. Во избежание ожогов, двигатель автомобиля должен быть холодным.

В гаражных условиях для этого потребуется насос с манометром или компрессор. От расширительного бачка нужно отсоединить патрубок, подходящий к нему сверху, и вместо него подсоединить шланг насоса. Отсоединенный патрубок нужно заткнуть подходящим по диаметру болтом и зафиксировать болт хомутом. После этого можно нагнетать давление и смотреть, откуда появится течь. Кстати, при достижении отметки 1,5 атм должен сработать воздушный клапан.

Допустим, явных утечек охлаждающей жидкости нет, значит, следует проверить пол в салоне, антифриз может уходить через прохудившийся радиатор отопителя. Если в салоне следов охлаждающей жидкости тоже нет, остается осмотреть блок цилиндров и, в последнюю очередь, цилиндры изнутри, вывернув предварительно свечи. Нелишним будет проверить и уровень моторного масла: при внутренних утечках он повышается, поскольку антифриз попадает в картер двигателя.
» alt=»»>

Как работает система вентиляции картера, каких подлостей от нее ждать

Для чего предназначена система вентиляции картера двигателя, понятно из ее названия. Но почему картер необходимо вентилировать? Как показывает практика, точность ответа на этот вопрос сильно зависит от того, приходилось ли раньше тому или иному владельцу сталкиваться с проблемами, которые система вентиляции способна создавать. Если не приходилось, случается, что о том, из-за чего картер нуждается в вентиляции, равно как и том, как она реализуется, автовладелец может и не догадываться.

Все упирается в прорыв газов в картер. Как бы ни были хороши поршневые кольца, полную герметизацию пространства над поршнем, где происходит рабочий процесс, они обеспечить не могут. В результате под действием высокого давления из надпоршневого пространства в картер проникают не только продукты сгорания горючей смеси, но на такте сжатия и некоторая часть самой горючей смеси.

Если прорвавшиеся газы не отводить, давление в картере повышается, в результате чего картерные газы способны выдавить щуп масломера с последующим выбрасыванием масла из двигателя в моторное отделение и вызвать появление течей масла по прокладкам и сальникам. Вентиляция обеспечивает выравнивание давления в картере с атмосферным давлением, что позволяет избежать этих негативных последствий прорыва газов. Это и есть основная причина оснащения любого двигателя вентиляцией картера.

Однако в целую систему PCV (Positive Crankcase Ventilation) вентиляция превратилась благодаря экологии. Картерные газы токсичны. Поэтому широко применявшаяся некогда вентиляция с помощью сапуна с вытяжной трубкой, отводившей газы из картера прямо в атмосферу, примерно с середины 1960-х годов была запрещена сначала в США, а затем и в Западной Европе.

Читать еще:  Что такое фси двигатель и тси

Сейчас сапуны открытого типа можно увидеть лишь на коробках передач, раздаточных коробках и других агрегатах, где их наличие обусловлено способностью воздуха от нагрева во время работы агрегата расширяться, из-за чего увеличивается давление внутри узла, что также чревато выдавливанием уплотнений и появлением течей.

В закрытых системах вентиляции, коими оборудованы все современные моторы, картерные газы отводятся во впускной коллектор, после чего возвращаются в цилиндры двигателя. Закрытые системы не сообщаются с атмосферой, а стало быть, не загрязняют окружающую среду углеводородными соединениями — несгоревшим топливом, продуктами неполного сгорания топлива, масляными парами, которыми насыщены картерные газы, а позволяют им с пользой догореть в цилиндрах.

Но только этим достоинства закрытой вентиляции не ограничиваются. Открытая вентиляция работала за счет разряжения, возникающего у среза вытяжной трубки, однако обязательным условием создания достаточного для интенсивной вентиляции разряжения было движение автомобиля — чем быстрее, тем разряжение выше. Работу закрытых систем обеспечивает разряжение во впускном коллекторе, поэтому вентиляция начинает функционировать сразу же с запуском двигателя. При этом небольшое разряжение создается и в картере, что повышает надежность уплотнений.

В недостатках — усложнение конструкции двигателя. Закрытая система вентиляции требует наличия каналов в блоке и головке цилиндров, а также патрубков и шлангов, по которым циркулируют картерные газы.

В картерных газах присутствует масляная взвесь, которую во избежание высокого расхода моторного масла на угар и загрязнения узлов системы питания, находящихся во впускном тракте, необходимо отделять. Поэтому должен быть предусмотрен маслоотделитель, иногда также называемый маслоуловителем, или маслоотстойником, и каналы, по которым собранное масло возвращается в поддон.

Помимо этого, сообщение картерного пространства с впускным коллектором оказывает влияние на работу двигателя по причине снижения разряжения в коллекторе и добавления к воздуху, поступающему в цилиндры двигателя, того или иного количества картерных газов, которое существенно изменяется в зависимости от режима работы силового агрегата.

Наконец, для нормального функционирования системы вентиляции требуется подвод свежего воздуха в картерное пространство, иначе вместо повышенного давления в картере, с которым вентиляция призвана бороться, возможен обратный эффект — чрезмерное разряжение.

Это общие положения, относящиеся к системам вентиляции, но что касается их исполнения на том или ином двигателе, то тут, как говорится, сколько производителей, столько и вариантов. Кроме того, на исполнение влияет экологический класс силового агрегата, тип двигателя — бензиновый или дизельный, наличие турбонаддува.

Например, маслоотделители могут быть встроенными в двигатель и при этом располагаться внутри клапанной крышки либо в блоке цилиндров, а могут быть выполнены как отдельный узел, расположенный на моторе.

В маслоотделителях используются лабиринтные и инерционные принципы улавливания масла. В первом случае поток картерных газов движется по каналам, резко изменяющим направление. При этом капельки масла оседают на стенках лабиринта, затем объединяются в крупные капли и стекают вниз, где попадают в сливные каналы и возвращаются в поддон двигателя.

В маслоотделителях центробежного типа капельки масла под действием сил инерции отбрасываются и прилипают к стенкам, а далее опять-таки стекают вниз.

Способы согласования работы системы вентиляции с работой двигателя тоже бывают разными. В карбюраторных моторах, двигателях с моновпрыском и нередко при распределенном впрыске вопрос решался с помощью двух каналов подвода картерных газов, один из которых выводили перед дроссельной заслонкой, а второй, заканчивающийся калиброванным отверстием (жиклером), — за ней. При работе на холостом ходу газы поступали по каналу с жиклером за дроссельной заслонкой, но когда по мере открытия дроссельной заслонки и увеличения оборотов коленвала разряжение за заслонкой уменьшалось, но количество газов, прорвавшихся в картер, увеличивалось, из-за чего этот канал переставал справляться со своими обязанностями, в дело вступал первый канал.

Однако наибольшее применение получили клапанные системы регулирования. В них проходное сечение в трубопроводе подвода картерных газов изменяется с помощью клапана в обратной зависимости от разряжения во впускном коллекторе — чем сильнее разряжение, тем меньше проходное сечение клапана и наоборот.

Клапаны PCV в свою очередь бывают золотниковые и мембранные. С точки зрения более точного дозирования количества картерных газов мембранные считаются лучшими, но, впрочем, это не так уж и важно. Важно, что неисправность клапана ведет к нарушению состава горючей смеси. Отсюда начинаются проблемы, которые в эксплуатации способна создавать вентиляция картера.

Клапаны, как известно, могут потерять подвижность или, говоря проще, заклинить в каком-то положении. У мембранных клапанов сомнение вызывает также надежность и долговечность материала мембраны. Заклинить клапан может из-за засорения. В картерных газах присутствуют мелкодисперсные частички сажи и нагара. Чем хуже техническое состояние двигателя, тем их больше. Опять же в мелких капельках масла могут находиться еще более мелкие инородные включения. Чем хуже обслуживается двигатель, тем включений больше. Эта грязь откладывается не только в клапане PCV, но и в калиброванных отверстиях, патрубках системы вентиляции. Опять же патрубки могут прорваться — их материал отнюдь не вечен.

Коварство системы вентиляции заключается в том, что неполадки в ней могут не оказывать сильно заметного влияния, а если и начинают сказываться уменьшением мощности, увеличением расхода топлива, слишком быстрым загрязнением дроссельной заслонки, регулятора холостого хода, замасливанием воздушного фильтра и прочими проблемами, то их списывают на неисправности других систем, прежде всего систем питания и зажигания.

По словам специалистов, некоторые модели двигателей, отвечающих экологическим требованиям от Евро-4 и выше, при неполадках с вентиляцией способны «свалиться» на работу в аварийном режиме, однако и при этом компьютерная диагностика не указывает на истинного виновника. Поэтому чаще всего лишь когда система засорилась настолько, что картерным газам не остается ничего другого, как выдавить щуп масломера и выгнать масло из двигателя, на вентиляцию наконец-то обращают внимание.

Но в зимний период эксплуатации вентиляция способна на настоящие подлости. Ко всему прочему в картерных газах содержатся водяные пары. Откуда им взяться? Из атмосферного воздуха, поступающего в двигатель, разумеется.

Перемещаясь по системе, пар может конденсироваться в «закоулках», после чего при низких температурах окружающей среды влага изменяет агрегатное состояние, превращаясь в лед. Он в свою очередь закупоривает какое-то «узкое место» системы. Картерным газам опять-таки не остается ничего другого, как выдавить щуп масломера и начать выгонять наружу моторное масло. Причем если засорения системы вентиляции нагаром при исправной работе силового агрегата и его своевременном обслуживании качественными расходными материалами можно ждать бесконечно долго, то обмерзание — вопрос очень короткого времени.

Проблема обмерзания известна разработчикам двигателей, о чем свидетельствует наличие встроенных в систему вентиляции обогревов. На приведенной выше схеме системы вентиляции дизелей 1.6 и 2.0 TDI Volkswagen функцию обогрева выполняет нагревательный резистор. К сожалению, нередко этими обогревами оборудуется вентиляция картера только тех моторов, которые предназначены для автомобилей, продающихся в странах с холодным климатом, — так называемое северное исполнение. Если подогрев не предусмотрен или он неисправен — жди сюрпризов.

И опять-таки, к сожалению, не во всех инструкциях по эксплуатации есть указания по уходу за системой вентиляции картера. Он должен заключаться в периодической очистке полостей вентиляционных шлангов, маслоотделителя, калиброванных отверстий и других узких мест в системе.

При этом обслуживание системы в существующих указаниях по уходу рекомендуется проводить одновременно с очередной заменой масла в двигателе либо через одну замену. Однако как часто подобные рекомендации используются на СТО, в гаражах, владельцами, самостоятельно обслуживающими свои машины? Как в такой ситуации говорят философы, вероятность есть всегда, в данном случае она равна нулю.

Сергей БОЯРСКИХ
Фото автора
ABW.BY

Благодарим за помощь в организации фотосъемки Ресурсный центр на базе автомеханического колледжа имени академика М.С.Высоцкого

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector