Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка и настройка тепловых реле и расцепителей автоматических выключателей

Регулировка и настройка тепловых реле и расцепителей автоматических выключателей

Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке — примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них — для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая — для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 — 40 мин под номинальным током).

Рис. 1. Защитные характеристики теплового реле: 1 — зона срабатывания из холодного состояния, 2 — зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 — 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.

Рис. 2. Принципиальная схема установки для проверки и настройки тепловых реле

Тепловое реле проверяют следующим образом. Ручку автотрансформатора устанавливают в нулевое положение и подают напряжение, затем поворотом ручки устанавливают ток нагрузки I = 1,5 I ном и секундомером контролируют время срабатывания реле (в момент погасания лампы HL). Операцию повторяют для остальных нагревательных элементов реле.

Если время срабатывания хотя бы одного из них не соответствует норме, тепловое реле следует отрегулировать. Регулировка производится специальным регулировочным винтом. При этом добиваются, чтобы при токе I = 1,5 I ном время срабатывания составляло 145 — 150 с.

Отрегулированное тепловое реле следует настроить на номинальный ток двигателя и температуру окружающей среды. Это делают в том случае, когда номинальный ток нагревательного элемента отличается от номинального тока электродвигателя (на практике в основном так и бывает) и когда температура окружающего воздуха ниже номинальной ( + 40° С) более чем на 10° С. Токовую уставку реле можно регулировать в пределах 0,75 — 1,25 номинального тока нагревателя. Настройка производится в следующей последовательности.

1. Определяют поправку (E1) реле на номинальный ток двигателя без температурной компенсации ±Е1 = ( I ном- I о)/С I о,

где Iном — номинальный ток двигателя, I о — ток нулевой уставки реле, С — цена деления эксцентрика (С = 0,05 для открытых пускателей и С = 0,055 для защищенных).

2. Определяют поправку на температуру окружающей среды E2=(t — 30)/10,

где t — температура окружающей среды, °С.

3. Определяют суммарную поправку ±Е=(±Е1) + (-Е2).

При дробной величине Е ее следует округлить до целого в большую или меньшую сторону в зависимости от характера нагрузки.

4. На полученное значение поправки переводят эксцентрик теплового реле.

Тщательно отрегулированные тепловые реле типа ТРН и ТРП имеют защитные характеристики, мало отличающиеся от средних. Однако такие реле не обеспечивают защиту электродвигателя в случае заклинивания, а также электродвигателей, не запустившихся при обрыве фазы.

Помимо магнитных пускателей c тепловыми реле в электроприводах для нечастых пусков их и защиты электрических цепей от коротких замыканий используются автоматические выключатели. При наличии комбинированных расцепителей такие аппараты защищают электроприемники также от перегрузки. Характерные параметры автоматических выключателей: минимальный ток срабатывания — (1,1. 1,6) I ном, уставка электромагнитного расцепителя — (3 — 15) I ном, время срабатывания при токе I = 16 I ном — менее 1 с.

Испытание тепловых элементов расцепителей автоматов проводят аналогично проверке тепловых реле. Испытание выполняется током 2 I ном при температуре окружающей среды +25° С. Время срабатывания элемента (35 — 100 с) должно находиться в пределах, указанных в заводской документации или найденных по защитной характеристике каждого автомата. Настройка тепловых элементов заключается в установке при помощи винтов биметаллических пластинок на одинаковое время срабатывания при одинаковом токе.

Для проверки электромагнитного расцепителя автоматического выключателя через него от нагрузочного устройства пропускают ток на 15% меньше тока уставки (тока отсечки). Затем плавно увеличивают испытательный ток до отключения аппарата. При этом максимальное значение тока срабатывания не должно превышать ток уставки электромагнитного расцепителя более чем на 15 %. Испытание проводится не более 5 с во избежание недопустимого перегрева контактов выключателя.

Для проверки расцепителя минимального напряжения на зажимы автоматического выключателя подают напряжение U = 0,8Uном и включают аппарат, затем напряжение плавно понижают до момента срабатывания Uc = (0,35 — 0,7)Uном.

В последнее время в промышленности стали использовать полупроводниковые аппараты защиты и управления. Вместо обычных магнитных пускателей, например, применяют специальные тиристорные блоки. Техническое обслуживание таких устройств заключается в периодических внешних осмотрах и проверке работоспособности.

Читать еще:  Шкив механизма ручного запуска двигателя пластик

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

2.2. Выбор магнитного пускателя с тепловым реле для каждого ад.

Электромагнитные пускатели предназначены для управления АД и трехфазными премниками электрического тока, в том числе :

дистанционного пуска, непосредственным подключением к сети,

реверсирования трехфазных асинхронных двигателей

при наличии тепловых реле осуществляют защиту управляемых электродвигателей от:

перегрузок недопустимой продолжительности

и от токов, возникающих при обрыве одной из фаз.

Магнитный пускатель — это модифицированный контактор.

В отличие от контактора, магнитный пускатель комплектуется дополнительным оборудованием:

дополнительной контактной группой или

автоматом для пуска электродвигателя

Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию:

переключения направления вращения его ротора (т. н. реверсивная схема), путем изменения порядка следования фаз для чего в пускатель встраивается второй контактор.

переключения обмоток трехфазного двигателя со «звезды» на «треугольник» производится для уменьшения пускового тока двигателя.

Реверсивный магнитный пускатель представляет собой два трёхполюсных контактора, укреплённых на общем основании и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов.

Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; с встроенной тепловой защитой электродвигателя от перегрузки и без нее.

Магнитные пускатели выбирают по следующим характеристикам:

номинальное напряжение силовых контактов Uн. ≥ U;

номинальное напряжение и ток катушки Uн.к = U ц.упр ; Iн.авт ≥ IР ;

габарит Рп ≥ Р н.дв или Iн.м.п ≥ I н.дв ;

наличие тепловых реле;

условия окружающей среды;

по количество блок-контактов.

Пример выбора магнитные пускатели и тепловые реле для управления и защиты электродвигателей «Потребителя 1».

Принимая во внимание, что U = 380 В, Рн = 7.5 кВт, Iн = 15,14 А, выбираем магнитный пускатель типа ПМЛ-222002 (второго габарита нереверсивный, с тепловым реле, степень защиты IP54 c кнопками «Пуск» и «Стоп»).

Номинальный ток магнитного пускателя, равный 25 А, больше номинального тока двигателя 15.14 А, что выполняет условия I н.м.п = >I н.

Выбор электротеплового реле и плавкой вставки на линию от РП1 до СУ1:

IР – рабочий ток в линии = 15,14 А.

КС.О, — коэффициент кратности срабатывания отсечки = 7.

Пусковой ток I пуск = 15,14*7 =105,98 А

Длительно допустимый ток Iдд = 28 А .

Исходя из номинального тока, выбираем тепловое реле РТЛ-1021 с возможностью регулирования диапазона тока несрабатывания в интервале от 13А до 19А.

2.3. Выбор плавкого предохранителя

Плавкие предохранители предназначены для защиты электрических сетей и приемников электроэнергии от токов короткого замыкания. Описание типов и примеры конструкции предохранителей с плавкими вставками приводятся в специальной литературе [13, табл. 8.2].

Выбрать предохранитель − это значит выбрать патрон предохранителя и плавкую вставку в этот патрон.

Тип патрона предохранителя определен конструкцией выбранного шкафа, номинальным напряжением Uн.п и номинальным током патрона Iн.п. Калибровочная (чувствительная) часть предохранителя называется плавкой вставкой. В патрон предохранителя одного типа можно установить плавкие вставки разного номинального тока плавкой вставки Iн.пл.вст, перечень допустимых номинальных токов плавкой вставки для каждого типа патрона разный.

Для правильно выбранного предохранителя должны соблюдаться условия

U н.п U, I н.п Ip , I н.пл. I р.пл. ,

где: U н.п − рабочее напряжение;

I н.пл − номинальный ток плавкой вставки;

I р − рабочий ток защищаемой линии;

I р.пл. расчетное значение тока плавкой вставки.

Для линии с одним АД с короткозамкнутым ротором

I р.пл. = I пуск / ,

где  − коэффициент, зависящий от условий работы электродвигателя.

Коэффициент  = 2,5 при нечастых и легких пусках и

 = 1,6 − 2 − при особо тяжелых условиях пуска.

Для сетей, питающих несколько электродвигателей, ток плавкой вставки выбирают исходя из условие.

КО − коэффициент одновременности работы группы двигателей;

n − общее число электродвигателей;

I pi − рабочий ток i-го двигателя.

Если в цепи отсутствует пусковой ток, то

,

Где К З = 1,1 – 1,2 − коэффициент запаса.

Условие селективности требует, чтобы номинальный ток плавкой вставки каждого последующего предохранителя (от потребителя к источнику питания) был на одну-две ступени больше Iпл.вст. предыдущего предохранителя.

Пример выбора плавкой вставки для СУ1.

Расчетный ток плавкой вставки I р.пл. = I пуск / = 105,98 /2,5 = 42,4 А .

Коэффициент  = 2,5 при нечастых и легких пусках и  = 1,6 − 2 − при особо тяжелых условиях пуска.

Определяющим для выбора типа патрона и номинала калибровочной части плавкого предохранителя, исходя из условия I н.пл.  I р.пл., будет расчетный ток плавкой вставки I р.пл. = 42,4 А

Выбираем плавкую вставку предохранителя на ближайшее большое стандартное значение Iн.пл. = 45 А. Тип патрона предохранителя допускающего применение такой плавкой вставки НПН-60м. Для него Uн.п= 600 В, Iн.пp.= 60 А.

Плавкая вставка защищает от токов короткого замыкания выполняя условие: Iпв/Iдд

Тепловое реле для электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Тепловое реле двигателя – аппарат, предназначенный для его защиты от перегрузок, приводящих к перегреву обмоток и, как следствие, к преждевременному старению или разрушению изоляции. А двигатели — устройства очень дорогие, часто устанавливаются в ответственных узлах технологической схемы. Работоспособность их и возможность профилактического своевременного ремонта и обслуживания очень важны. Вот поэтому выбор теплового реле очень важный вопрос при сборке схемы питания и защиты этих электроаппаратов.

Читать еще:  Датчики давления масла в двигателе т4 дизель

Как выбрать тепловое реле? Правильнее всего выполнять подбор теплового реле по мощности двигателя, а если быть точнее, то по номинальному току обмоток. Каждый двигатель имеет заводскую маркировку или паспорт, в которых указаны его характеристики. В примере приведена табличка на двигатель мощностью 0,55 кВт, с номинальными токами 2,7/1,6 А и номинальным напряжением 220/380 В при соединении обмоток, соответственно, по схемам Δ/Y.

Если табличка частично повреждена, но остались некоторые данные, то номинальный ток по разным схемам соединения обмоток можно вычислить по формуле:

Например, номинальный ток двигателя для обмотки, соединенной в звезду составит:

Рассматривая условия выбора теплового реле, следует обратить внимание на такие его основные параметры, как:

— номинальное напряжение и род тока, которые должны соответствовать подключаемой сети;
— номинальный ток реле;
— диапазон токовых уставок, настройка которых как раз выполняется для обеспечения тепловой защиты;
— класс расцепления от 5 до 40, регламентируемый ГОСТ Р 50030.4.1-2012, который определяет время срабатывания реле при одних и тех же нормируемых кратностях перегрузок. Реле с высоким классом (20,30) предназначены для тяжелых условий пуска двигателей. Расчет и выбор тепловых реле с учетом класса расцепления позволяет предопределить время срабатывания теплового реле с отстройкой от времени пуска двигателя.

Как видно, какой — то специфический расчет теплового реле не требуется. Зная номинальный ток двигателя, достаточно подобрать реле по соответствующему номинальному току и диапазонам регулировок токовых уставок. Далее у реле необходимо выставить уставку, равную номинальному току двигателя. Этот ток называется, по-другому, «током несрабатывания», так как при длительном протекании тока данной величины устройство не сработает. В соответствии с ГОСТ 16308-84 и заводскими инструкциями тепловое реле при температуре окружающего воздуха около (25±10)°С в установившемся тепловом состоянии сработает в течение 20 мин при токе, равном 1,2 токовой уставки, то есть при перегрузке 20 %. И чем выше ток перегрузки, тем быстрее это произойдет. Необходимая токовая уставка устанавливается специальным регулятором.

Также можно сделать подбор теплового реле по мощности двигателя для конкретного типоисполнения реле с соответствующими токовыми уставками по таблицам и рекомендациям, приведенным производителями в инструкциях или в технической информации. Линейки выпускаемых тепловых реле достаточно обширны у разных производителей. Подобрать подходящий защитный аппарат под свои нужды не составит труда. Таблица ниже приведена для реле типа РТЛ.

Еще в заводской документации можно найти время — токовые характеристики, представленные в виде нелинейных графиков.

Зная мощность и ток, потребляемые двигателем, используя приведенные производителями графики и меняя токовую уставку, можно при необходимости корректировать время срабатывания. Коррекцию необходимо производить для исключения ложных срабатываний, обусловленных зачастую особенностями рабочих режимов работы двигателей.


Стоит при выборе также учитывать, что конструктивно тепловые реле бывают электромеханические или электронные. Электронные реле имеют более сложное устройство за счет наличия электронных схем, получающих информацию от встроенных измерителей.

Монтироваться реле могут непосредственно на контакты пускателя или контактора, либо устанавливаться индивидуально отдельностоящими с применением рекомендованных производителем клеммников.

Тепловое реле для электродвигателя схема подключения

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Читать еще:  Был стук в двигатели потом пропал

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector