Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Урок 2 Общее устройство двигателя внутреннего сгорания

Урок 2 Общее устройство двигателя внутреннего сгорания

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

Описание презентации по отдельным слайдам:

Общее устройство двигателя внутреннего сгорания

ДВИГАТЕЛЬ — энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели, в которых механическая работа создается в результате преобразования тепловой энергии, называются тепловыми. Тепловая энергия получается при сжигании какого-либо топлива. Тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию, называется поршневым двигателем внутреннего сгорания.

Двигатели внутреннего сгорания различаются: Количеством рабочих тактов: 2-х тактные и 4-х тактные. 2. Подачей топлива: самотеком и принудительный забор топливо за счет бензонасоса. 3. Наличие клапанов: с клапанами и без, их роль выполняет поршень. 4. Рабочим объемом, выраженным в см.куб. 5. По типу охлаждения: воздушное и водяное.

Двигатель внутреннего сгорания состоят из механизмов и систем, выполняющих заданные им функции и взаимодействующих между собой. Основными частями такого двигателя являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система. Кривошипно-шатунный механизм преобразует прямолинейное возвратно — поступательное движение поршня во вращательное движение коленчатого вала .

Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания. Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания. Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания. Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма. Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя.

Двигатель состоит из блока цилиндров и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно — шатунный механизм. Сверху цилиндр накрыт головкой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня. Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение — нижняя мертвая точка (НМТ) . Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S=2R.

Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh. Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа: Vа=Vс+Vh. Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах): Vh=пД^3*S/4, где Д — диаметр цилиндра. Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле: Vр=(пД^2*S)/4*i, где i — число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность.

УСТРОЙСТВО ОДНОЦИЛИНДРОВОГО ДВИГАТЕЛЯ

Действие поршневого двигателя внутреннего сгорания основано на использовании работы теплового расширения нагретых газов во время движения поршня от ВМТ к НМТ. Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и давления. Т. к .давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы — расширяться, совершая полезную работу. Вот здесь-то и дает о себе знать тепловое расширение газов, здесь и заключается его технологическая функция: давление на поршень. Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан и топливо через форсунку или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через впускной клапан. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива.

ПАРАМЕТРЫ РАБОТЫ ДВИГАТЕЛЯ

ПАРАМЕТРЫ РАБОТЫ ДВИГАТЕЛЯ ВМТ – крайнее верхнее положение поршня НМТ – крайнее нижнее положение поршня S — ход поршня (расстояние от НМТ до ВМТ) Цикл – совокупность процессов, которые непрерывно повторяются в цилиндре Такт – часть рабочего цикла, происходящая за 1 ход поршня

РАБОЧИЙ ЦИКЛ КАРБЮРАТОРНОГО ДВИГАТЕЛЯ 1 такт впускной клапан Впуск Гс 3 такт Рабочий ход 2 такт Сжатие Рс 4 такт Выпуск отр.газов Выпуск отр.газов

Все о двигателе внутреннего сгорания: принцип работы, виды ДВС, устройство

Двигатель — это сердце каждого автомобиля. Тем не менее перед тем как превратиться в сверхсовременное устройство, работающее на принципе внутреннего сгорания, ему пришлось претерпеть немало изменений.

История создания ДВС

Начать нужно с XVIII века. Именно тогда предпринимаются первые попытки создать двигатель, работающий благодаря внутреннему сгоранию. Стоит сказать, что в то время над процессом преобразования топливной энергии в механическую работало множество учёных.

Несмотря на видимый ажиотаж пальму первенства получили браться из Франции со звучной фамилией Ньепс. Именно они придумали пирэолофор. В качестве топлива использовалась обычная угольная пыль. Устройство имело крайне малый КПД. Мало того, оно скорее считается амбициозным проектом, нежели реально действующим прототипом.

Тем не менее первая действующая концепция двигателя на базе процесса внутреннего сгорания принадлежит именно вышеупомянутым братьям. Коммерческий же успех принадлежит совсем другому человеку. Бельгийцу Этьену Ленуар. Именно он в 1858 придумал и создал ДВС.

В двигателе, осуществляющем процесс внутреннего сгорания, в качестве топлива применялся угольный газ. Казалось, новая эпоха, давшая небывалый толчок автомобилестроению, началась, но не тут-то было. Учёный забыл учесть потребность деталей в смазке. Как результат устройство работало очень недолго. Нормальной системы охлаждения тоже не было.

К счастью, учёный не остановился на достигнутом. На доработку и усовершенствование двигателя, работающего за счёт внутреннего сгорания, понадобилось 15 лет. Но труд окупил себя. В 1863 году Ленуар презентует ДВС с недостающими ранее системами. В качестве топлива уже используется керосин.

Устройство не отличалось крайней совершенностью. Но на этом история создания двигателя, работающего за счёт внутреннего сгорания, не закончилась. Главная проблема крылась в слишком быстром перегреве. К тому же смазка и топливо использовались крайне неэффективно. Тем не менее уже тогда ДВС применялись на трёхколёсных авто.

Один год понадобился мировым учёным, чтобы Зигфрид Маркус создал свой вариант двигателя, работающего от внутреннего сгорания определённых веществ. В ДВС 1864 года впервые использовалась нефть.

Транспортное средство с двигателем Маркуса, работающим от внутреннего сгорания нефтепродуктов, могло развивать скорость до 10 миль в час. В то время это был настоящий прорыв.

Дальше было ещё немало учёных, пытающихся создать действительно эффективный двигатель, работающий благодаря внутреннему сгоранию. Но первое технически правильное и эффективное устройство было создано. Николасом Отто. Оно эффективно преобразовывало энергию топлива и имело весьма неплохой для своих параметров КПД,

Читать еще:  Двигатель 12в для шуруповерта своими руками

После открытия Отто эволюция ДВС начала распространяться как снежный ком. В 83 Деламар создаёт чертёж двигателя внутреннего сгорания, работающего на газу. Вот только проект так и не смогли тогда воплотить в жизнь.

Спустя три года на весь мир гремит громкое имя Готтлиб Даймлер. Именно ему принадлежит авторство первого, работающего двигателя за счёт внутреннего сгорания газа. Цилиндры и карбюратор располагались в конструкции вертикально, что дало неплохой прирост производительности. Мало того, машины, оснащённые данными устройствами, смогли развивать приличную по тем временам скорость.

Ещё одно громкое имя того времени — Карл Бенц. Он первый создал предприятие, делающее автомобили. В 1903 предприятия Бенца и Даймлера объединяются. Новая эра в автомобилестроении начинается.

В этом же году своё легендарное предприятие основывает Генри Форд, чтобы спустя 5 лет выпустить первый серийный автомобиль и перевернуть мир. Заводы этого великого предпринимателя расползлись по миру моментально. Даже в Советском Союзе они были.

ДВС — устройство, принцип работы, характеристики

Ключевым элементом двигателя, работающего за счёт внутреннего сгорания нефтепродуктов, является поршень. По внешнему виду он напоминает пустотелый стакан средних размеров.

Голова поршня смотрит вверх. Юбка или направляющая часть имеет неглубокие канавки. В этих отверстиях фиксируются поршневые кольца. Эти элементы обеспечивают герметичность всей системы. Именно в ней при работе моментально сгорает бензиново-воздушная смесь.

Кольца играют роль уплотнителей. Нижнее кольцо является маслосъемным, а верхнее — компрессионным. Именно последнее отвечает за то, чтобы смесь имела высокую степень сжатия.

Принцип работы

Топливная смесь попадает внутрь системы из карбюратора (в некоторых двигателях из инжектора). Сжатие происходит при движении поршнем вверх. За поджигание отвечает свеча.

При вырабатывании газа поршень уходит резко вверх. Как результат тепловая энергия переходит в электрическую. Движение поршня передаётся валу. Данный процесс становится возможным благодаря уникальной конструкции юбки поршня. В ней установлен палец с верхней частью в виде шатуна.

Шарнир фиксируется на кривошипе, последний является частью коленчатого вала. Коленвал вращается за счёт опорных подшипников. Они базируются в картере двигателя, работающего на принципе внутреннего сгорания.

Поршень воздействует на шатун, за счёт этого начинает двигаться коленвал. Энергия движения уходит по направлению к трансмиссии. Лишь пройдя этот перевалочный пункт, она через сложную систему шестерёнок приводит в движение колеса.

У поршня есть две мёртвые точки. Так называются два крайних положения, в которых на долю секунды задерживается элемент. Расстояние между двумя точками называется ходом.

Характеристики

Суммарный объём цилиндров двигателя, работающего за счёт внутреннего сгорания топлива, измеряется в литрах. Важным показателем является степень сжатия. У устройств, функционирующих за счёт карбюратора, данный показатель находится в диапазоне от 6 до 14 СС, для дизеля данный показатель порядка 16—30.

Объём и сила сжатия определяют мощь двигателя, который функционирует за счёт системы внутреннего сгорания топливной жидкости. Совокупность этих параметров также определяет экономичность устройства.

Одноцилиндровые двигатели работают неравномерно. Резко ускоряется ход поршня при взрывном сгорании. Как только, он приближается к НМТ — происходит его замедление. Диск-маховик позволяет частично погасить данную неравномерность. Как результат момент вращение стабилизируется.

Четыре такта

Работу двигателя можно поделить на четыре такта, если он функционирует за счёт внутреннего сгорания топливно-жидкостной смеси. Моторы бывают как двухтактными, так и четырёхтактными. Последние используются гораздо чаще, по крайней мере, на легковых авто.

Поршень четыре раза проходит по цилиндру. Начало такт берёт в верхней точке, а конец движения происходит в нижней. По времени каждый такт занимает равный промежуток. Когда поршень на первом такте двигается вниз, он всасывает внутрь цилиндра смесь.

На первом такте клапан впуска является открытым. В большинстве двигателей таких клапанов несколько. Мало того, их количество и размер влияют на мощность автомобиля. В некоторых моторах, когда водитель давит на газ, срок открытия выпускных клапанов продлевается.

Количество топлива, попадающего в систему, увеличивается. Мощность двигателя, работающего от внутреннего сгорания, в результате растёт. Как результат скорость, с которой движется машина, становится больше.

На втором такте работы двигателя с системой внутреннего сгорания происходит сжатие. Поршень достигает нижней точки, и начинает подниматься. При этом смесь, находящаяся в камере, сжимается. В процессе клапаны полностью закрыты.

Компрессия внутри камеры проверяется посредством специальных приборов. Кстати, этот показатель даёт возможность сделать вывод, насколько износ двигателя велик. При необходимости на основе полученных данных можно провести более подробную диагностику.

На третьем такте поршень начинает движение с верхней точки. Данный такт называется рабочим. Что и не удивительно. Ведь именно благодаря этому этапу начинается движение транспортного средства. Именно здесь подключается система зажигания, и смесь внутри воспламеняется.

Интересно, что при возгорании происходит микровзрыв. Из-за него топливо резко увеличивается в объёмах, и поршень с большой скоростью опускается вниз. Клапаны при этом всё время находятся в закрытом состоянии.

Четвёртый такт является последним. Он завершает проделанную двигателем, функционирующим по схеме внутреннего сгорания, работу. Когда цилиндр достигает нижней точки, клапан открывается и происходит выпуск.

После того, как четвёртый такт подходит к концу, всё возвращается на круги своя. Как результат, снова четыре этапа, и так до тех пор, пока двигатель внутреннего сгорания будет работать.

Не вся энергия, вырабатываемая за 4 такта, используется для того, чтобы сдвинуть транспортное средство с места. Дело в том, что она также нужна для того, чтобы раскрутить маховик. Кстати, именно он за счёт своей инерции вращает вал.

Виды двигателей

Как говорилось выше, автомобильная отрасль постоянно развивается. Неудивительно, что появляются всё новые и новые технологии, позволяющие с большей эффективностью превращать тепловую энергию в механическую. На данный момент можно выделить пять типов двигателей, функционирующих на базе системы внутреннего сгорания:

  • дизельный,
  • роторно-поршневой,
  • газовый,
  • газодизельный,
  • бензиновый.

Каждый из вышеперечисленных видов является яркой иллюстрацией развития автомобильной индустрии. Возьмём, к примеру, дизельный и бензиновый двигатели, которые построены на основе системы внутреннего сгорания топлива.

В бензиновом варианте топливо проходит через специальную систему, чтобы через распределительные форсунки попасть в карбюратор. В некоторых схемах впрыск проводится прямо в выпускной коллектор.

На данный момент карбюраторная схема считается слегка устаревшей. Всё большую популярность набирает инжекторная конструкция, отвечающая за подачу топлива в двигателе с внутренним сгоранием.

Газовые двигатели с системами внутреннего сгорания стали неким ответом обществу на постоянно растущие требования к экономии. К тому же данная технология позволяет защитить окружающую среду от разнообразных выбросов.

Итоги

Двигатели с конструкцией, работающей за счёт внутреннего сгорания топлива, до сих пор самые популярные. Подобная тенденция легко объясняется почти что 150-летней эволюцией. Безусловно, современные электрические аналоги практически ничем от своих конкурентов не отличаются, но кто знает, возможно, очередной технический прорыв снова всё поменяет.

Двигатель внутреннего сгорания

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

Читать еще:  Что означает если горит значок двигателя

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы.

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Читать еще:  Что такое дизельный двигатель с аккумуляторным впрыском

Прорывная технология или утопия: линейный генератор + свободнопоршневой двигатель

Линейный генератор со свободным поршнем, который использует сгорание топлива для непосредственной выработки электроэнергии без использования приводного вала, может обеспечить расширение возможностей электромобилей. Он намного меньше и эффективнее, чем обычный двигатель внутреннего сгорания. Несколько научных групп, в том числе научно-исследовательская группа Toyota, исследуют эту интригующую технологию.

Двигатели внутреннего сгорания, скорее всего, сохранятся в течение довольно долгого времени и будут использоваться в качестве компонента подключаемых гибридных автомобилей и электромобилей с увеличенным запасом хода. Все это, несмотря на большое количество совершенных электромобилей.

При этом может быть установлен небольшой бортовой высокоэффективный электрогенератор, чтобы аккумулятор можно было заряжать во время поездки — так называемый «расширитель запаса хода» или, проще говоря, гибридно-электрическая трансмиссия. Это помогает повысить эффективность, а также надежность системы.

Линейный генератор со свободнопоршневым двигателем — это своеобразный преобразователь энергии, который может генерировать электрическую энергию, и рассматривается как потенциальная технология для решения проблемы ограниченного пробега электромобилей. Избавившись от кривошипно-шатунного механизма, такой двигатель получает ряд преимуществ в виде переменной степени сжатия, компактных размеров и пр.

Опытный образец — двухтактный линейный генератор

Оптимальное решение преобразования энергии нашел профессор Питер Ван Блариган. Он оснастил поршень свободнопоршневого двигателя кольцевыми магнитами из неодимового сплава, а на внешней стенке цилиндра-статора поместил обмотку. Таким образом, появление сверхмощных магнитов из неодимового сплава позволило обойтись без механической связи поршня с трансмиссией, создав генератор электричества. Ван Блариган построил опытный образец — двухтактный линейный генератор мощностью 40 кВт. Термический КПД двигателя-генератора, работающего на пропане достигал 56%. Причем, этот двигатель мог работать не только на пропане, но и на бензине, водороде, дизельном топливе и спирте.

Высокий КПД такого двигателя обеспечивается за счет снижения паразитных внутренних потерь. В конструкции отсутствуют вращающиеся массы, которые имеют значительную инерцию. На поршни не действуют боковые силы, которые обычно прижимают их к стенкам цилиндра, благодаря чему уменьшается трение. Подшипники коленчатого вала и шатунов, поршневые пальцы, распределительный вал, кулачки и клапаны — все те узлы классического двигателя, в которых существует трение, — отсутствуют. Кроме того, на каждый цикл работы двигателя со свободным поршнем приходится два рабочих такта. При этом свободнопоршневой двигатель гораздо компактнее, проще и надежнее обычного ДВС. Эффективность преобразования энергии может быть увеличена за счет оптимизации степени сжатия. Кроме того, ключевые характеристики двигателя со свободным поршнем, такие как выходная мощность и эффективность системы могут быть улучшены за счет управления положением поршня.

Все гениальное…

Свободнопоршневой двигатель устраняет всю механическую трансмиссию обычного двигателя, позволяя разрабатывать эффективные циклы сгорания и уменьшая количество деталей и стоимость двигателя.

Принцип действия генератора со свободным поршнем, производящим электроэнергию непосредственно из линейного движения поршня без промежуточных механических звеньев достаточно прост. Двухцилиндровый двигатель линейного генератора со свободным поршнем выполнен по оппозитной схеме и имеет поршневую группу, состоящую из двух поршней, соединенных жестким штоком. Циклически повторяющееся давление газов в процессе сгорания топлива сообщает поршневой группе возвратно-поступательное движение. В плоскости симметрии штока, между поршнями на штоке закреплена подвижная магнитная система. Она размещается внутри неподвижного статора с системой обмоток. При возвратно-поступательном движении штока с закрепленной на нем магнитной системой внутри статора вследствие взаимодействия их магнитных полей происходит возникновение электродвижущей силы в обмотках статора.

Кроме того, электрическая машина, работая в режиме двигателя, обеспечивает старт двигателя внутреннего сгорания. Электронная система управления должна осуществлять контроль движения поршней для обеспечения оптимального термодинамического цикла, а также позиционирование поршней, предотвращая их соударение с головками цилиндров.

Преимущества этого принципа преобразования энергии значительны:

  • уменьшение числа движущихся деталей за счет исключения кривошипно-шатунного механизма до одного поршневого узла;
  • повышение жесткости и механической надежности конструкции двигателя;
  • повышение ресурса и механического КПД двигателя вследствие отсутствия шатунов, что приводит к исключению боковых сил, действующих на зеркало цилиндра и уменьшению трения в цилиндропоршневой группе;
  • исключение стартера для запуска ДВС, так как электрический генератор может работать и как линейный электродвигатель;
  • возможность динамического изменения степени сжатия в каждом такте не механическими способами, а корректировкой параметров электронной системы управления;
  • возможность работы с различными видами топлива (бензин, природный газ, водород, биогаз, биотопливо) посредством электронной настройки системы управления;
  • реализация оптимальных режимов сгорания топлива, в том числе и гомогенное воспламенение бедных смесей — потенциал для снижения вредных выбросов;
  • снижение расходов на производство.

Проблемы сложные, но решаемые

Серийному выпуску подобных двигателей-генераторов мешает несколько проблем, самая главная из которых — создание системы управления. Дело в том, что в обычном ДВС верхняя мертвая точка траектории поршня задается геометрией кривошипно-шатунного механизма, а в линейном она зависит от степени сжатия и скорости сгорания топливовоздушной смеси. То есть, поршень тормозит, создавая давление в камере. Как следствие, длительность тактов и верхняя мертвая точка могут изменяться. А это значит, что при неточной работе форсунки поршень либо остановится, либо ударится в стенку. Как следствие, свободные поршни нуждаются в специальной системе, которая бы нивелировала разницу в процессе сгорания топлива в каждом из рабочих циклов. Ван Блариган считает, что ключ к решению проблемы управления в контроле за положением и движением поршня через внешний статор. Компьютерное управление вполне может справиться с такой задачей. А тормозить поршень можно с помощью тех же электромагнитов.

Полноценный прототип генератора с готовой системой управления обещан с КПД – 50%.

Такой двигатель отлично подходит для автомобиля с элетротрансмиссией. ДВС в таком автомобиле нужен только для зарядки аккумулятора, при пуске он должен сразу выходить на режим максимальной мощности либо максимального момента. Это значит, что нет необходимости обеспечивать его работу на переходных режимах, ту самую, ради которой создаются многоклапанные двигатели, впускные коллекторы переменной длины, управление фазами газораспределения, двойной наддув и прочее. Двигатель, работающий в узком диапазоне оборотов намного проще и, значит, дешевле и надежнее.

Управление решается контроллером итеративного обучения

Важной проблемой является стратегия управления возвратно-поступательным движением свободного поршня для обеспечения стабильной работы системы. При отсутствии коленчатого вала несколько поршней должны каким-то образом точно позиционироваться и синхронизироваться. Если движение каждого поршня не контролируется точно, степень сжатия будет меняться, что снижает эффективность работы. Проблема управления была разделена на несколько этапов. Контроллер итеративного обучения был разработан для управления верхним положением, а управление нижним положением было основано на оценке состояний сгорания, при этом управление ходом было основано на конечном автомате. Была решена сложная инженерная задача. Комбинированная имитационная модель, включающая колебания цикла сгорания, была представлена и подтверждена прототипом, а также проанализирована эффективность стратегии управления. Результаты показали, что система обеспечивает стабильную работу, а возвратно-поступательное движение свободного поршня хорошо контролируется.

Задача создания силовой установки, в составе линейного генератора и двигателя внутреннего сгорания со свободным поршнем, представляет собой сложную техническую задачу, решение которой лежит на стыке физики процесса сгорания топлива, теории систем управления быстропротекающими процессами в реальном времени, быстродействующей силовой электроники и техники линейных электроприводов. Однако, к счастью все эти технологии можно считать на сегодняшний день достаточно глубоко разработанными и требуется лишь решить проблему синергетического синтеза систем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector