Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип действия электродвигателя

Принцип действия электродвигателя

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями. Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла. Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.

Принцип работы электродвигателя — основные функциональные элементы

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.

Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа. Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.

Принцип работы электродвигателя — разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%. Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом, они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ. К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

Принцип работы двигателя постоянного тока, характеристики электродвигателя, как устроен, основные отличия

Большая часть современных электрических приводов работает использует переменный ток и работает в асинхронном режиме. Хотя, нельзя сказать, что моторы постоянного тока востребованы меньше. Чтобы понять, чем отличается один от другого электродвигатель, как устроен каждый из них, нужно вспомнить, что входит в понятие «ток».

Отличие тока переменного от постоянного

Прежде всего, вспомним, что включает понятие «электрический ток» и какие его виды существуют. Это сделать легко, потому что все учились в школе и еще помнят о том, что преподавали на уроке физика. Понимают под ним направленное движение ионов или электронов, то есть, заряженных частиц.

Направление и величина тока за определенный промежуток времени определяют, будет ли ток считаться переменным или постоянным, что наглядно отражает график, приведенный ниже:

Постоянным будет ток, который со временем не изменяет своего значения. Напряжение всегда стабильно. Это красная линия.

Зеленая линия, имеющая форму синусоиды, это ток переменный, который меняет как свое направление, так и величину. Периодичность прохождения одинаковых точек на горизонтальной оси ординат называют его частотой. Она для переменного тока считается стандартной и равняется 50 Гц.

В действительности, все инструменты и бытовые приборы (или, почти все) работают от постоянного тока, преобразованного из переменного (имеющегося в сети). Зачем же тогда нужен ток синусоидальный?

Вопрос вполне закономерный и объяснение ему следующее: подобная форма разрешает очень просто преобразовать поступающее от генератора электрической станции напряжение. Иными словами, от станции, напряжение которой 200000-300000 Вольт, до значения 220, привычного нам.

Принцип функционирования электрического двигателя

Работа электрического двигателя постоянного тока базируется на взаимодействии двух магнитных полей, создаваемых ротором и статором. Вновь вспоминаем школьные уроки физики и рамку, которая вращается в магнитном однородном поле, Подавая на нее ток, индуцируем собственное поле магнитное круговое, которое взаимодействует с первым, создавая силу Ампера, которая направлена перпендикулярно и выталкивает из этого однородного поля нашу рамку.

В двигателе наблюдается тоже: статор играет роль неподвижного однородного магнитного поля, а в качестве рамки выступает вращающийся ротор двигателя, называемый также якорем.

Это поле создается полюсами статора. На полюсах ротора имеются обмотки, состоящие из 2 частей и соединенные последовательно между собой. Их концы прикреплены к коллекторным пластинам, находящимся на валу двигателя электрического. Они, в свою очередь, контактируют с графитовыми щетками.

Читать еще:  Что такое двигатель на растительном масле

При условии, что расположены полюса, аналогично представленным на рисунке приведенном выше, полюс якоря будет северным. Также северным будет полюс статора, находящийся с ним в непосредственной близости.

Рекомендуем:

Поскольку, равнозарядные полюса отталкиваются под воздействием магнитных сил (с электродвигателем возможно это за счет вращения), северный якорный полюс развернется на 180 градусов и займет положение напротив статорного южного. По логике, оба они должны притягиваться, вызывая торможение.

Чтобы избежать этого и добиться вновь «отталкивания» полюсов, якорные обмотки в момент перехода через нейтральную линию переключают при помощи коллектора. Устройство двигателя постоянного тока, на основании этой информации, изображается следующим образом:

Характеристики для двигателя электрического, работающего на постоянном токе

Электрический двигатель является оборудованием, управляют которым в зависимости от конкретных условий.

Для регулировки существует три метода:

  • изменение напряжения, подаваемого на обмотки;
  • введение в имеющуюся цепь сопротивления (дополнительного);
  • варьирование величиной потока, т.е. возбуждением.

Оценить работу электродвигателя помогают графики характеристик, подразделяемые на:

  • механические, демонстрирующие зависимость частоты или скорости вращения от имеющегося на валу мотора момента (с учетом поправочного коэффициента);
  • регулировочные, показывающие как частота вращения зависит от напряжения, подаваемого на якорные обмотки, потока и сопротивления.

В первом случае по оси ординат откладывают частоту вращения, а по оси абсцисс –момент.

Выглядит график как прямая, имеющая отрицательный уклон.

График строят для конкретного напряжения по базовому уравнению:

Скорость, с которой вращается якорь, обозначается буквой ω . Напряжение в якорной цепи – U, коэффициент – K, поток – Ф, сопротивление обмотки якоря активное – RЯ, момент электромагнитный двигателя – M.

При построении графика регулировочной характеристики исходят из величины момента на валу (откладывают по оси х – абсцисс). Частота также откладывается по ординате.

Уравнения для каждой регулировки будет различным:

1. Регулировка напряжения:

2. Регулирование реостатном, т.е. изменяя сопротивление:

3. Потоковое изменение:

С графиками, отображающими сказанное, ознакомиться можно ниже:

О механических характеристиках помнить нужно следующее – они бывают снятыми в реальном режиме, т.е. являющимися естественными, и искусственными, вычисляемые по изменению потока, сопротивления или напряжения.

Режимы работы двигателей

Оценить режимы, в которых работает оборудование, возможно при помощи графиков характеристик, которые необходимо расширить до 4 квадрантов, пронумеровав их. Нумерация начинается с верхнего квадранта правого и продолжается против стрелки часов.

Видео: Двигатель постоянного тока принцип работы (часть 1)

В квадранте первом координаты на обеих осях положительны (+). В нем и третьем можно заметить двигательный режим, определить мощность которого легко по формуле Р = М> 0. В оставшихся втором и третьем квадранте заметен тормозной или генераторный режим, при котором мощность отрицательна.

На графике различить легко точки, а также зоны, соответствующие определенным режимам:

  • В точке ω о образуется холостой ход. Момент в ней и ток равняются нулю, т.е. двигателем энергия не получается;
  • Подключение генератора параллельное. Реализуется, когда справедливы неравенства ω > ω о и E > U. При этом от рабочего оборудования передается на мотор энергия, в сеть же передается электрическая (генератор тока);
  • При коротком замыкании нулю равны E и, но механическая энергия не отдается вращающимся валом. В то же время, электрическая трансформируется в тепловую;
  • При соединении последовательном генератора (также режим называют торможением с противовключением) как ЭДС, так и ток направлены одинаково, ω

Автор и редактор обзоров по гаджетам и новой техники. Ведет работы по написанию свежих рейтингов к публикациям, проверки достоверности и актуальности информации уже опубликованных статей. Отвечает на вопросы в комментариях, пишет на авто темы.

Устройство и принцип действия синхронного двигателя

Содержание

  1. Устройство синхронного электродвигателя
  2. Принцип работы синхронного электродвигателя
  3. Характеристики синхронного электродвигателя

Синхронный электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Его также можно использовать в качестве генератора. Чаще всего он применяется в компрессорах, прокатных станках, поршневых насосах и другом подобном оборудовании. Рассмотрим принцип действия синхронного электродвигателя, его характеристики и свойства.

Устройство синхронного электродвигателя

Строение агрегата данного вида типично. Двигатель состоит из:

  • Неподвижной части (якорь или статор).
  • Подвижной части (ротор или индуктор).
  • Вентилятора.
  • Контактных колец.
  • Щеток.
  • Возбудителя.

Статор представляет собой сердечник, состоящий из обмоток, который заключен в корпус. Индуктор комплектуется электромагнитами постоянного тока (полюсами). Конструкция индуктора может быть двух видов – явнополюсная и неявнополюсная. В статоре и роторе расположены ферромагнитные сердечники, изготовленные из специальной электротехнической стали. Они необходимы для уменьшения магнитного сопротивления и улучшения прохождения магнитного потока.

Частота вращения ротора в синхронном двигателе равна частоте вращения магнитного поля. Независимо от подключаемой нагрузки частота ротора неизменна, так как число пар полюсов магнитного поля и ротора совпадают. Их взаимодействие обеспечивает постоянную угловую скорость, не зависящую от момента, приложенного к валу.

Принцип работы синхронного электродвигателя

Самые распространенные типы такого рода агрегатов – однофазный и трехфазный. Принцип работы синхронного электродвигателя в обоих случаях примерно одинаков. После подключения обмотки якоря к сети ротор остается неподвижным, в то время как постоянный ток поступает в обмотку возбуждения. Направление электромагнитного момента меняется дважды за время одного изменения напряжения. При значении среднего момента равном нулю, ротор под влиянием внешнего момента (механического воздействия) разгоняется до частоты, близкой по значению частоте вращения магнитного поля в зазоре, после чего двигатель переходит в синхронный режим.

В трехфазном устройстве проводники расположены под определенным углом относительно друг друга. В них возбуждается вращающееся с синхронной скоростью электромагнитное поле.

Разгон двигателя может осуществляться в двух режимах:

  • Асинхронный. Обмотки индуктора замыкаются с помощью реостата. Вращающееся магнитное поле, возникающее при включении напряжения, пересекает короткозамкнутую обмотку, установленную на роторе. В ней индуцируются токи, взаимодействующие с вращающимся полем статора. По достижении синхронной скорости крутящий момент начинает уменьшаться и сводится к нулю после замыкания магнитного поля.
  • С помощью вспомогательного двигателя. Для этого синхронный двигатель механически соединяется со вспомогательным (двигателем постоянного тока либо трехфазным индукционным двигателем). Постоянный ток подается только после того, как вращение двигателя достигает скорости, близкой к синхронной. Магнитное поле замыкается, и связь со вспомогательным двигателем прекращается.

Характеристики синхронного электродвигателя

Хотя асинхронные двигатели считаются более надежными и дешевыми, их синхронные «собратья» имеют некоторые преимущества и широко применяются в различных областях промышленности. К отличительным характеристикам синхронного электродвигателя можно отнести:

  • Работу при высоком значении коэффициента мощности.
  • Высокий КПД по сравнению с асинхронным устройством той же мощности.
  • Сохранение нагрузочной способности даже при снижении напряжения в сети.
  • Неизменность частоты вращения независимо от механической нагрузки на валу.
  • Экономичность.

Синхронным двигателям также присущи некоторые недостатки:

  • Достаточно сложная конструкция, делающая их производство дороже.
  • Необходимость источника постоянного тока (возбудителя или выпрямителя).
  • Сложность пуска.
  • Необходимость корректировать угловую частоту вращения путем изменения частоты питающего напряжения.

Однако в некоторых случаях использование синхронных двигателей предпочтительнее:

  • Для улучшения коэффициента мощности.
  • В длительных технологических процессах, где нет необходимости в частых запусках и остановках.

Таким образом, «плюсы» двигателей такого типа значительно превосходят «минусы», поэтому на данный момент они высоко востребованы.

Изучив синхронный двигатель, устройство и принцип его действия и учтя условия, в которых он будет эксплуатироваться, вы сможете быстро и с легкостью подобрать оптимально подходящий для ваших целей тип агрегата (защищенный, закрытый, открытый) и использовать его с максимальной эффективностью.

Назначение и классификация машин переменного тока.

Машины переменного тока предназначены для преобразования механической энергии в электрическую (генераторы) или для преобразования электрической энергии в механическую (двигатели).

Они подразделяются на:

У первых частота вращения магнитного поля отличается от частоты вращения ротора, а у вторых — нет.

Асинхронные и синхронные МПТ бывают:

— с короткозамкнутым ротором

— с фазным ротором

В зависимости от количества фаз они делятся на однофазные, двухфазные и трехфазные.

78. Устройство, принцип действия и характеристики трёхфазных асинхронных двигателей.

Основными частями АД являются неподвижный статор и вращающийся ротор, разделённые воздушным зазором.

Статор состоит из алюминиевого или чугунного корпуса, внутри которого находится сердечник статора – полый цилиндр из изолированных друг от друга листов электротехнической стали. На внутренней поверхности этого цилиндра в пазах размещена трёхфазная обмотка из трёх одинаковых частей, называемых фазами. Фазы обмотки соединяются звездой или треугольником и подключаются к трёхфазной сети.

Роторпредставляет собой цилиндрический сердечник из изолированных друг от друга листов электротехнической стали с пазами на наружной поверхности, в которых размещаются проводники обмотки ротора. Обмотка короткозамкнутого ротора выполняется в виде беличьего колеса – цилиндрической клетки из медных или алюминиевых стержней, которые без изоляции закладываются в пазы ротора. Торцовые концы стержней замыкают накоротко с обеих сторон ротора кольцами.

Принцип действия АД заключается в следующем: при питании обмотки статора от сети трёхфазный ток статора создаёт вращающееся магнитное поле, пронизывающее сердечник статора, ротор и воздушный зазор. Вращающееся магнитное поле пересекает проводники ротора и наводит в них ЭДС, под действием которых в проводниках ротора возникают токи. Взаимодействие токов ротора с вращающимся магнитным полем создаёт вращающий момент М, под действием которого ротор вращается.

Для АД выделяют следующие виды характеристик: механические и рабочие. Механической характеристикой называется зависимость частоты вращения ротора от нагрузки. Рабочими характеристиками называют зависимости частоты вращения n, момента на валу М2, тока статора I1, коэффициента полезного действия ƞ и коэффициента мощности cosφ от полезной мощности P2.

79. Режимы работы, механические и рабочие характеристики трёхфазных асинхронных двигателей.

Режимы работы двигателя: продолжительный, кратковременный, повторно-кратковременный.

Механической характеристикой называется зависимость частоты вращения ротора n от момента на валу. От её характера зависит пригодность АД для привода различных механизмов. Рабочими характеристиками называют зависимости частоты вращения n, момента на валу М2, тока статора I1, коэффициента полезного действия ƞ и коэффициента мощности cosφ от полезной мощности P2. Эти характеристики служат для полного выявления свойств самого двигателя. Рабочие характеристики изображены на рисунке.

80. Энергетическая диаграмма и К.П.Д. трёхфазных асинхронных двигателей.

Исходная величина – это мощность Р1 = U1I1cosφ1, подводимая к двигателю из сети 3-х фазного тока. Часть этой мощности ΔРпр1 идёт на нагрев проводников обмотки статора. Остальная мощность Рврп = Р1 — ΔРпр1 преобразуется в мощность вращающегося магнитного поля. Из неё часть мощности ΔРм тратится на потери в магнитопроводе. Эти потери состоят из потерь на гистерезис и потерь на вихревые токи. Потери в сердечнике ротора практической роли не играют, т.к. они пропорциональны f2, а f2 очень мало. Таким образом, ротору через воздушный зазор передаются электромагнитная мощность Рэм = Рврм – ΔРм. Механическая мощность, передаваемая ротору Рм = Рэм – ΔРпр2, где ΔРпр2 – это мощность потерь в обмотке ротора и полезная мощность на валу ротора Р2 = Рмех – ΔРмех – ΔРдоб, где ΔРмех – механические потери, ΔРдоб – добавочные потери, создаваемые пульсацией магнитного поля. КПД двигателя η = Р2 / Р1 = Р2 / (Р2 + ΔРс + ΔРэ) , где ΔРс – постоянные потери. ΔРс = ΔРм + ΔРмех. ΔРэ – переменные потери. ΔРэ = ΔРпр1 + ΔРпр2.

КПД двигателя изменяется в зависимости от нагрузки двигателя. Коэффициент нагрузки β = Р2 / Р2ном. С учётом коэффициента нагрузки η = βР2 / (βР2 + ΔРс + β 2 ΔРэ).

График зависимости КПД от β

Обычно КПД = 0,75 – 0,95.

С ростом нагрузки cosφ = P1 / S1 = P1 / (P1 2 + Q1 2 ) 0.5 = 1 / (1 + (Q1 2 / P1 2 )) растёт, т.к. растёт Р1, а Q1 остаётся постоянной. При дальнейшем росте β растёт поток рассеяния магнитного потока, поэтому растёт Q1, а cosφ уменьшается. АД целесообразно использовать при нагрузках близких к номинальным (β = 1).

вверх 81. Способы регулирования скорости трёхфазных асинхронных двигателей.

Запишем формулу для определения скорости вращения: .

Частоту вращения асинхронного двигателя можно регулировать изменением скольжения , числа пар полюсов и частоты тока питающей сети .

1. Изменения скольжения можно достичь 3 способами:

1.1. изменением подводимого к статору симметричного напряжения U1;

При неизм. моменте на валу двигателя повышение напряжения вызывает повышение частоты вращения двигателя, но диапазон изменения частоты получается небольшим, что обьясняется узкой зоной устойчивой работы двигателя. Кроме того, значит. увеличение напряжения вызывает перегрев двигателя, а снижение напряжения снижает перегрузочную способность .

1.2. нарушением симметрии этого напряжения;

Нарушение симметрии подводимого напряжения осуществляется с помощью автотрансформатора, включённого в одну из фаз. При уменьшении напряжения на входе автотрансформатора напряжение на выходе автотрансформатора несимметрично увеличивается, а частота вращения уменьшается. Недостатками являются уменьшение КПД двигателя и узкая зона регулирования. Применяется для АД небольшой мощности.

1.3. изменением активного сопротивления цепи ротора.

Применяется для АД с фазным ротором.

2. Регулирование частоты вращения изменением частоты тока питающей сети (частотное регулирование).

Для этого необходимы источники питания с регулируемой частотой тока, в качестве которых применяются полупроводниковые и электромагнитные преобразователи частоты. Но с изменением частоты тока изменяется и электромагнитный момент двигателя, поэтому для сохранения момента, коэффициента мощности и КПД двигателя необходимо одновременно изменять и напряжение сети. Если регулирование производится при условии постоянной нагрузки, то напряжение нужно изменять пропорционально частоте. Частотное регулирование позволяет плавно изменять скорость вращения в широком диапазоне.

3. Изменение частоты вращения путём изменения числа пар полюсов.

Этот способ применяется лишь для АД с короткозамкнутым ротором и даёт лишь ступенчатое регулирование частоты. Изменение числа пар полюсов производиться двумя способами:

1) в пазы статора укладываются две обмотки с разным числом пар полюсов, не связанных электрически между собой. Включая разные обмотки в сеть, получают разные частоты вращения. Недостатками метода являются: увеличение габаритов и массы АД;

2) в пазах статора размещена одна обмотка, схема которой путём переключения позволяет уменьшить число пар полюсов, например, обмотка фазы состоит из двух катушек, при их последовательном соединении =2, а при параллельном =1. Начала и концы обмоток выводят на клеммы щитка, поэтому переключение может производиться при работающем двигателе.

82. Схемы управления трёхфазными асинхронными двигателями.

Простейшая схема управления двигателем. В данной схеме при нажатии кнопки SB1 подаётся напряжение на катушку контактора KM1. Контактор KM1 включается и своими замыкающими главными контактами подключает статор двигателя M к сети. Двигатель пускается в ход. При отпускании кнопки SB1 происходит размыкание цепи катушки контактора KM1, отключение контактора и выключение двигателя. Эта схема применяется при наладочных пусках электропривода, когда нет необходимости длительной работы.

В этой схеме двигатель включается путём нажатия кнопки SB1 и продолжает работать после отпускания кнопки, благодаря замыкающему блок-контакту KM1, который замыкается при включении контактора и обеспечивает питание катушки током после отпускания кнопки, т.е. блокирует пусковую кнопку SB1. Для остановки двигателя необходимо нажать кнопку SB2, которая размыкает цепь питания катушки контактора. Эта схема находит самое широкое применение для управления электродвигателями таких нереверсивных механизмов, как насосы, вентиляторы и т.д.

Данная схема применяется для управления двигателями, которые должны иметь прямое и обратное направление вращения ротора. В этой схеме изменение направления вращения двигателя осуществляется переключением двух фаз статора путём выключения контактора KM1 и включения контактора КМ2. При нажатии кнопки SB1 включается контактор KM1 и двигатель будет вращаться в направлении «вперёд» (при условии, если контактор KM2 отключён и замкнут его размыкающий блок-контакт KM2 в цепи питания катушки контактора KM1). Для изменения направления вращения необходимо предварительно отключить нажатием кнопки SB2 двигатель и лишь после этого нажать кнопку SB3. Размыкающий блок-контакт КМ1 в цепи катушки контактора КМ2 и блок-контакт КМ2 в цепи катушки контактора КМ1 осуществляют электрическую блокировку контакторов, т.е. исключают возможность одновременной работы контакторов КМ1 и КМ2. При отсутствии данной блокировки контакторы КМ1 и КМ2 могут быть включены независимо друг от друга, что приведёт к короткому замыканию двух фаз сети главными контактами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector