Avtoargon.ru

АвтоАргон
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оптимальные обороты двигателя при эксплуатации автомобиля

Оптимальные обороты двигателя при эксплуатации автомобиля

Режим эксплуатации двигателя – один из главных факторов, влияющих на скорость износа его деталей. Хорошо, когда автомобиль оборудован автоматической коробкой либо вариатором, самостоятельно выбирающим момент перехода на высшую или низшую передачу. На машинах с «механикой» переключением занимается водитель, который «раскручивает» мотор по своему разумению и не всегда правильно. Поэтому автолюбителям без опыта стоит изучить, на каких оборотах лучше ездить, чтобы максимально продлить ресурс силового агрегата.

Движение на малых оборотах с ранним переключением

Зачастую инструктора автошкол и старые водители рекомендуют новичкам ездить «в натяг» – переходить на высшую передачу при достижении 1500–2000 об/мин коленчатого вала. Первые дают советы из соображений безопасности, вторые – по привычке, ведь раньше на машинах стояли низкооборотные моторы. Сейчас подобный режим годится разве что для дизеля, чей максимальный крутящий момент находится в более широком диапазоне оборотов, чем у бензинового двигателя.

Не все автомобили оборудованы тахометрами, поэтому малоопытным водителям при данном стиле езды стоит ориентироваться по скорости движения. Режим с ранним переключением выглядит так: 1-я передача – движение с места, переход на II – 10 км/ч, на III – 30 км/ч, IV – 40 км/ч, V – 50 км/ч.

Подобный алгоритм переключения – признак очень спокойного стиля вождения, дающий несомненное преимущество в безопасности. Минус – в повышении скорости износа деталей силового агрегата и вот почему:

  1. Масляный насос достигает номинальной производительности начиная с 2500 об/мин. Нагрузка при 1500–1800 оборотах вызывает масляное голодание, особенно страдают шатунные подшипники скольжения (вкладыши) и компрессионные поршневые кольца.
  2. Условия сжигания топливовоздушной смеси далеки от благоприятных. В камерах, на тарелках клапанов и днищах поршней усиленно откладывается нагар. В процессе работы эта сажа раскаляется и воспламеняет топливо без искры на свече зажигания (эффект детонации).
  3. Если нужно резко увеличить обороты двигателя при езде с самых «низов», вы нажимаете на акселератор, но разгон остается вялым, пока мотор не достигнет своего крутящего момента. Но как только это происходит, вы включаете высшую передачу и частота вращения коленвала снова падает. Нагрузка большая, смазки недостаточно, помпа слабо перекачивает антифриз, отсюда возникает перегрев.
  4. Вопреки распространенному мнению, экономия бензина в данном режиме отсутствует. При нажатии на педаль газа топливная смесь обогащается, но сгорает не полностью, значит, расходуется впустую.

Владельцам авто, оснащенных бортовым компьютером, легко убедиться в неэкономичности движения «в натяг». Достаточно включить на дисплее показ мгновенного расхода горючего.

Подобная манера езды усиленно изнашивает силовой агрегат, когда автомобиль эксплуатируется в тяжелых условиях – по грунтовым и проселочным дорогам, с полной загрузкой либо прицепом. Не стоит расслабляться и владельцам авто с мощными моторами объемом 3 л и более, способными резко ускоряться с «низов». Ведь для интенсивного смазывания трущихся деталей двигателя нужно держать минимум 2000 об/мин коленчатого вала.

Чем вредна высокая частота вращения коленвала?

Манера езды «тапку в пол» подразумевает постоянное раскручивание коленчатого вала до 5–8 тыс. оборотов за минуту и позднее переключение скоростей, когда от шума двигателя буквально звенит в ушах. Чем чреват данный стиль вождения, кроме создания аварийных ситуаций на дороге:

  • все узлы и агрегаты автомобиля, а не только мотор, испытывают максимальные нагрузки в течение срока эксплуатации, что снижает общий ресурс на 15–20%;
  • из-за интенсивного нагрева двигателя малейший сбой охлаждающей системы ведет к капитальному ремонту вследствие перегрева;
  • трубы выхлопного тракта прогорают значительно быстрее, а вместе с ними – дорогостоящий катализатор;
  • ускоренно изнашиваются элементы трансмиссии;
  • поскольку частота вращения коленвала превышает нормальные обороты чуть ли не вдвое, расход горючего тоже увеличивается в 2 раза.

Эксплуатация автомобиля «на разрыв» имеет дополнительный негативный эффект, связанный с качеством дорожного покрытия. Движение на большой скорости по неровным дорогам буквально убивает элементы подвески, причем в кратчайшие сроки. Достаточно влететь колесом в глубокую выбоину – и передняя стойка согнется либо треснет.

Общее техническое состояние автомобиля, в том числе его двигателя, системы охдаждения, трансмиссии и многое другое, всегда можно проверить с помощью персонального ODB-II автосканера. Одним из лучших представителей данного рода устройств является сканер корейской сборки Scan Tool Pro Black Edition.

Помимо точной диагностики всех узлов и агрегатов автомобиля, автосканер способен в режиме реального времени отображать обороты, давление масла, показания со всех датчиков и т.д. Сканер совместим с большинством автомобилей имеющих ODB-II разъём и довольно прост в эксплуатации. Информацию о состоянии вашего авто всегда можно вывести на любое устройство под управлением iOS, android или windows.

Как правильно ездить?

Если вы не автогонщик и не приверженец езды «внатяжку», которому трудно переучиться и поменять стиль вождения, то для сбережения силового агрегата и автомобиля в целом старайтесь удерживать рабочие обороты двигателя в диапазоне 2000–4500 об/мин. Какие бонусы вы получите:

  1. Пробег до капитального ремонта мотора увеличится (полный ресурс зависит от марки авто и мощности мотора).
  2. Благодаря сгоранию топливовоздушной смеси в оптимальном режиме вы сможете экономить горючее.
  3. Быстрый разгон доступен в любой момент, стоит лишь нажать на педаль акселератора. Если оборотов недостаточно, с ходу переключайтесь на низшую передачу. Те же действия повторяйте при движении в гору.
  4. Система охлаждения будет функционировать в рабочем режиме и убережет силовой агрегат от перегрева.
  5. Соответственно, дольше прослужат элементы подвески и трансмиссии.

Рекомендация. На большинстве современных автомобилей, оснащенных высокооборотными бензиновыми моторами, лучше переключать передачи при достижении порога 3000 ± 200 об/мин. Это касается и перехода с высшей на низшую скорость.

Как говорилось выше, приборные панели авто не всегда имеют тахометры. Для водителей с малым стажем вождения это является проблемой, поскольку частота вращения коленвала неизвестна, а ориентироваться по звуку новичок не умеет. Есть 2 вариант решения вопроса: купить и установить на торпедо электронный тахометр либо пользоваться таблицей, где указаны оптимальные обороты двигателя по отношению к скорости движения на разных передачах.

Позиция 5-ступенчатой коробки передач12345
Оптимальная частота вращения коленвала, об/мин3200–40003500–4000не менее 3000> 2700> 2500
Приблизительная скорость автомобиля, км/ч0–2020–4040–7070–90более 90

Примечание. Учитывая, что у различных марок и модификаций машин разное соответствие скорости движения и числа оборотов, в таблице приведены усредненные показатели.

Несколько слов о езде накатом с горы либо после разгона. В любой системе топливоподачи предусмотрен режим принудительного холостого хода, активирующийся в определенных условиях: автомобиль движется накатом, включена одна из передач, а обороты коленвала не опускаются ниже 1700 об/мин. Когда режим активирован, подача бензина в цилиндры блокируется. Так что вы спокойно можете тормозить двигателем на высшей скорости, не боясь напрасно израсходовать горючее.

Максимальные обороты двигателя

Часто задаваемый в КарТюнинг вопрос: каковы допустимые максимальные обороты двигателя. Обратимся к техническому регламенту по двигателю для Формулы-1: четырехтактный 8-ми цилиндровый V-образный двигатель с рабочим объемом до 2400 куб.см. Предельный обороты 18000 об/мин, одна форсунка, одна свеча.

Читать еще:  Включается вентилятор на холодном двигателе авео т300

Двигатель автомобиля Порше с диаметром цилиндра 90мм и меньшими оборотами имеет уже две свечи зажигания, поэтому остановимся на максимальном диаметре цилиндра для Формулы-1 не более 90мм.

При диаметре 90 мм. ход поршня для достижения объема равен 47мм.

Выбираем обороты двигателя чаще всего наблюдаемые нами при просмотре соревнований, это примерно 16000 об/мин. Средняя скорость поршня при указанных оборотах и ходе поршня равна 25,06 метра в секунду.

ход поршня / RPM (об/мин)5000600070008000900010000110001200016000
47 мм.25,06
66 мм.24,2026,40
71 мм.11,8314,2016,5718,9321,3023,6626,03
74,8 мм.12,4614,9617,4519,9522,4424,9327,42
75,6 мм.12,6015,1217,6420,1622,6825,2027,72
78 мм.13,0015,6018,2020,8023,4026,0028,60
80 мм.13,3315,9918,6621,3323,9926,6629,33
84 мм.14,0016,8019,6022,4025,20
86 мм.14,3317,2020,0722,9325,80
88 мм.14,6617,6020,5323,4726,39
90 мм.15,0018,0021,0024,0027,00
92 мм.15,3318,4021,4624,5327,60

Красным шрифтом отмечено значение скорости поршня, превышающее аналогичную величину у двигателя Формулы-1

Дальнейшие решения о максимальных оборотах Вашего двигателя принимать Вам.

Мощность и крутящий момент автомобильного двигателя

Так принято, что во время оценки технических характеристик любого автомобиля, прежде всего, смотрят на его мощность, однако не менее значительным показателем считается крутящий момент. Что представляют собой оба этих понятия, какова история их появления – обо всем этом и многом другом пойдет речь в нашем сегодняшнем материале.

Лошадиная сила и Ватт

Понятие «лошадиная сила» впервые использовал известный изобретатель и инженер конца 18-го – начала 19-го века Джеймс Уатт. Именно он придумал паровой мотор, а также первым просчитал мощность, которую развивает лошадь, поднимая уголь из шахты.

С тех пор, а это уже более чем 200 лет, развиваемая одной лошадью мощность, то бишь одна лошадиная сила, составляет 33 тыс. футов в мин. Эта мера используется в некоторых мировых государствах, но если говорить о Европе, то большее распространение там получила еще одна единица измерения мощности, именуемая ваттами. Ученые даже вывели формулу, и в соответствии с ней 1 л.с. = 746 Вт. Говоря иными словами, 1 кВт, равный 1 тыс. ваттам, соответствует 1 л.с., которая была умножена на 1,34.

Мощность двигателя: как измеряют

Говоря о понятии «мощность двигателя», важно отметить, что для него существуют не только различные единицы измерения, но и разные их способы, причем, каждый из этих способов измерения демонстрирует другой результат.

Стандартным способом измерения считается тот, который использует киловатты, он применяется в большинстве европейских стран. А вот когда мощность силовой установки дана в лошадиных силах, способы измерения могут розниться в зависимости от того, о каком именно государстве идет речь.

Так, в Японии и Соединенных Штатах для этого привлекают две разновидности показателей:

  • Нетто. Подразумевается испытание мотора на стенде, причем, мотора, который оснащен всем, что необходимо для полноценной эксплуатации ТС – глушителем, вентилятором, генератором и т.д.
  • Брутто. Данным способом испытывают обычно силовые установки, которые не оснащены дополнительными агрегатами. Мощность брутто на 10-20 процентов превышает мощность нетто.

DIN. Этот способ расчета мощности был внедрен немецким институтом стандартизации специально для измерения показателей моторов с т.н. неотделимым оборудованием, которое присутствует в машине по умолчанию. В этом случае имеется в виду насос и вентилятор системы охлаждения, генератор без нагрузки, топливный и масляный насос.

Крутящий момент, его соотношение с мощностью

Обе упомянутых выше единицы измерения мощности (лошадиные силы и ватты, а для укрупнения показателей последней единицы принято использовать понятие киловатт) придумал Дж. Уатт, однако движет авто крутящий момент, измеряемый в ньютон-метрах. Почему не от мощности двигателя машины зависит ее способность к движению?

Мощность и крутящий момент – тесно связанные между собой характеристики: мощность, измеряемая в ваттах, представляет собой пример умножения крутящего момента на 0,1047 и на число об./мин.

Говоря иными словами, мощность показывает объем работы, выполняемой за указанный промежуток времени. Крутящий момент демонстрирует саму способность двигателя выполнять эту работу.

Например, если авто застряло в болоте и перестало двигаться, мощность мотора равняется нулю, т.к. никакая работа не выполняется, тогда как крутящий момент присутствует даже при том, что его показатели окажутся минимальными, недостаточными для начала движения. Таким образом, крутящий момент без мощности бывает, но не наоборот.

На практике от мощности напрямую зависят скоростные показатели транспортного средства: чем она выше, тем быстрее может двигаться автомобиль. Крутящий момент (его еще называют «момент силы») — показатель силы вращения коленвала и его способность оказывать сопротивление вращению. Высокий крутящий момент двигателя нагляднее всего в процессе разгона или при езде в тяжелых условиях, когда мотор выдерживает критические нагрузки.

Еще одним важнейшим показателем, отображающим возможности двигателя, по праву считается диапазон оборотов, когда достигается наибольшая тяга. Также немаловажное значение имеет эластичность мотора, то есть его возможность развивать высокие обороты под большой нагрузкой. Имеется в виду соотношение между числом оборотов для наивысшей мощности и для достижения максимально возможного крутящего момента.

Это влияет на регулировку скорости движения посредством педалей акселератора и тормоза без использования КПП, а также возможность движения с маленькой скоростью на высших передачах.

Так, например, благодаря хорошей эластичности двигателя машина на 5-й передаче ускорится с 75-80-ти км/час до 120-ти, и чем быстрее это произойдет, тем эластичнее силовая установка. Если будет стоять выбор между двумя моторами с аналогичным объемом и мощностью, то лучше тот, который эластичнее, ведь он экономичнее, тише в работе, отличается большей износостойкостью.

Обороты силовой установки

При указании технических характеристик ТС присутствует понятие не только крутящего момента, но и оборотов двигателя. Понять, как они связаны между собой, можно лишь разобравшись в самой природе ДВС, а он представляет собой агрегат, в котором химическая энергия сгорающего в рабочей зоне топлива превращается в механическую работу.

Так, из-за возгорания топливной смеси начинается перемещение поршня, влекущее за собой проворачивание коленвала. Получается, что происходящие поочередные циклы расширения и сжатия активируют механизм, а он обеспечивает преобразование движений поршня в обороты коленвала.

Это позволяет нам сделать вывод, что основные характеристики любого ТС – это крутящий момент и мощность двигателя плюс обороты, когда требуемые показатели достигаются. Само понятие обозначает число выполненных коленвалом оборотов в мин. Мощность и крутящий момент – переменные величины, непосредственное воздействие на которые оказывает как раз количество оборотов.

Для расчета мощности специалисты пользуются обычными математическими вычислениями, в частности, существует формула крутящего момента через мощность, которая выглядит так:

Читать еще:  Электростанция своими руками с двигателем ваз

  • М — крутящий момент;
  • n — частота вращения, измеряемая в оборотах в минуту;
  • w — угловая скорость вращения вала.

У многих людей возникает вполне логичный вопрос о том, зачем измерять мощность через обороты и крутящий момент. На самом деле это важно по ряду причин и во многих случаях, в частности составление графика крутящего момента двигателя — обязательная процедура в процессе разработки и сертификации каждой новой силовой установки.

Полученные данные нужны для возможного дальнейшего совершенствования двигателя и достижения максимальных эксплуатационных характеристик.Благодаря периодическому проведению всех требуемых замеров и составлению графика можно оценить реальное техническое состояние мотора.

Что важнее?

Ключевым достижением или главной целью любого работающего мотора является тяга, для нее тепловая энергия и трансформируется в механическую. Высокие тяговые показатели больше присущи силовым агрегатам, работающим на дизтопливе, которые отличаются большим ходом поршня.

Высокий крутящий момент в этом случае сводится на нет сравнительно небольшим максимально допустимым количеством оборотов – это специальное решение конструкторов с целью увеличения ресурса мотора.

Для бензиновых же агрегатов характерно большее число оборотов, а также определенный крен к мощности, и обусловлено это легкостью деталей и низкой степенью сжатия. Справедливости ради следует отметить, что с каждым годом оба вида моторов (и на дизельном топливе, и на бензине) совершенствуются, поэтому они становятся ближе не только с конструктивной точки зрения, но и в плане показателей, а вот простейшее правило рычага все еще сохраняется: если больше сила, ниже скорость и меньше расстояние и наоборот.

Однозначно никто не скажет, что важнее – мощность или крутящий момент, не существует, ведь оба показателя важны.

Машины с высокой мощностью мотора способны развивать большую скорость, да и сам скоростной диапазон у них заметно выше, а вот авто с высоким крутящим моментом гораздо быстрее разгоняется до первой сотни.

Так как с ростом крутящего момента увеличивается мощность, то те силовые установки, обороты которых выше, обычно характеризуются и большим количеством «лошадок».

Здесь целесообразно упомянуть понятие рабочего диапазона — расстояния, если можно так выразиться, между предельно высоким крутящим моментом и аналогичной мощностью, когда мотор работает наиболее эффективно и демонстрирует высокую производительность в сочетании с экономичным расходом топлива.

Подводя итоги

Подводя итоги, следует отметить, что и мощность двигателя, и крутящий момент неимоверно важны. Касаемо того, какую силовую установку предпочесть – более мощную или ту, у которой выше крутящий момент, то при сравнительно одинаковой мощности лучше взять мотор более «моментный». Это особенно актуально в машинах и механической коробкой передач.

Мощность и крутящий момент двигателя

Чипгуру

  • Форум
    • Правила форума
    • Правила для Редакторов
    • Правила конкурсов
    • Руководство барахольщика
    • Ликбез по форуму
      • Изменить цвет форума
      • Как вставлять фотографии
      • Как вставлять ссылки
      • Как вставлять видео
      • Как обозначить оффтоп
      • Как цитировать
      • Склеивание сообщений
      • Значки тем
      • Подписка на темы
      • Автоподписка на темы
    • БиБиКоды (BBCode)
    • Полигон для тренировок
  • Калькуляторы
    • Металла
    • Обороты, диаметр, скорость
    • Подбора гидроцилиндров
    • Развертки витка шнека
    • Расчёт треугольника
    • Теплотехнический
    • Усилия гибки
  • Каталоги
    • Подшипников
    • Универсально-сборные пр.
    • УСП-12
  • Справочники
    • Марки стали и сплавы
    • Открытая база ГОСТов
    • Применимость сталей
    • Справочник конструктора
    • Справочник ЧГ сталей
    • Сравнение материалов
    • Стандарты резьбы
  • Таблицы
    • Диаметров под резьбу
    • Конусов Морзе
    • Номеров модульных фрез
  • Ссылки
  • Темы без ответов
  • Активные темы
  • Поиск
  • Наша команда

О частотном регулировании асинхронного привода.

  • Версия для печати
  • Перейти на страницу:

О частотном регулировании асинхронного привода.

Сообщение #1 T-Duke » 10 фев 2016, 16:37

Так как вижу что в соседней теме возникают некоторые споры и даже заблуждения, решил создать отдельную тему, где моя темность осветит некоторые вопросы связанные с асинхронным приводом. Буду стараться говорить простыми словами на пальцах. Всяких дотошных буквоедов, которые цепляются к тому о чем не упомянул для экономии места и времени — прошу идти мимо. Я не собираюсь здесь писать монографию из многих глав, описывая каждый нюанс. Только главное, важное для понимания. Так же для тех кому нечего делать, или хочется холиварить , прошу, не нужно превращать этот форум в подобие чипа. Троллям там самое место, а здесь хочется конструктивно общаться и если кому, что непонятно — задавйте вопросы.

О роторе.
Итак самое главное что нужно сказать и с чего нужно начать. Асинхронные двигатели работают при наличии такого явления как скольжение поля. Когда вращающееся магнитное поле статора по скорости вращения, опережает ротор.
Только при наличии скольжения в беличьем колесе ротора наодится ЭДС и возникает крутящий момент. Детально углубляться не будем. Главное что нужно понимать — если скольжение равно нулю, то есть ротор верится с той же скоростью, что и поле статора, то крутящий момент тоже нулевой.
Второе, что важно понимать — для конкретного двигателя есть предельная величина скольжения. При таком скольжении крутящий момент ротора максимален. Если еще больше увеличить скольжение, то момент начинает падать. Графики момента в зависимости от скольжения (скорости ротора) можно найти в учебниках. Классический пример запуск 50Гц асинхронника от сети 50Гц при большой нагрузке на валу. В начальный момент скольжение очень велико. Ибо ротор почти неподвижен, а поле вертится с полной частотой. Скольжение значительно выше предельного и крутящий момент сильно ниже, чем в случае предельного скольжения. Это объясняется резким ростом потерь в роторе при превышении критического скольжения.

Итак, чтобы получать максимально возможный момент асинхронника во всем диапазоне скоростей, ПЧ должен строго поддерживать одну и ту же величину скольжения — то есть предельное скольжение, или его можно назвать оптимальным. С такой задачей может справиться только векторный частотник. Если двигатель управляется векторным частотником, то там даже при частоте в несколько Гц, возможен полный крутящий момент. Если частотник не векторый, а обычный, у которого нет ОС по скорости ротора, скольжение ротора будет произвольно меняться в зависимости от нагрузки на двигатель, и оптимального момента во всем диапазоне оборотов мы не получим.

Второй важный фактор — статор двигателя. Вернее то, что он электрически представляет собой для сети переменного тока, или для ПЧ. Электрически двигатель собой представляет индуктивность, последовательно включенную со сопротивлением обмоток. И параллельно ко всему этому подключена распределенная межвитковая емкость. Для этой темы емкость обмоток не играет роли, поэтому будем рассматривать статор двигателя как индуктивность и сопростивление включенное последовательно с индуктивностью. Важный момент здесь — номинальная частота, на которую изготовлен двигатель и номинальне напряжение питания в рекомендованном подключении. например частота 50Гц, напряжение 380В — звезда.

Чтобы понять поведение двигателя при изменении частоты протекающего через него тока, для начала проведем эксперимент. Вытащим из двигателя ротор, оставим только статор и будем подавать в двигатель переменный ток различной частоты. Зачем убираем ротор? Когда поговорим об асинхроннике как о трансформаторе станет понятно. Убрав же ротор из асинхронника, мы превращием его в банальный дроссель.

Читать еще:  Что смешивает топливо в дизельном двигателе

Итак убрали ротор и подали на двигатель номинальное напряжение, номинальной частоты, скажем 50Гц. Через обмотки статора начнет течь ток ХХ двигателя и вокруг полюсов статора начнет вращаться магнитное поле с частотой обратной пропорциональной числу пар полюсов. В двухполюсном двигателе частота вращения поля совпадает со сетью — 50Гц. В 4-х полюсном в 2 раза меньше 25Гц, во 8-ми полюсном 12.5Гц и т.д. Но сейчас это не важно. Важно понять что статор предназначен для создания внутри своего объема, вращающегося магнитного поля заданной частоты и силы.

Так вот статор двигателя включен в сеть 50Гц, на которую он рассчитан и по обмоткам течет некий ток ХХ. Возникает вопрос — А что если мы частоту тока сети уменьшим, или увеличим? Возьмем и подадим вместо номинальных 50Гц, частоту 25Гц. Что-то изменится. А именно уменьшится сопротивление обмоток двигателя переменному току. Ровно в 2 раза. Ток ХХ вырастет в два раза. Если подадим на обмотки ток с частотой 100Гц, то сопротивление обмоток увеличится и ток ХХ упадет в 2 раза. То есть статор асинхронника без ротора, ведет себя как классический дроссель — обыная индуктивно-резистивная нагрузка в сети переменного тока.

Об асинхронном двигателе, как о вращающемся трансформаторе.

А теперь первый раз проведу аналогию между асинхронником и трансформатором. Пока на роторе нет нагрузки и ротор вращается равномерно, для сети переменного тока (или ПЧ) двигатель представляет собой аналог первичной обмотки трансформатора включенного в сеть переменного тока. При чем вторичная обмотка которого нагружена на довольно большое сопротивление, представляющее собой различные потери.
Пока на вторичной обмотке обычного транса нет нагрузки, то первичная обмотка ведет себя как дроссель большой индуктивности. Через первичку протекает небольшой ток ХХ, его еще называют током намагничивания.

То же самое и с асинхронником. Пока нагрузки на валу нет, то через обмотку статора протекает небольшой ток ХХ, создающий вращающееся магнитное поле в статоре и компенсирующий разные потери, например на трение в подшипниках.
Снова вернемся к обычному трансу, но теперь во вторичку включим нагрузку, например лампочку. Это моментально приведет к тому, что первичная обмотка почувствует эту нагрузку и отреагирует на это тем, что уменьшит свой имеданс переменногому току. Строго говоря тут нужно говорить не об импедансе, а о принципах работы трансформатора. Но чтобы короче — будем думать, что меняется импеданс, что в принципе тоже правильно, если не вдаваться в детали. То есть как только появится нагрузка на вторичке, в первичке сразу подскочит потребление тока. Аналогичная ситуация с асинхронником. Как только мы дадим нагрузку на ротор, это моментально скажется на обмотке статора и ток через обмотку увеличится, для компенсации воздействия нагрузки.

То есть асинхронный двигатель являет собой вращающийся трансформатор сразу преобразовывающий переменный ток в механическую работу на выходе. Первичкая обмотка такого транса — обмотка статора. Вторичная обмотка — беличье колесо в роторе. Выход не электрический а механический.

Об управлении асинхронным приводом.

Теперь когда мы понмаем, что асинхронник это по сути трансформатор, хоть и своеобразный, рассмотрим работу такого транса на разных частотах.

Если мы подаем на ненагруженный транс номинальную частоту 50Гц, то через первичку течет номинальный ток ХХ. Если уменьшаем частоту до 25Гц, то через транс начинает течь ток ХХ в два раза выше. То есть на ровном месте ток становится выше в два раза. Нагрев обмотки от холостого тока растет уже в четыре раза, по закону Джоуля-Ленца. То есть мы ничего не меняли кроме частоты. Нагрузку не подключали, а ток уже вырос.
Если еще уменьшим частоту, например до 12.5Гц, то ток ХХ вырастет в 4 раза по сравнению с номинальным при 50Гц. Нагрев обмотки током ХХ вырастет уже в 16 раз. То есть видим, что тут что-то нужно делать.

Выход есть. Он называется законом управления V/f = const. Если мы изменяем частоту которой питаем трансформатор, то мы должны изменить и напряжение подаваемое на транс, чтобы не менялся ток через первичку. То есть, если мы питаем двигатель рассчитанный на 380В и 50Гц, от сети частотой 25Гц, то напряжение в этой сети должно составлять уже половину — 190В. Иначе двигатель будет работать в нерасчетном режиме, с большими потерями как в меди, так и в стали статора.

Главный вывод из этого — при уменьшении частоты тока питающего двигатель — необходимо уменьшать напряжение подаваемое на этот двигатель. Этим и занимаются частотники. Когда мы выкручиваем регулятор на 25Гц, частотник вместо положенных 220В дает уже 110В и двигатель работает в своих номинальных параметрах.

А как же на счет крутящего момента ротора? А ему наплевать на напряжение, которым питают статор двигателя. Ротору нужно скольжение и номинальная индукция поля. Если нужное скольжение обеспечено, и хватает тока через обмотки для создания номинальной индукции поля, то обеспечен и номинальный крутящий момент. То есть, если мы питаем асинхронник током частоты 25Гц и напряжением 110В, то это никак не сказывается на крутящем моменте, если скольжение не изменилось.

Этот факт и говорит о том, что векторный частотник может давать хороший момент на низах, вплоть до нескольких Гц, так как он выдерживает заданное скольжение. Ограничением крутящего момента на низах, служит сопростивление провода обмоток статора, а если точнее то потери на обмотках при попытке достичь той же индукции поля, при пониженном напряжении питания. Когда частота вращения поля низкая, то на двигатель подается напряжение сильно ниже номинального и больше сказывается влияние оммического сопротивления обмоток. Это равноценно тому, что сам закон V/f=const начинает меняться. Вместо константы в правой части уравнения появляется переменная величина, которая может быть к тому же нелинейной. Хороший векторный частотник знает как управляться с этой перменной, поэтому возможен высокий крутящий момент, даже на частоте порядка 1Гц. Хотя все это ценой повышенных потерь, то есть пониженного КПД двигателя. Тут ничего не поделать это недостатки асинхронного привода.

Вот блин, затронул только самое главное в общих чертах, даже не трогал двигатели с переключением полюсов, а сколько текста уже. Если же вдаваться в детали, то можно целую книгу написать. Так что всяких педантов, прошу понять, что всех деталей нельзя упомянуть в одном посте и выясняя их можно на сотни страниц разойтись.

Если публике будет интересно, то мое темнейшество может осветить вопрос торможения асинхронника, когда он переходит в режим генератора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector