Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2 Схемы

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Регулировка вращения и реверс мотора от стиральной машины

Сейчас мы рассмотрим как управлять вращением мотора стиральной машины, скоростью и направлением. Этот материал является продолжением темы подключения моторов от СМА, поднятой по многочисленным просьбам посетителей сайта 2 Схемы.

Сразу заметим, что это коллекторный двигатель, для которого не нужен пусковой конденсатор. Этот двигатель, как правило, оснащен тахометром, который являясь частью обратной связи стабилизирует частоту вращения. Без него мотор может чрезмерно увеличить обороты, вплоть до отказа двигателя. Электродвигатели этого типа быстродействующие, могут выдавать даже несколько тысяч оборотов в минуту, что может быть помехой в некоторых устройствах.

Прежде всего по наклейке на корпусе двигателя необходимо прочитать, какая мощность у него. В качестве альтернативы проверьте ваттметром, вставленным в розетку электросети, чтобы узнать сколько энергии потребляет мотор. Эти типы двигателей обычно потребляют несколько сотен ватт мощности. В разных источниках указано энергопотребление от 120 до 360 Вт.

Двигатель имеет две скорости вращения. На холостом ходу (на стирке) мотор потребляет мощность 40 Вт. Вторая скорость вращения, при которой двигатель потребляет 300 Вт мощности (при отжиме). Эти скорости изменяются соответствующим переключением обмоток на статоре двигателя. Во время отжима обороты двигателя могут составлять даже несколько тысяч об/мин.

Подключение двигателя от СМА к сети 220 В

При подключении коллекторного двигателя к сети, один конец щетки и провода обмотки подключаем вместе (или ставим перемычку на контактную колодку), другой конец проводов подключаем к сети 220 В.

Направление вращения мотора будет зависеть от коммутации проводов обмотки, подключенных к 220 В. Если нужно изменить направление движения мотора — установите перемычку на другую пару проводов, или задействуйте двухсекционный переключатель, как показано на схеме.

Схема простого регулятора скорости мотора

Конечно скорость лучше всего контролируется инвертором, но для несложных любительских устройств должно быть достаточно простых самодельных регуляторов.

Минимальные обороты получились с этой схемой 200 об / мин. С2 это плавный старт. Плавный пуск работает отлично на холостом ходу, хотя с нагрузкой на вал, при необходимости, подберите R5 = 0 — 3 кОм в зависимости от нагрузки; R6 = 18 — 51 Ом в зависимости от симистора; R4 = 3 — 10 кОм — это защита Т3; RR1 = 2 -10 кОм — регулятор скорости связан с сетью гальванически, требуется защита от сетевого напряжения. Есть потенциометры с пластиковой осью, желательно использовать именно их.

Китайские модули регуляторов оборотов

На сайтах магазинов по электронике есть готовые регуляторы оборотов, например вот такой:

Контроллер скорости 400 Вт, 50/60 Гц, 220 В переменного тока. Цена примерно 1000 руб.

В этом контроллере используется инверторная схема, то есть широкий диапазон регулирования скорости. Подходит для двигателя переменного тока 220 В 50/60 Гц. Диапазон регулирования скорости составляет 90-1400 об / мин 50 Гц, 90-1700 об / мин 60 Гц. Способ подключения:

Красный — это основной провод двигателя, желтый провод — заземления. Просто подключите блок согласно электросхеме и убедитесь в правильности.

  • Установите скорость на минимальное значение «0», чтобы избежать внезапного сильного старта и повреждения при включении питания.
  • Затем включите питание и установите регулятор скорости в желаемое положение.
  • Чтобы изменить направление вращения двигателя, поменяйте местами соединительные провода «CCW» и «CW» на задней панели контроллера.
  • Выберите комбинацию COM и CW, тогда двигатель будет вращаться по часовой стрелке.
  • Выберите комбинацию COM и CCW, тогда двигатель будет вращаться против часовой стрелки (при изменении направления не переключайте, пока двигатель не остановится полностью).

В общем варианты есть разные, и задействовав такой модуль можно на базе мотора от стиралки сделать действительно неплохое и полезное устройство, например шлифовальный станок для мастерской.

Частотный привод 5-200 Гц (10-400 Гц)

В данной статье речь пойдет о частотном преобразователе, в простонародье, частотнике. Данный частотник, а в дальнейшем частотный привод, способен управлять 3-х фазным асинхронным двигателем. В данном частотном приводе (ЧП) я использую интеллектуальный силовой модуль компании International Rectifier, а конкретно IRAMS10UP60B (на AliExpress), единственное, что с ним сделал, это перегнул ножки, так что, по сути, модуль получился IRAMS10UP60B-2. Выбор на данный модуль пал преимущественно из-за встроенного драйвера. Главной особенностью встроенного драйвера является возможность использования 3 ШИМ вместо 6 ШИМ каналов. Кроме того цена на данный модуль на eBay около 270 рублей. В качестве управляющего контроллера использую ATmega48.

Разрабатывая данный привод я делал упор на эффективность конструкции, минимальную себестоимость, наличие необходимых защит, гибкость конструкции. В результате получился частотный привод со следующими характеристиками (функциями):

  1. Выходная частота 5-200 Гц
  2. Скорость набора частоты 5-50 Гц в секунду
  3. Скорость снижения частоты 5-50 Гц в секунду
  4. 4-х фиксированная скорость (каждая из которых от 5-200 Гц)
  5. Вольт добавка 0-20%
  6. Две «заводских» настройки, которые всегда можно активировать
  7. Функция намагничивания двигателя
  8. Функция полной остановки двигателя
  9. Вход для реверса (как без него)
  10. Возможность менять характеристику U/F
  11. Возможность задания частоты с помощью переменного резистора
  12. Контроль температуры IGBT модуля (сигнализация в случае перегрева и остановки привода)
  13. Контроль напряжения DC звена (повышенное-пониженное напряжение DC звена, сигнализация и остановка привода)
  14. Пред заряд DC звена
  15. Максимальная мощность с данным модулем 750 вт, но крутит и 1.1 кв на моем ЧПУ
  16. Все это на одной плате размером 8 х 13 см .

На данный момент защита от сверх тока или кз не реализованы (считаю нет смысла, хотя, свободную ногу в МК с прерыванием по изменению оставил)

Собственно, схема данного девайса :

Проект в layout

Ниже фото того, что у меня получилось

Печатная плата данного девайса (доступна в lay под утюг)

На данном фото полностью рабочий экземпляр, проверенный и обкатанный (не имеет панельки расположен слева). Второй для теста atmega 48 перед отправкой (расположен справа).

На данном фото тот самый irams (делал с запасом, должен поместится iramx16up60b )

Алгоритм работы устройства

Изначально МК (микроконтроллер) является настроенным на работу с электродвигателем номинальным напряжением 220 В при частоте вращающего поля 50Гц (т.е. обычный асинхронник, на котором написано 220 в 50 Гц). Скорость набора частоты установлена на уровне 15 Гц/сек.(т.е. разгон до 50 гц займет чуть более 3 сек., до 150 Гц-10 сек ). Вольт добавка установлена на уровне 10 %, длительность намагничивания 1 сек. (постоянная величина неизменна ), длительность торможения постоянным током 1 сек. (постоянная величина неизменна). Следует отметить ,что напряжение при намагничивании, как и при торможении, является напряжением вольт добавки и меняется одновременно. К слову, преобразователь частоты является скалярным, т.е. с ростом выходной частоты увеличивается выходное напряжение.

После подачи питания происходит заряд емкости dc звена. Как только напряжение достигает 220В (постоянное ) с определенной задержкой включается реле предзаряда и загорается единственный у меня светодиод L1. С этого момента привод готов к запуску. Для управления частотником имеется 6 входов:

  1. Вкл (если подать лишь этот вход, ЧП будет вращать двигатель с частотой 5 Гц)
  2. Вкл+реверс(если подать лишь этот вход, ЧП будет вращать двигатель с частотой 5 Гц, но в другую сторону)
  3. 1 фиксированная частота (задается R1)
  4. 2 фиксированная частота (задается R2)
  5. 3 фиксированная частота (задается R3)
  6. 4 фиксированная частота (задается R4)
Читать еще:  129 лошадиных сил какой объем двигателя

В этом управлении есть одно Но. Если в процессе вращения двигателя менять задание на резисторе, то оно изменится лишь после повторной подачи команды (вкл.) или (вкл+реверс.). Иначе говоря, данные с резисторов читаются пока отсутствуют эти два сигнала. Если планируется регулировать скорость с помощью резистора в процессе работы, то необходимо установить джампер J1.В этом режиме активен лишь первый резистор, причем резистор R4 ограничивает максимальную частоту, то есть если его выставить на 50% (2.5 вольта 4 «штырь». на фото ниже 5 земля), то частота R1 будет регулироваться резистором от 5 до 100 Гц.

Для задании частоты вращение нужно учитывать, что 5v на входе в МК соответствует 200 Гц., 1v-40 Гц, 1.25v-50 Гц и т.д. Для измерения напряжение предусмотрены контакты 1-5, где 1-4 соответствуют номерам резисторов, 5- общий минус(на фото ниже). Резистор R5 служит для подстройки масштабирования напряжения DC звена 1 в -100 в (на схеме R30).

Внимание! Плата находится под напряжением опасным для жизни. Входа управления развязаны оптопарами.

Особенности настройки

Настройка привода перед первым включением сводится к проверке монтажа электронных компонентов и настройки делителя напряжения для DC звена (R2).

100 Вольтам DC звена должно соответствовать 1 вольт на 23 (ножке МК)- это ВАЖНО. На этом настройка завершена.

Перед подачей сетевого напряжения необходимо промыть плату (удалить остатки канифоли) со стороны пайки растворителем или спиртом, желательно покрыть лаком.

Привод имеет «заводские » настройки, которые подходят как для двигателя с напряжением 220 В и частотой 50 Гц), так и для двигателя с напряжением 380 в и частотой 50 гц. Данные настройки всегда можно установить если вы не решаетесь сами настраивать привод. Для того чтобы установить «заводские » настройки для двигателя (220 в 50 Гц) :

  1. Включить привод
  2. Дождаться готовности (если подано питание только на МК , просто подождать 2-3 секунды)
  3. Нажать и удерживать кнопку В1 до тех пор, пока светодиод L1 не начнет мигать, отпустить кнопку В1
  4. Подать команду выбора 1 скорости. Как только светодиод перестанет мигать, убрать команду
  5. Привод настроен . В зависимости от того . светодиод горел (если не горел, то привод ожидает напряжения на DC звене).

При такой настройке автоматически в записываются следующие параметры:

  1. Номинальная частота двигателя при 220 В — 50 Гц
  2. Вольт добавка (напряжение намагничивания, торможения ) — 10%
  3. Интенсивность разгона 15 Гц./сек
  4. Интенсивность торможения 15 Гц./сек

Если подать сигнал выбора второй скорости, то в EEPROM запишутся следующие параметры (разница лишь в частоте):

  1. Номинальная частота двигателя при 220 В- 30 Гц
  2. Вольт добавка (Напряжение намагничивания, торможения ) 10%
  3. Интенсивность разгона 15 Гц./сек
  4. Интенсивность торможения 15 Гц./сек

Наконец, третий вариант Настройки:

  1. Нажать на кнопку В1 и держать
  2. Дождаться, когда светодиод начнет мигать
  3. Отпустить кнопку В1
  4. Не подавать напряжение на входа выбора 1-ой или 2-ой скорости
  5. Задать параметры подстроечными резисторами
  6. Нажать и удерживать кнопку В1 до тех пор, пока светодиод не начнет моргать

Таким образом, до тех пор, пока светодиод мигает, привод находится в режиме настройки. В этом режиме при подаче входа 1-ой или 2-ой скорости в EEPROM записываются параметры. Если не подавать напряжение на входа выбора 1-ой или 2-ой скорости, то фиксированные параметры в EEPROM не запишутся, а будут задаваться подстроечными резисторами.

  1. Резистор задает номинальную частоту двигателя при 220 В ( Так, например, если на двигателе написано 200 Гц /220 то резистор нужно выкрутить на максимум; если написано 100 Гц/ 220 в нужно добиться 2.5 Вольта на 1-ом контакте. (1 Вольт на первом контакте соответствует 40 Гц); если на двигателе написано 50 Гц/400 В то нужно выставить 27 Гц/0,68 В (например:(50/400)*220=27 Гц )так, как нам необходимо знать частоту двигателя при 220В питания двигателя. Диапазон изменения параметра 25 Гц — 200 Гц.(1 Вольту на контакте 1-ом соответствует 40 Гц)
  2. Резистор отвечает за вольт добавку. 1 Вольт на 2-ом контакте соответствует 4% напряжения вольт добавки (мое мнение выбрать на уровне 10% то есть 2.5 вольта повышать с осторожностью) Диапазон настройки 0-20% от напряжения сети (1 Вольту на контакте 2-ом соответствует 4%)
  3. Интенсивность разгона 1 В соответствует 10 Гц/сек (на мой взгляд оптимально 15 -25 Гц/сек) Диапазон настройки 5 Гц/сек — 50 Гц/сек. (1 вольту на контакте 3-ом соответствует 10 Гц/сек)
  4. Интенсивность торможения 1 В соответствует 10 Гц/сек (на мой взгляд оптимально 10 -15 Гц/сек) Диапазон настройки 5 Гц/сек — 50 Гц/сек. (1 вольту на контакте 4-ом соответствует 10 Гц/сек)

После того, как все резисторы выставлены нажимаем и держим кнопку В1 до тех пор пока светодиод не перестанет мигать. Если светодиод моргал и загорелся, то привод готов к запуску.Если светодиод моргал и НЕ загорелся, то ждем 5 секунд, и только потом отключаем питание от контроллера.

Ниже представлена вольт-частотная характеристика устройства для двигателя 220 в 50 Гц с вольт добавкой в 10 % .

  • Uмах- максимальное напряжение, которое способен выдать преобразователь
  • Uв.д.- напряжение вольт добавки в процентах от напряжении сети
  • Fн.д.- номинальная частота вращения двигателя при 220 В . ВАЖНО
  • Fmax- максимальная выходная частота преобразователя.

Еще один пример настройки

Предположим, у вас имеется двигатель, на котором указана номинальная частота 50 Гц , номинальное напряжение 80 В, Чтобы узнать какая будет номинальная частота при 220 В необходимо: 220 В разделить на номинальное напряжение и умножить на номинальную частоту (220/80*50=137 Гц). Таким образом, мы получим,что напряжение на 1 контакте (резисторе) нужно выставить 137/40=3,45 В.

Симуляция в протеусе разгон 0-50 Гц одной фазы (на 3-х фазах зависает комп )

Как видно из скриншота с ростом частоты увеличивается амплитуда синуса. Разгон занимает примерно 3.1 сек.

По поводу питания

Рекомендую использовать трансформатор, так как это самый надежный вариант. На моих тестовых платах нет диодных мостов и стабилизатора для igbt модуля 7812. Для скачивания доступны две печатные платы. Первая та которая представлена в обзоре. Вторая имеет незначительные изменения, добавлен диодный мостик и стабилизатор. Защитный диод ставить обязательно P6KE18A или 1.5KE18A ставить обязательно.

Пример размещения трансформатора, как оказалось найти совсем нетрудно.

Какой двигатель можно подключить к данному преобразователю частоты?

Читать еще:  Двигатель kubota d1005 расход топлива

Все зависит от модуля. В принципе можно подключить любой, главное, чтобы его сопротивление для модуля irams10up60 было более 9 Ом. Нужно учесть, что модуль irams10up60 рассчитан на маленький импульсный ток и имеет встроенную защиту на уровне 15 А Этого очень мало. Но для двигателей 50 Гц 220 В 750 Вт, этого за глаза. Если у вас высокооборотистый шпиндель, то скорее всего он имеет маленькое сопротивление обмоток. Данный модуль может пробьет импульсным током. При использовании модуля IRAMX16UP60B (ножки придется загнуть самостоятельно) мощность двигателя по даташиту возрастает с 0.75 до 2.2 кВт.

Главное у данного модуля: ток короткого замыкания 140 А против 47 А, защита настроена на уровне 25 А. Какой модуль использовать решать вам. Нужно помнить что на 1 кВт необходимо 1000 мкФ емкости dc звена.

По поводу защиты от КЗ. Если у привода сразу после выхода не ставить сглаживающий дроссель (ограничивает скорость нарастания тока) и коротнуть выход модуля, то модулю придет «хана». Если у вас модуль iramX, шансы есть. А вот с IRAMS шансов ноль, проверено.

Программа занимает 4096 кБ памяти из 4098. Все сжато и оптимизировано под размер программы по максимум. Время цикла есть фиксированная величина равная 10 мс.

На данный момент всё вышеописанное работает и испытано.

Если использовать кварц на 20 МГц, то привод получится 10-400 Гц; темп разгона 10-100 Гц/сек; частота ШИМа возрастет до 10кГц; время цикла упадет до 5мс.

Забегая вперед следующий частотный преобразователь будет реализован на ATmegа64, иметь разрядность ШИМ не 8, а 10 Бит, иметь дисплей и множество параметров.

Ниже смотрите видео настройки привода, проверки защиты перегрева, демонстрации работы (использую двигатель 380 В 50 Гц, а настройки для 220 В 50 Гц). Так сделал специально, чтобы проверить как работает ШИМ с минимальным заданием.)

Устройство и подключение однофазных электродвигателей 220В

Однофазные электродвигатели 220В широко используются в разнообразных бытовых и промышленных устройствах: холодильниках, стиральных машинах, насосах, дрелях, заточных и подобных им обрабатывающих станках. Их технические характеристики несколько уступают свойствам трехфазных двигателей. Существует два наиболее распространенных типа однофазных электродвигателей для сети переменного тока промышленной частоты:

  • асинхронные;
  • коллекторные.

Первые более просты по своему устройству, но обладают рядом недостатков, главные из которых – трудности с изменением направления и частоты вращения ротора.

Далее рассмотрены однофазные асинхронные электродвигатели и коллекторные двигатели переменного тока.

Однофазные асинхронные электродвигатели

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.

Коллекторный двигатель переменного тока

Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках – там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

Обмотки статора и ротора коллекторного электродвигателя соединяются последовательно. К обмоткам ротора ток подводится через щетки, соприкасающиеся с пластинами коллектора, к которым подсоединяются концы обмоток ротора.

Реверс однофазного двигателя с коллектором осуществляется за счет изменения полярности включения в сеть обмоток статора или ротора, а скорость вращения можно регулировать, изменяя величину тока в обмотках.

Основные недостатки такого двигателя:

  • высокая стоимость;
  • сложность устройства, практическая невозможность самостоятельно осуществить его ремонт;
  • значительный уровень шума, трудное управление, создание радиопомех.

Остается добавить, что при использовании устройств, содержащих однофазный электродвигатель, следует самое пристальное внимание уделить выбору его типа, схеме подключения, тому, как правильно осуществить расчет элементов.

Контактор – принцип действия, схемы подключения

Для бесперебойной работы устройств, которые постоянно включают и выключают, используют устройства для подавления перенапряжения, они распределяют питание и осуществляют управление над подключенными нагрузками. Подача питания происходит через правильные схемы подключения оборудования, для этого используют электродвигатель. Так же осуществляется реверсивное движение и остановка.

Читать еще:  Давление в системе охлаждения двигателя субару

Устройство и принцип работы

Магнитные пускатели и контакторы можно подключать самим, достаточно понять принцип работы устройств и настройку схем. Состоит пускатель магнитный из магнитопровода и катушки-индуктора. Магнитный провод имеет две части подвижную и не подвижную, первая закрепляется на пружине и осуществляет свободное движение, а вторая установлена на теле устройства и неподвижна.

В отверстии второй части установлена катушка, ее расположение влияет на номинальные контакторы пускателя с катушкой, подразделяются на 12 V и 24 V, 110 V и 220 V и 380 V. А вторая часть служит для подвижных и неподвижных контактов. Если питание не поступает, первая часть отжимается пружинами, а состояние контактов не меняется и остается в первоначальном виде.

Как только напряжение появляется, при нажатии пусковой кнопки или другом поступлении электроэнергии, катушкой регулируется генерация электромагнитного поля, при котором притягивается первая часть устройства и расположение контактов меняется.

Если напряжение пропадает, зона электромагнитного поля иссякает, пружинная часть отжимается в подвижной стороне контактора в верхнюю сторону, а состояние контактов возвращается в первоначальный вид. Так работает электромагнитный пускатель, напряжение появляется в контактах происходит замыкание, пропадает происходит размыкание. На контактное устройство подключаются постоянные или переменные приборы с напряжением.

Но нужно следить за параметрами устройства, чтобы они не превышали заявленные в инструкции по применению.

Пускатели делятся на два типа с нормальными закрытыми контактами и нормальными открытыми. От этого можно понять, как они работают, первые отключают напряжение, а вторые включают, чтобы питание подавалось нужно использовать номер два, а чтобы подавлялось первый.

Где и зачем применяется

Электромагнитные пускатели и контакторы встраиваются в силовую сеть, которая занимается транспортированием тока, может быть постоянное или переменное напряжение, работа применяется на электромагнитных индукциях. Устройства оснащаются набором сигнальных контактов, через них питаются подключенные приборы. Одни выполняют вспомогательную функцию, а другие рабочую.

Электроустановки и электродвигатели управляются пускателями, но не защищают их при падении напряжения, так как происходит размыкание силового контакта, и работа прибора, на который распределяется электромагнит приостанавливается и самостоятельное включение исключается.

Чтобы привести оборудование в действие нужно воспользоваться кнопкой “пуск”. Это обеспечивает безопасность, так как из-за самопроизвольного включения могут произойти аварии.

В схемы подключения пускателя могут включаться реле с тепловым действием, они предназначены предохранять электродвигатели и другие установки от длительной работы. Бывают однополюсные и двухполюсные магнитные пускатели. Срабатывают при воздействии токовой перегрузки двигателей, по которым проходит напряжение.

Основные характеристики

Для того, чтобы пускатель корректно работал, нужно соблюдать определенные правила при монтаже, знать основы приборов с реле и подбирать схемы магнитного и реверсивного устройства. Контакторы и пускатели работают небольшое время и чаще всего используются устройства с разомкнутым контактом. В одни встраивается сигнальная цепь и предназначена для приборов с потреблением от 0,28 до 12 киловатт, другие для от 5 до 70 киловатт и способны работать с распределением напряжения 220 или 380 V.

Варианты устройств делятся на:

  • открытую;
  • защищенную;
  • пылеводозащищенную;
  • пылебрызгонепроницаемую форму.

Пускатель PME содержит “релюшку” трн, а модель PAE различается по числу реле. Если поступает полное напряжение, катушки прибора надежно работают. основная часть устройств имеет узлы:

  • сердечник;
  • электромагнитная катушка;
  • якорь;
  • каркас;
  • механический датчик;
  • группы контактов, центральные и дополнительные.

В конструкции может быть дополнительная сборка из защитного реле, электропредохранителя добавочного комплекта клеммы и пускового устройства.

Электромагнитная катушка с витками рассчитана на передачу напряжения до 650 V. Катушка размещается в сердце, и большая часть мощности распределяется на силовую часть пружин. В нормальном состоянии контакт разомкнут и пружины удерживаются в верхнем положении и держат магнитнопроводные участки.

Бывают пускатели, которые ограничивают перенапряжение, их используют для полупроводных систем. Катушка начинает работу переменной токовой системы, тип тока и характеристика не влияют на работу установки.

5 схем подключения пускателя, схема подключения через кнопки пуск и стоп

Для подключения схем нужны две клавиши “Пуск” и “Стоп”, производятся каждый в отдельном корпусе или в едином, работа устройства от этого не меняется и называется кнопочным постом.

Если кнопки находятся отдельно, то вопросов не возникает, один контакт подача питания, другой убывание. А если кнопки находятся в одном корпусе, то они имеют каждая по 2 группе контактных линий, две на “Пуск” и две на “Стоп”, у каждой группе своя сторона. Есть отделение с клеммой для контроля подачи тока.

Схемы подключения магнитных пускателей с катушками 220 V — однофазная сеть и подключение, простой вариант. 220 V подается на катушку верхнюю и нижнюю, которые располагаются в теле устройства. К проводам подключается шнур с входом для питания, как только вилка будет в розетке, начнется работа пускателя. Приводится в действие с любым напряжением, а снимается, когда срабатывает пускатель с контактами t1-t3.

Схемы настройки при помощи кнопок “Пуск” и “Стоп”. Пускатель используется для электродвигателей, работа удобна, когда присутствуют кнопки “Пуск” и “Стоп”. Для постоянной работы устройства их чередуют через подачу фаз на магнитную катушку. Работа пускателя происходит только при нажатой кнопке “Пуск”, то есть не подходит для постоянной работы устройства. В схему можно добавить самоподхват, работа происходит с вспомогательными контактами, которые можно установить на некоторые типы устройств.

Схемы подключения асинхронных двигателей 380 V в пускатели 220 V — подсоединение к контактным проводам трех фаз и по ним распределяется нагрузка. Это пускатели с тепловым реле, оно функционирует для защиты двигателя от нагрева.

Реверсивные схемы подключения — используются в случае, если нужно обеспечение вращения двигателей в противоположные направления. Направление меняется, когда перебрасывается фаза, в схеме присутствует два пускателя и кнопочный блок, в котором располагаются клавиши “стоп”, “вперед” и “назад”.

Силовые схемы подключения контактора-фазы переключаются перенаправлением при вращении двигателей, все контролируется силовой схемой. Когда контакты срабатывают на катушку приходит сигнал, на каждую свой, всего три фазы, двигатель работает в левом направлении. Фаза с на третьей обмотке, b на b, а в фазе номер один изменения не происходят. В этом случае движение мотора будет в правую сторону.

Схемы не сложные, но реверсивная требует двухстороннюю защиту, чтобы не было встречного включения. Разделяется на механическую блокировку и защиту контакта.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector