Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатели с фазным ротором — регулирование координат

Двигатели с фазным ротором — регулирование координат

Дополнительные возможности управлять координатами асинхронного электропривода появляются, если ротор выполнен не короткозамкнутым, а фазным , т.е. если его обмотка состоит из катушек, похожих на статорные, соединенных между собой и выведенных на кольца, по которым скользят щетки, связанные с внешними устройствами. Схематически трехфазная машина с фазным ротором показана на рис. 10,а. Фазный ротор обеспечивает дополнительный канал, по которому можно воздействовать на двигатель, — в этом его очевидное достоинство, но очевидна и плата за него: существенное усложнение конструкции, бo льшая стоимость, наличие скользящих контактов. Именно эти негативные особенности привели к тому, что в общем объёме производства асинхронные двигатели с фазным ротором составляют небольшую долю.

Рис. 10. Асинхронный двигатель с фазным ротором (а), схема (б) и характеристики (в) и (г) реостатного регулирования

К щеткам на кольцах в цепи ротора можно подключать как пассивные цепи, например, резисторы, так и активные, содержащие источники энергии; последняя возможность широко используется в электроприводах большой мощности (сотни — тысячи киловатт).

Как и в электроприводе постоянного тока это простейший способ регулирования: в каждую фазу ротора включают одинаковые резисторы с сопротивлением R д — рис. 10,б. Тогда общее активное сопротивление фазы ротора составит R 2 = R р + R д , а искусственные характеристики приобретут вид, представленный на рис. 10,в,г: предельное значение тока ротора Iў 2 пред и критический момент М к в соответствии с (8) и (11) не изменяется, а s к в соответствии с (12) растет пропорционально R 2 :

. (18)

Последнее соотношение для критического скольжения, очевидно, выполняется и для скольжения при любом М = const , оно похоже на (3.16), а реостатные механические характеристики похожи на таковые для двигателя постоянного тока. Показатели реостатного регулирования скорости асинхронных двигателей с фазным ротором практически те же, что у электропривода постоянного тока.

1. Регулирование однозонное — вниз от основной скорости.

2. Диапазон регулирования (2-3):1, стабильность скорости низкая.

3. Регулирование ступенчатое. С целью устранения этого недостатка иногда используются схемы, в которых роторный ток выпрямляется и сглаживается реактором, а резистор, включаемый за выпрямителем, шунтируется управляемым ключом — транзистором с управляемой скважностью, благодаря чему достигается плавность регулирования, а при использовании обратных связей формируются жесткие характеристики.

4. Допустимая нагрузка М доп = М н , поскольку Ф ” Ф н и при мало меняющемся cos j 2 I 2доп ” I 2н .

5. С энергетической точки зрения реостатное регулирование в асинхронном электроприводе столь же неэффективно, как и в электроприводе постоянного тока — потери в роторной цепи при M = const пропорциональны скольжению:

,

а распределение этих потерь определяется в соответствии с (18) соотношением сопротивлений — собственно в роторной обмотке рассеивается мощность , а в дополнительных резисторах — мощность .

6. Капитальные затраты, как и в электроприводе постоянного тока, сравнительно невелики.

Интересные перспективы открывает включение в роторную цепь активных элементов, при f 1 = const появляется возможность не потерять, а истратить полезно мощность скольжения , отдав её либо в сеть, либо на вал двигателя. Электроприводы такого типа называют каскадами или каскадными схемами.

Простейшая схема машино — вентильного каскада, иллюстрирующая общую идею, показана на рис. 11,а. ЭДС машины постоянного тока Е должна быть направлена встречно ЭДС роторного выпрямителя Е d , что достигается соответствующей полярностью машины. Тогда

где R э — эквивалентное активное сопротивление контура выпрямитель — якорь машины.

Рис. 11. Схема (а), характеристики (б) и (в) и энергетическая диаграмма (г) машино-вентильного каскада

Поскольку E d =kE 1 s , а Е 1 ” U 1 = const , то до некоторого скольжения sў , определяемого уровнем ЭДС машины постоянного тока Еў (рис. 11,б), ток I d = 0 , а следовательно, I 2 = 0 , и машина М1 не развивает момента. При s>sў ток начнет расти в соответствии с приведенным выше уравнением, вызывая увеличение момента (рис. 11,в). Мощность возвратится в сеть (рис. 11,г); знаки приближенного равенства показывают, что мы не учитываем электрических потерь в сопротивлениях контура выпрямитель — якорь и механических в машинах М2 и М3 .

Меняя ток возбуждения машины М2 , а следовательно величину Е , можно изменять скольжение, при котором начинается рост тока I d , и, следовательно, регулировать скорость (рис. 11,в).

Иногда вместо двух дополнительных электрических машин, возвращающих энергию скольжения в сеть, используется один статический преобразователь-инвертор, ведомый сетью.

Энергия скольжения не обязательно должна возвращаться в сеть, есть каскады, в которых она отдается машиной М2 на вал главного асинхронного двигателя.

Каскадные схемы используются при очень больших мощностях (тысячи киловатт) и малых диапазонах регулирования — (1,1-1,2):1.

Электропривод с машиной двойного питания

Каскадные схемы предполагали управление координатами в цепи выпрямленного тока ротора. Вместе с тем существует и другая возможность — включение в цепь ротора преобразователя частоты (рис. 12,а). Структуры такого типа называют электроприводами с машинами двойного питания.

Рис. 12. Схема (а) и характеристики (б) машины двойного питания

Поскольку при преобразовании энергии поля должны быть неподвижны относительно друг друга, должны выдерживаться следующие соотношения скоростей и частот:

; (19)

f 1 = f 2 + f , (20)

где — угловые скорости поля статора и поля ротора относительно соответственно статора и ротора; f 1 , f 2 — частоты напряжения статора и ротора; f — частота, соответствующая угловой скорости ротора.

Из (19) и (20) следуют богатые возможности управления скоростью ротора : действительно, фиксируя f 1 , т.е. , и управляя , можно получать любые f и теоретически в неограниченном диапазоне (рис. 12,б); знаком “-” для f 2 и обозначено изменение чередования фаз, чему соответствует изменение направления вращения поля.

Если частота f 2 задается независимо от , механические характеристики представляются горизонтальными линиями (рис. 12,б), и в этом смысле машина подобна синхронной, которую мы рассмотрим далее. При изменении момента нагрузки меняется угол q между осями полей статора и ротора — как бы по-разному растягивается “магнитная пружина”. Наибольший момент М max определяется предельной силой магнитной связи статора и ротора — при превышении моментом нагрузки этой величины нарушаются условия (19), “магнитная пружина” рвется, поля перестают быть неподвижными относительно друг друга, машина не развивает среднего момента и либо останавливается при реактивном М с , либо вращается со скоростью, определяемой активным М с ; это, разумеется, аварийный режим.

Возможно и другое построение системы: частота f 2 может быть связана со скоростью ротора. В этом случае характеристики будут похожи на характеристики машины постоянного тока — будут иметь наклон, который можно трактовать как скольжение; видом связи можно формировать характеристики любого вида.

В рассматриваемой системе очень многообразны энергетические режимы — они определяются соотношением частот f 1 и f 2 , относительным направлением вращения полей, направлением действия (знаком) момента сопротивления. На рис. 12,б в качестве примера приведена диаграмма, иллюстрирующая режимы на одной из характеристик в предположении, что потери малы и не учитываются.

Читать еще:  Электромагнитный тормоз как режим асинхронного двигателя

Составление и описание принципиальной схемы автоматического управления пуском асинхронного электродвигателя с фазным ротором

Пусковой реостат имеет три секции. На рис. 3.7 изображена электрическая принципиальная схема управления пуском асинхронного электродвигателя с фазным ротором /3/.

Рис.3.7. Электрическая принципиальная схема управления пуском асинхронного электродвигателя с фазным ротором

Приняты следующие обозначения:

Л — намагничивающая катушка, главные блокировочные контакты, трехполюсного линейного контактора, с помощью которого обмотка статора двигателя подключается к сети.

1 РМ, 2 РМ — намагничивающие катушки и блокировочные контакты , разрывающие цепь катушки контактора Л в том случае, если ток хотя бы одной из фаз обмотки статора превысит допустимое значение;

R1, R2, R3 ступени пускового реостата;

1РУ, 2РУ, 3РУ – намагничивающие катушки и блокировочные контакты реле ускорения;

РБ – намагничивающая катушка и блокировочный контакт реле блокировки, обеспечивающего некоторую выдержку времени, для того чтобы ток в цепи ротора достиг значения, при котором реле ускорения открывает свои размыкающие контакты:

1У, 2У, 3У — намагничивающие катушки, главные и блокировочные контакты контуров ускорения, главные контакты которых шунтируют ступени пускового реостата.

Последовательность срабатывания (отключения) контактов 1 РУ, 2 РУ, 3 РУ достигается настройкой, которая выполняется в соответствии с неравенством: .

При значениях токов в цепи ротора, близким к точкам уставок реле ускорения, возможны вибрации подвижных частей магнитопроводов, а вместе с ними и контактов контакторов 1 РУ, 2 РУ, 3 РУ, что не способствует нормальному включению контакторов 1У, 2У, 3У. Во избежание этого блок-контакты контакторов 1У, 2У, 3У шунтируют соответственно блок-контактами контакторов 1У, 2У, 3У.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Касаткин А.С., Немцов М.В. Электротехника. -М: Высшая школа, 2002.-531 с.

2. Распутов Б.М. Электрооборудование кранов металлургических предприятий. -М: Металлургия, 1990. -269 с.

3. Сборник задач по электротехнике и основам электроники /Под ред. В.Г.Герасимова. -М: Высшая школа, 1987.-287 с.

ОГЛАВЛЕНИЕ

1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ. 2

2. ОФОРМЛЕНИЕ КУРСОВОЙ РАБОТЫ. 3

2.1. Задание проектирования. 3

2.2. Содержание, объем и оформление курсовой работы. 3

3. Пример выполнения курсовой работы. 5

3.1. Выбор варианта задания. 5

3.2. Расчёт мощности двигателя. 6

3.3. Выбор двигателя постоянного тока. 6

3.3. Расчет и построение статических пуско-регулировочных характеристик. 9

3.4. Описание принципиальной схемы управления пуском электродвигателя постоянного тока. 11

3.5. Выбор двигателя переменного тока. 12

3.6. Расчёт и построение статических пуско-регулировочных механических характеристик. 15

3.7. Составление и описание принципиальной схемы автоматического управления пуском асинхронного электродвигателя с фазным ротором 17

Методические указания к выполнению курсовой работы по Электротехнике и электронике для студентов специальности 179000

Составители: Андрей Владимирович Василенко,

Иван Михайлович Тепляков.

Редактор Акритова Е.В.

Подписано в печать ________. Формат 60×84 1/16 Уч.-изд.л. 1,3. Усл.-печ.л.1,4. Бумага для множительных аппаратов. Тираж 100 экз. Заказ № _____

Отпечатано: Отдел оперативной полиграфии Воронежского

государственного архитектурно — строительного университета

С короткозамкнутым ротором

Типовые схемы управления асинхронным двигателем

Типовые схемы управления асинхронным двигателем с фазным ротором

Типовые схемы управления асинхронным двигателем с короткозамкнутым ротором

Вопросы

Асинхронными двигателями

Типовые узлы и схемы управления ЭП с

Лекция №8

Типовые схемы релейно-контакторного управления АД строятся по тем же принципам, что и ДПТ.

Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.

Рисунок 1 — Схема управления короткозамкнутым АД с магнитным пускателем

Схема управления асинхронным двигателем с использованием магнитного пускателя (рис.1) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК. Схема обеспечивает прямой (без ограничения тока и момента) пуск АД, отключение его от сети, а также защиту цепей управления от коротких замыканий (предохранители FU), а электродвигателя от коротких замыканий (автоматический выключатель QF) и перегрузки (тепловые реле КК). Для пуска АД замыкают выключатель QF и нажимают кнопку пуска SB1. Получает питание катушка магнитного пускателя КМ и силовыми контактами в цепи статора АД подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку SB1. Происходит разбег АД по его естественной характеристике. Для отключения АД нажимается кнопка остановки SB2, контактор КМ теряет питание и отключает АД от сети. Начинается процесс торможения АД выбегом под действием момента нагрузки на его валу.

Реверсивная схема управления асинхронным двигателем. Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ1 и КМ2 и тепловое реле КК (рисунок 2).

Рисунок 2 — Схема управления короткозамкнутым АД с

реверсивным магнитным пускателем

Схема обеспечивает прямой пуск и реверс АД, а также торможение противовключением при ручном (неавтоматическом) управлении.

В схеме предусмотрена защита от перегрузок АД (реле КК) и коротких замыканий в цепях статора (автоматический выключатель QF) и управления (предохранители FU). Кроме того, схема управления осуществляет нулевую защиту от исчезновения напряжения сети (контакторы КМ1 и КМ2).

Пуск двигателя в условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок SB1 или SB2. Это приводит к срабатыванию контактора КМ1 или КМ2 и подключению АД к сети (при включенном автоматическом выключателе QF).

Для реверса или торможения АД вначале нажимается кнопка SB3, что приводит к отключению включенного до сих пор контактора (например, КМ1), после чего нажимается кнопка SB2. Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле АД изменяет свое направление вращения и начинается процесс реверса, состоящий из двух этапов—торможения противовключением и разбега в противоположную сторону.

В случае необходимости только затормозить АД, должна быть нажата кнопка SB3, что приведет к отключению АД от сети и возвращению схемы в исходное положение.

Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок SB1 и SB2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировки в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата КМ1 в цепи катушки аппарата КМ2 и наоборот.

Отметим, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автоматического выключателя QF. Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании, как это имеет место при установке предохранителей, а также он не требует замены элементов (как в предохранителях при сгорании их плавкой вставки).

Читать еще:  Болид формулы 1 технические характеристики двигателя 2017

Схема управления многоскоростным асинхронным двигателем обеспечивает получение двух скоростей АД путем соединения секций обмотки статора в треугольник или двойную звезду.

Типовая схема управления асинхронным двигателем, обеспечивающая прямой пуск и динамическое торможение в функции времени.

Пуск двигателя осуществляется нажатием кнопки SB1 (рис. 3), после чего срабатывает линейный контактор КМ, подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения КМ1. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.

Рисунок 3 — Схема управления пуском и динамическим торможением

Для остановки АД нажимается кнопка SB2. Контактор КМ отключается, размыкая свои контакты в цепи статора АД и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя VD через резистор RT и переводу двигателя в режим динамического торможения. Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова АД, реле КТ размыкает свой контакт в цепи контактора КМ1, тот отключается, прекращая подачу постоянного тока в цепь статора. Схема возвращается в исходное положение.

Интенсивность динамического торможения регулируется резистором RT, с помощью которого устанавливается необходимый постоянный ток в статоре АД.

Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ1, включенных перекрестно в цепи катушек этих аппаратов.

Обмотчик электрических машин — Схемы обмоток фазных роторов

Содержание материала

  • Обмотчик электрических машин
  • Классификация и основные элементы
  • Потери и кпд электрических машин
  • Особенности электрических машин различных типов
  • Требования к изоляции
  • Изоляционные материалы
  • Обмоточные провода
  • Методы изолирования токопроводящих частей электрических машин
  • Виды и конструкция изоляции обмоток
  • Виды обмоток
  • Основные элементы и обозначения обмоток машин переменного тока
  • Способы изображения схем обмоток
  • Схемы трехфазных однослойных обмоток статоров
  • Схемы трехфазных двухслойных обмоток статоров
  • Соединение обмоток статоров в несколько параллельных ветвей
  • Обмотки статоров с дробным числом пазов на полюс и фазу
  • Схемы обмоток статоров многоскоростных двигателей
  • Особенности схем обмоток одно- и двухфазных двигателей
  • Намотка катушек из круглого провода
  • Укладка однослойных обмоток статоров из круглого провода
  • Укладка двухслойных обмоток статоров из круглого провода
  • Механизация изготовления и укладки обмоток статоров из круглого провода
  • Обмотки статоров для механизированной укладки
  • Механизированная намотка статоров совмещенным методом
  • Заклинивание пазов обмоток статоров
  • Механизированная намотка статоров раздельным методом
  • Формовка и бандажирование лобовых частей обмотки статоров
  • Комплексная механизация намотки статоров
  • Изготовление катушек из прямоугольного провода
  • Укладка обмоток статоров в полуоткрытые пазы
  • Укладка обмоток статоров в открытые пазы
  • Крепление обмоток статоров из прямоугольного провода
  • Изготовление стержневых обмоток статоров машин переменного тока
  • Особенности укладки обмоток статоров крупных электрических машин
  • Схемы обмоток фазных роторов
  • Обмотки фазных роторов с дробным числом пазов на полюс и фазу
  • Таблицы положений стержней в волновых обмотках роторов
  • Технология изготовления стержней волновых обмоток фазных роторов асинхронных двигателей
  • Технология укладки стержневой обмотки ротора
  • Короткозамкнутые роторы
  • Основные элементы и обозначения обмоток якорей машин постоянного тока
  • Простые петлевые обмотки машин постоянного тока
  • Уравнительные соединения машин постоянного тока первого рода
  • Простые волновые обмотки машин постоянного тока
  • Несимметричные волновые обмотки машин постоянного тока
  • Сложные петлевые и волновые обмотки машин постоянного тока
  • Уравнительные соединения машин постоянного тока второго рода
  • Комбинированные обмотки машин постоянного тока
  • Изготовление катушек якоря из круглого провода
  • Изготовление катушек якоря из прямоугольного провода
  • Особенности изготовления одновитковых обмоток якоря
  • Подготовка якоря к укладке обмотки якоря
  • Укладка обмотки якоря
  • Конструкция и типы коллекторов
  • Пайка коллекторов
  • Крепление обмоток якорей и роторов
  • Намотка проволочных бандажей
  • Бандажи из стеклоленты
  • Отделка якоря
  • Крепление обмоток роторов турбогенератора
  • Виды полюсных катушек обмоток возбуждения
  • Катушки обмоток возбуждения из изолированного провода
  • Катушки обмоток возбуждения из неизолированной шинной меди, намотанной плашмя
  • Катушки обмоток возбуждения из шинной меди, намотанной на ребро
  • Особенности изготовления катушек возбуждения крупных синхронных гидрогенераторов
  • Пропиточные составы и методы пропитки обмоток
  • Сушка обмоток
  • Пропитка обмоток лаками с растворителями
  • Пропитка обмоток лаками без растворителей
  • Пропитка обмоток в компаундах
  • Контроль и испытания обмоток
  • Измерение сопротивления обмоток
  • Измерение сопротивления изоляции обмоток
  • Контроль обмоток, уложенных в пазы
  • Проверка правильности маркировки выводных концов фаз обмотки статора
  • Испытание электрической прочности изоляции обмоток
  • Испытание междувитковой изоляции обмоток
  • Автоматизация испытаний электрических машин
  • Виды и система планово-предупредительных ремонтов
  • Частичный ремонт обмоток
  • Ремонт обмоток статоров
  • Ремонт обмоток фазных роторов асинхронных двигателей
  • Ремонт обмоток якорей, катушек возбуждения
  • Заключение, литература

ГЛАВА VIII
СТЕРЖНЕВЫЕ ОБМОТКИ РОТОРОВ АСИНХРОННЫХ ДВИГАТЕЛЕМ
§ 35. СХЕМЫ ОБМОТОК ФАЗНЫХ РОТОРОВ
Обмотки фазных роторов асинхронных двигателей мощностью более 70—80 кВт, как правило, выполняют стержневыми.

В фазных роторах современных асинхронных двигателей почти всегда применяют двухслойные волновые обмотки, так как в двухслойных обмотках лобовые части изгибаются меньше, чем в однослойных, а в волновых обмотках меньше межгрупповых соединений, чем в петлевых той же полюсности.
Закономерность соединения схемы стержневых волновых обмоток рассмотрим на конкретном примере. Составим схему волновой стержневой обмотки трехфазного ротора с Z2= 24 и = 4. На рис. 101, а показаны 24 пары линии пазов, в которых располагаются стержни верхнего (сплошные линии) и нижнего (пунктирные линии) слоев обмотки. Разметим пазы так же, как в схемах двухслойных обмоток статора, т. е. распределим все пазы по полюсным делениям и обозначим фазы обмотки. Полюсное деление ротора содержит
Z2/(2p) = 24/4 = 6 пазовых делений.

Рис. 101. Построение схемы стержневой волновой обмотки фазного ротора:
а —распределение пазов по фазам, б — соединение стержней первой половины фазы, в — последовательность соединения стержней

Число пазов на полюс и фазу q2 = Z2/2pm = 24/(4-3) = 2. Для всех стержней фазы А отметим стрелками направление мгновенных значений токов. Оно меняется при переходе от одного полюсного деления к другому. Построение схемы обмотки начнем, приняв за начало фазы А верхний стержень, лежащий в первом пазу (рис. 101,6). Одновременно с вычерчиванием схемы обмотки будем заполнять таблицу соединений с указанием номеров пазов и последовательности шагов, как показано на рис. 101, в. Обмотку выполняют с диаметральным шагом (для нашей схемы у=τ2=6 пазовым делением). Обмотка двухслойная, поэтому верхний стержень, лежащий в первом пазу, должен быть соединен с нижним стержнем, лежащим в (1 + у) = (1 + 6) = 7 пазу. Следующим шагом нижний стержень 7-го паза соединяется с верхним стержнем, лежащим в (7+6) = 13 пазу. Проделав таким образом 2р — 1 = 4 — 1 = 3 шага из 1в в 7н, из 7н в 13 в, из 13в в 19н, убедимся, что при следующем таком же шаге стержень, лежащий в нижнем слое 19-го паза, должен быть соединен со стержнем, взятым за начало фазы, лежащим в верхнем слое 1-го паза, т. е. обмотка замкнется сама на себя. Чтобы этого не произошло, следующий шаг изменяют на одно зубцовое деление — укорачивают или удлиняют, т. е. делают его равным + 1) или (у — 1). Чаще применяют укороченный шаг, так как он приводит к некоторой экономии меди.
Первый обход обмотки по всей окружности ротора завершается укороченным (или удлиненным) шагом, после чего соединение продолжают в той же последовательности с диаметральными шагами, изменяя их в конце каждого из обходов. После 2 таких обходов (в нашем случае после двух обходов, так как q2 = 2) укорачивать последний шаг уже нельзя, так как это приведет к соединению обмотки фазы А со стержнями соседней фазы (18н + 6 — 1 = 23в — принадлежит фазе В). К этому моменту уже соединена половина всех стержней фазы А ив каждом пазу этой фазы находится только по одному стержню: верхнему или нижнему (см. рис. 101, б). Для заполнения оставшихся после первых q2 обходов половин пазов фазы последний стержень, на котором закончился обход (на нашей схеме — нижний стержень 18-го паза), соединяют перемычкой со стержнем, занимающим такое же положение в пазу на расстоянии шага в направлении обхода. В нашем примере нижний стержень 18-го паза соединяется с нижним стержнем 24-го (18 + 6) паза. Дальнейшие соединения продолжают в той же последовательности, но в направлении, обратном принятому первоначально. После обходов в обратном направлении построение схемы одной фазы обмотки заканчивается. Схема соединения фазы А изображена на рис. 102, а всех фаз обмотки ротора — на рис. 103. По схеме рис. 103 можно проследить основные закономерности, характерные для стержневых волновых обмоток роторов. Начала фаз располагаются в 1, 9 и 17-м пазах, т. е. через 2q2p = 2x2x2 = 8 зубцовых делений. Такое расстояние между началами фаз обеспечивает и электрическую и геометрическую симметрии обмотки.

Читать еще:  Щелчки при запуске двигателя ваз причины


Рис. 102. Схема соединения стержней одной фазы волновой обмотки ротора (а) и последовательность их соединения (б)

Электрический угол между началами фаз кратен 120° (он равен 2р-60° = 2х2х60 = 240 эл. град), а геометрический угол равен 120°, т. е. начала фаз расположены симметрично по окружности ротора.
Каждая фаза обмотки имеет только одну перемычку между катушечными группами независимо от числа полюсов машины. Напомним, что в петлевых обмотках таких перемычек будет (2р — 1) в каждой фазе (см., например, рис. 28). В этом ясно видно преимущество волновых обмоток, особенно для многополюсных машин. Так, например, в каждой фазе петлевой обмотки с 2р = 12 будет по 11 перемычек между катушечными группами, а в фазе стержневой волновой — только одна.
При симметрично выбранных началах фаз обмотки также симметрично по окружности ротора располагаются концы фаз (Р4 — в 7-м, Р5 — в 15-м, Р6 — в 23-м пазах) и перемычки между катушечными группами, что облегчает балансировку ротора после укладки обмотки. В большинстве случаев обмотка ротора соединяется в звезду. Начала фаз обмотки ротора (Р1, Р2, Р3) соединяются с контактными кольцами, а концы фаз (Р4, Р5, Р6) — между собой кольцевой перемычкой.


Рис. 103. Схема стержневой волновой обмотки ротора с укороченными переходами с Z= 24, 2р=4

Как мы уже знаем, обмотка может быть выполнена и с удлиненными шагами в конце каждого обхода. Ее схема строится так же, как и схема на рис. 103, но в конце обхода выполняется удлиненный шаг, равный (у+1). Из-за увеличения шага несколько удлиняются лобовые части стержней, соединенных с перемычками, а у выводных стержней возникают дополнительные перекрещивания в лобовых частях.
Иногда стержневую волновую обмотку ротора делают с различными переходными шагами: при обходе первой ветви до перемычки с удлиненными, а после перемычки — с укороченными.
Рис. 104. Схема фазы стержневой волновой обмотки ротора с переходным стержнем с Z=36, 2р= 4 (а) и последовательность соединений стержней (б)


Встречаются также схемы обмоток фазных роторов, выполненные без перемычек (рис. 104). В таких обмотках на месте последнего при прямом обходе стержня, который в обычных схемах соединяется с перемычкой, устанавливают изогнутый переходный стержень (паз 26 на рис. 104). Половина этого стержня 1 (рис. 105) располагается в нижней, а другая половина — в верхней части паза. Обе лобовые части переходного стержня отгибаются в одну и ту же сторону, и направление обхода соединения обмоток после переходного стержня меняется на обратное, так же как и после перемычки. В таких схемах выводные концы последних стержней всех фаз располагаются на противоположной от начал фаз стороне ротора. Соединение стержней в них более удобно, чем в схемах с перемычками, однако обмоточные работы усложняются в связи с необходимостью добавочного закрепления переходных стержней. Свободные части пазов, в которых расположены переходные стержни, заполняются либо текстолитовыми прокладками 2, либо отрезками изолированной медной шины того же размера, что и стержни обмотки, как показано на рис. 105.
Стержневую волновую обмотку делают с одной или реже с двумя параллельными ветвями. Выполнение большего числа параллельных ветвей из-за дополнительных соединений в лобовых частях технологически трудно и в практике применяется редко. Для получения двух параллельных ветвей перемычку между половинами фаз убирают и каждую половину обмотки соединяют с начальными и конечными выводами фаз (рис. 106).

Рис. 105. Переходной стержень в пазу ротора
Рис. 106. Соединение фаз обмотки ротора в две параллельные ветви


Чтобы начала фаз в обмотке ротора располагались по окружности ротора симметрично, между ними должно заключаться 2q2p пазов. Такое симметричное расположение возможно во всех роторах, число полюсов которых не кратно трем. В двигателях с числом, кратным трем (2р=6, 12 и т. д.), симметричное положение выводов приходится нарушать, так как через 2q2p пазов в них располагаются стержни одной и той же фазы. Начала фаз в обмотках роторов таких машин выбирают через 2q2(p — 1) пазовых делений.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector